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Abstract The influence of the scale of a fuzzy membership
function used to fuzzify a histogram is analysand. It is shown
that for a class of fuzzifying functions it is possible to indi-
cate the limit for fuzzification, at which the mode of the his-
togram equals to the mean of the data accumulated in it. The
fuzzification functions for which this appears are: the quad-
ratic function for aperiodic histograms and the cosine square
function for periodic ones. The scaled and clipped versions
of these functions can be used to control the degree of fuzzi-
fication belonging to the interval [0, 1]. While the quadratic
function is related to the widely known Huber-type clipped
mean or the kernel function derived from the Epanechnikov
kernel, the clipped cosine square seems to be less known. The
indications for using strong or weak fuzzification, according
to the value of the fuzzification degree, are justified by ex-
amples in two applications: classic Hough transform-based
image registration and novel accumulation-based line detec-
tion. Typically, the weak fuzzification is recommended. The
images used are related to simulation images from teleradio-
therapy and to mammographic images.

Key words Fuzzy histogram; Accumulation; Scale; Mode
to mean transition; Limit fuzzification; Periodic histogram;
Line detection; Mammograms; Image registration

1 Introduction

One of the robust methods of estimating the measured quan-
tity on the basis of a series of measurements, in the presence
of errors, is the voting organized as forming a histogram and
finding its mode. The histogram can be viewed as an empir-
ical approximation of the probability density function and in
this convention the mode is an approximation of its mode (or
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simply a maximum). This is the source of robustness of this
method against noise as well as incomplete or partly erro-
neous data. For the voting to be possible the values are quan-
tized and the histogram is an array. Its dimensionality corre-
sponds to the dimensionality of the measured quantity. Each
measurement is a vote for a specific value of the quantity of
interest.

In the scope of computational methods, if the specified
quantity can be calculated from the data in multiple ways,
each such result can be treated as a measurement. This is par-
ticularly the case in image processing at low level, where the
pixel data are a source of redundant but partly misleading in-
formation on the objects present in the image. Within the do-
main of image processing, the most widely known method us-
ing the analysis of a histogram is the Hough transform (HT),
which has been developed into numerous versions applied to
detection of several classes of shapes (see for example [I,

,3,4,5,6] for the early works and [7,8,9] for the first sur-
veys). The key feature of the method making it a robust image
analysis tool is that data are accumulated in the array called
the accumulator array, which is the histogram of the occur-
rences of specific values of the parameters of the detected
shape (e.g., straight line, quadric, shape given by a template)
or relation (e.g., image registration parameters). The pres-
ence of a single mode or multiple modes in this histogram
is the evidence of the presence of the instances of the ob-
ject sought. Recently, the methods of the detection of shapes
which are described neither by parametric equations nor by
a template have been developed (see [10, | 1, 12] for the meth-
ods using Fourier descriptors, and [13, 14, 15] for the accu-
mulation in the image domain). The methods related to HT
are now frequently called the evidence accumulation [9] or
evidence gathering [10,12] methods.

One of the important issues in the methods where a his-
togram is used is the choice of its resolution. The problem
underlying this issue, as stated explicitly in [1 6], is the uncer-
tainty-precision duality: the higher the histogram resolution
is, the more precise the result of detection of the mode can
be; however, together with resolution increase, the certainty
that this mode exists and that it corresponds to the correct


mailto:lchmiel@ippt.gov.pl
http://www.springerlink.com
http://dx.doi.org/10.1007/s10044-006-0037-7
mailto:lchmiel@ippt.gov.pl

result decreases. This problem has been analysed by numer-
ous authors. In [17,18,19,20] the approaches related to es-
tablishing proper resolution have been proposed, including
the non-uniform, multiresolution and adaptive divisions of
the domain of the solution. In [21] it has been proposed to
distribute each vote into more than one element of the his-
togram. In [22] the fuzzy set theory has been directly used
and the fuzzy Hough transform was introduced explicitly.

The paper by Strauss [16] seems to be the most complete
work on fuzzy histograms related to the Hough transform up
till now. It presents a solution to the problem of finding a com-
promise between uncertainty and precision, with the issues of
image thresholding, quantization of the parameter space and
data localization uncertainty, and enhanced peak detection in
the parameter space, taken into consideration. The member-
ship functions used in fuzzification of the subsequent stages
of the method are derived from the basic relationships per-
taining to the way in which the pixels form an image of a line.
A large number of citations on fuzzy Hough transform are
given in that paper.

The methods used in this paper have a strong relation-
ship to robust statistics and to kernel density estimation. The
relation goes along the line of the use of functions treated
in this paper as fuzzy membership functions in histogram
fuzzification. Among them, there is the clipped square func-
tion used in the fuzzification of a non-periodic histogram. On
the grounds of robust statistics, this function is related to the
skipped mean function, traced back by [23] and [24] to the
fundamental works of Huber (collected in the book [25]).
In the domain of kernel density estimation, this function is
the kernel function derived from the Epanechnikov kernel
(see [26,27], also [28], as cited by [29]; the references go
back to [30]). The clipped square function, as related to the
skipped mean, picks the mean value of a number of histogram
elements immediately neighbouring the given element, while
skipping the values from the remaining elements. This widely
known property is readily applicable in aperiodic histograms.
It will be shown that in the case of periodic histograms, the
function which has the analogous property is the cosine square
function; the use of its scaled down and clipped version seems
to be less generally acknowledged.

An overview of the applications of robust methods in the
computer vision problems can be found in [29].

There exists also an obvious analogy of histogram fuzzi-
fication to simple low-pass filtering, which is the reason why
the users of fuzzy histograms frequently apply the Gaussian
function as the membership function. It can be easily shown
that this function has similar properties to those of the func-
tions mentioned before.

In all the functions used here as the fuzzy membership
functions in histogram fuzzification there is a single parame-
ter related to the width of the support, or scale. In [29] (im-
mediately preceding and following the formula (4.4.34), Sec-
tion 4.4.3) a discussion on the question of scale can be found.
This discussion covers several estimates of the scale and can
be summarized in two questions: 1° how to find a good es-
timate of the scale if little is known on the structure of the
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data, that is, the share of outliers and the noise, and 2° what
coefficient should be used to tune the actual scale to be used
in calculations with respect to this estimate. The scope of
the present paper is less extensive than that of the paper by
Strauss [16] and than that of the cited works on robust statis-
tics in computer vision. In this paper, a very simple yet useful
approach to the problem of scale is proposed. The considera-
tions will be restricted to the accumulation-based, HT-related
methods, which are the main domain of interest to the author.
The cases of an aperiodic and a periodic histogram will be
studied. The problem will be investigated not from the per-
spective of an estimate of scale, but rather from the perspec-
tive of the upper limit for the fuzzification. This limit will
be treated as the basis for simple indications concerning the
choice of scale. These indications will be verified against two
test problems: the image registration with the classical HT
method according to [31,32,33,34] and the novel line detec-
tion method according to [13, 14, 15].

The paper is organized as follows. Section 2 recalls the
explanation why it is useful to solve the precision-certainty
duality with the fuzzy voting rather than by changing the his-
togram resolution. In this context the observation on the ex-
istence of the limit for fuzzification is made. This Section is
based on easily understandable artificial examples. In Sect. 3
the properties of a fuzzified histogram are briefly presented.
The piecewise continuous transition between the mode of a
histogram and the mean of the data accumulated in it is de-
scribed. This constitutes the basis for explaining the notion
of the limit fuzzification and the degree of fuzzification. The
case of periodic data and a periodic histogram is treated in
Sect. 4. The results analogous to those of an aperiodic his-
togram are discussed. Section 5 briefly recapitulates the ob-
tained results and presents the indications for the choice of
scale in the fuzzifying function, that is, the use of the weak
and strong fuzzification. In Sect. 6 these indications are con-
firmed on the basis of experiments with two HT-related accu-
mulation methods. Conclusions come in Sect. 7.

2 Introductory example: fuzzification of a histogram

Assume that a real variable  has been measured 12 times.
Results of these measurements, denoted as &, j € J, J =
{1,...,12}, are shown in Table 1. It can be seen that the mea-
surements vary greatly. Hence, it is highly probable that only
some of them are significant, and some others are defined as
outliers. The data are accumulated in a histogram defined as

H(i) =Y x(i—i(#)) )
jeJ
where (.) is the characteristic function

1,if k=0
0, otherwise

i = { @

and Z(x) is the indexing function, i.e., the mapping from the
real domain of x into the integer domain of the index 7 of
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J 1 2 3 4 5 6
Z;j 0.6 1.1 1.4 3.8 7.2 12.2

Z;/2 | 0.3 0.55 0.7 1.9 3.6 6.1
Z;/4 | 0.15 0.275 035 0.95 1.8 3.05

J 7 8 9 10 11 12
Z;j 12.8  13.9 141 154 159 188

i;/2| 64 695 705 7.7 795 94
#;/4 | 32 3475 3525 3.85 3975 A7

Table 1 Results of 12 measurements &; of the variable . (&;/2,
Z;/4: auxiliary data useful in forming the histograms in Fig. 2)

H(i)
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Fig. 1 Histogram H (3) of the 12 measurements shown in Table 1
with the indexing function according to (3)

the histogram. The indexing constitutes the quantization of
the domain of x. As the indexing function, a simple rounding
function has been used:

i(z) = round(x) 3)

where round(z) = |z 4+ 1/2] and | .| denotes the integer
part of a number, defined as the largest integer not greater
than this number.

The histogram (1) is shown in Fig. 1. A look at this his-
togram reveals the following observations. From the 12 re-
sults, six (j = 6,...,11) cluster around the value i ~ 14.
Three (5 = 1,2, 3) form a peak at i = 1. The remaining three
results are displaced around the domain of the histogram and
do not form any clusters. The basic question is whether the
strongest peak in the histogram at 7 = 1 is the proper result
of the measurement of x, or if this result should be estimated
from the measurements clustering around ¢ = 14. It seems
that this second solution should be chosen, due to which twice
more measurements vote for ¢ ~ 14 than for ¢ = 1. The ex-
ample is artificial and indeed it is this particular interpretation
which has been the motivation in its design. A case similar to
this one could have been a result of a systematic error which
occurred three times giving rise to erroneous measurements
7 = 1,2, 3. The measurements j = 4,5, 12 could be the re-
sult of gross errors, and the fact that some of the measure-
ments j = 6,...,11 do not fall exactly into the histogram
element 7 = 14 could be attributed to noise with distribution
close to normal.

In consequence of the preceding considerations, the mea-
sured value should be estimated with the mean value of the
measurements for j = 6, ..., 11, which leads to the estimation
T = 14.05 = 14. The mean of all measurements is 9.75, the
median is 12, and neither of these values conform to the esti-

H(i)
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Fig. 2 Histogram H (z) of the measurements from Table 1 with the
indexing functions, respectively: a (4); b (5). In neither case does the
mode of the histogram equivocally indicate the expected estimate
T~ 14

mation . Clearly, the mode of the histogram corresponding
to x = 1 does not represent the proper result of the mea-
surement. This discredits the use of the histogram and the
accumulation principle as a robust measure of the result of
measurements ;.

As mentioned in Sect. 1, the negative result obtained
above is the consequence of an improper choice of the resolu-
tion of the histogram. The resolution is too large. In general,
a straightforward reduction of the resolution does not neces-
sarily lead to an improvement in this respect, however. Let
us try to form histograms with the data from Table 1, using
resolutions reduced by two and four, with the indexing func-
tions (4) and (5), respectively:

Eg(x) = round(z/2) 4)

i4(x) = round(x/4) 3)

In the case of the data used, this does not lead to satisfactory
results, as shown in the histograms in Fig. 2a, b, respectively.
The problems of unequivocal modes of histograms and loss
of precision arise.

Let us now fuzzify the histogram of Fig. 1 by replacing
the (crisp) characteristic function x(-) in (1) by the fuzzy
membership function, which expresses the degree of mem-
bership of the vote to the given measurement (precisely, to
the index of the measurement). In the application to fuzzify
the histogram this function will be called the fuzzifying func-
tion. Let us begin with a commonly used fuzzifying function
derived from a Gaussian by limiting its support to a small
symmetric interval around the maximum:

_(%)2 . _
pa(k) = {e ,if k E.[ 3s, 3] (6)
0, otherwise

and s > 0. The argument £ is integer. Parameter s is the scale
factor and controls the width of the support of the function.
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Fig. 3 Evolution of the shape of the fuzzy histogram of Fig. 1 versus
scale s of the fuzzifying function (6): a histogram after fuzzification
for selected scales; b projection onto the plane (Ois): thick solid
line: mode of the fuzzy histogram for a changing scale; thin solid
line: mean, and dashed line: median, both calculated from histogram
without fuzzification. No fuzzification is marked with ”--"” and does
not mean s = 0, which would be impossible in (6). (Scale of axis s
is non-linear for the sake of compactness)

The fuzzy histogram is defined as

He(i) =Y pe(i—i(#;) =Y HGpali—j) 7)

JjeJ jeJ

(This formula can also be interpreted as filtering the histo-
gram (1) with the low-pass filter with the kernel (6)).

At this point the basic question of this paper can be asked:
what is the influence of the scale parameter, or in other words,
the width of the support of the fuzzifying function, on the
fuzzified histogram? To what extent the histogram can be
fuzzified and is there a limit of a reasonable fuzzification?
The commonsense intuition is enough to say that for a ‘very
narrow’ support there is no fuzzification at all and for a ‘very
wide’ the histogram tends to become uniform. It is easy to
state that "very narrow’ is such that there is only the central
zero point inside the support and the fuzzy histogram is equal
to the crisp one.

Some intuition on what can be understood as ‘very wide’
can be gained by looking at Fig. 3. What is the most interest-
ing is the change of the mode with scale. As scale s grows, the
mode of the histogram changes from the value corresponding
to the peak at ¢ = 1 to that corresponding to the expected
value of the measured quantity & = 14. This value remains
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constant for a range of the scale s € [0.8, 4.9], approximately.
This is the ‘useful’ range of s. Then, after a number of jumps
between the indices in the histogram, the mode stabilizes at
some value. It occurs that this value is close to the mean of
the data accumulated in the histogram. This mean is under-
stood as the average of the data quantized according to the
indexing function, like (3), and will be called the average of
the histogram. Further growth of the scale yields no change
in the mode. The histogram becomes more uniform and its
maximum becomes less prominent.

In the next section the reason for such a behaviour of the
fuzzified histogram will be shown. The considerations for the
case of an aperiodic histogram will be analogical to those for
the skipped mean and the Epanechnikov kernel, as stated in
Sect. 1. In the case of a periodic histogram this analogy will
not be so close, however. Hence, both cases will be presented,
so the reader less acquainted with the basics of the domains
of robust statistics and kernel density estimation can follow
them easily. For the same reason the proofs of the presented
properties will be given, despite the fact that they are quite
simple.

3 Aperiodic histogram

In the following, we shall understand the fuzzifying function
as a function of a real argument, and consequently, a fuzzy
histogram will also be a function of a real argument. Let
I = {imin,--»%max} (set of integers) and X = [imin —
imax; tmax — min] (real interval, symmetrical around zero).
As the indexing function, the simple function (3) will be used
throughout this Section, so for a given value of index i, the
corresponding value of x will be simply « = <. Then,

Hy(x) =Y H()pu(x — i) (8)

iel

3.1 Quadratic fuzzifying function

It can be demonstrated that the fuzzified histogram has the
following property:

Property 1 (Quadratic fuzzifying function)

The mode x,, of the fuzzy histogram H () obtained by
fuzzification of the crisp histogram H(i),i € I, with the
quadratic fuzzifying function

po(r) =1 — ax? ©)

where a > 0 is chosen so that p(z) > 0 for x € X, corre-
sponds to the mean of the crisp histogram H (7). Namely,

T, = arg max(H o (x)) (10)
where
Hys(x) =) H(i)pz(x — i) (1D
il
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H(i), Hy 5 ()

[ Xm ik imax
Fig. 4 Aperiodic histogram for simple data. Thick bars: crisp his-
togram H (i), 7 = 4min,-.., max; dashed line: its fuzzy version
H o (x) for real argument x; thin line: fuzzy membership functions
w2 (z — ir) according to (9) for elements 45 of the crisp histogram;
points: fuzzy histogram H s (¢) for integer argument é; x,, = 1.5:
mode of the fuzzy histogram H 2 () equal to the mean value of the
crisp histogram H (4)

The straightforward proof of the property is given in Ap-
pendix A.

This property is illustrated by an example of simple data
shown in Fig. 4. In this example a = 0.1, so that us(z) > 0
for any x in the domain of the histogram. Note that if the
case of integer arguments is considered, the fuzzy histogram,
represented with points in the figure, would have two maxima
and its mode would be unequivocal.

Returning to the fuzzifying functions with scale, the quad-
ratic fuzzifying function should be defined as

vy @e(@),if z € [—s, 4]
Ha(w) = { 0, otherwise 12)

where s > 0 and

2
12 if 5> 0
qQ(x):{ L e o (1)

In the context of this formula, a measure of fuzzification of
a histogram can be introduced. Let us call it the fuzzification
degree dy and let it belong to the real interval [0, 1], where
0 means no fuzzification and 1 means such fuzzification at
which the mode of the histogram equals its mean. Stronger
fuzzification leads to no change in the mode and is pointless,
so the case when dy = 1 can be called the limit fuzzification.
No fuzzification occurs when half-width of the support of the
function (12) is zero: s = 0. Limit fuzzification takes place
when half-width of the support iS s = Smax = %max — %min-
This is the limit at which the Property 1 starts to hold (see
Fig. 4), because for s > sy,.x the function (12) is equivalent
to (9), with a = 1/s%.

Finally, in the case of the quadratic fuzzifying function
according to (12) and a histogram defined for ¢ € I, the de-

gree of fuzzification can be defined as

—5—if s € [0, Smax]
— Smax
d _{ 1, if 8> Smax (14

This also defines the meaning of a weak fuzzification when
dy ~ 0 and a strong one when d; ~ 1.

3.2 Other fuzzifying functions

Now let us consider a more general case of symmetric func-
tions depending on scale, having a single maximum. For such
function (and its derivative, used in (38)) the following prop-
erty holds:

Property 2 (Symmetrical fuzzifying function)

Any real, symmetrical and non-negative function, having a
single maximum equal 1 at z = 0 and depending on scale as
a parameter, in the form

w(x) = f(z/s), 5)

where s is the scale parameter, is arbitrarily close to the quad-
ratic function, and its derivative is arbitrarily close to the deri-
vative of the quadratic function, for a sufficiently large value
of the scale parameter s, if this function ic class C* (continu-
ous up to the fourth derivative) for z € X.

The proof of the property is given in Appendix A.

By virtue of Property 2, the fuzzification with any fuzzi-
fying function fulfilling the preconditions of this property has
its limit, at which the mode of the histogram stabilizes at
its mean. For each such function, the appropriate expression
for the fuzzification degree can be derived in analogy to the
expression (14). Coming back to the example illustrated in
Fig. 3, the limit scale at which the fuzzification degree be-
comes one is s ~ 9.

Remark 1 (to Properties 1, 2 and formula (14))

In the case of a crisp histogram, when the resolution increases,
consequently the certainty of the solution consisting in find-
ing the mode decreases. This is because the average num-
ber of votes in the histogram elements decreases. However,
in the case of a fuzzy histogram, the mode always tends to
the mean of the histogram when the degree of fuzzification
grows. Moreover, if the resolution is larger than the precision
of indexing is larger, so the mean of the histogram is closer
to the mean of the data.

Remark 2 (to Properties 1, 2, formula (14) and Fig. 3)

In cases like that presented in Sect. 2, illustrated in Fig. 3,
the useful range of the fuzzification degree is closer to zero
than to one. The dependence of this range on the histogram
resolution is negligible, provided the resolution is sufficient
for the indices to represent the values of the data.

The results obtained can be easily extended to a multidi-
mensional case.



4 Periodic histogram

In the case of periodic data, the histogram is also periodic. If
the period is 27 it is circular, otherwise it is not. Let the data
be denoted by (5]‘, j € J. Periodicity means that the result
of each formula from now on is the same for ¢ and ¢ + nT,
where 7' is the period and n an arbitrary integer. The angle ¢
can be always replaced by

or =¢mod T, pr € &, & =[0,T] (16)
Let the indexing function be now i(¢) € I. This function
is periodic, 7(¢) = i(¢7). Here, as a convention, it will be
assumed that inf(/) = 0, which does not restrict any of the
considerations presented.

Direct adoption of the simple formula for an indexing
function like (3) accommodated to the periodic case would be
too restrictive (having in mind that there are only two com-
monly used measures of angle: radians and degrees), so it is
necessary to introduce an angular variable £ linearly related
to ¢ which would render the angle measure commensurable
with the index. Let the relation be written down simply as
a real-valued function

§=8(0) =koér, (€2 7)

where k is such that if £(¢) equals an integer then {(¢) =
i(¢). Also the inverse function ¢ = ¢ (&) = £/k will be used
further.

The periodic histogram is then, analogously to (1)

H(i) =) x(i—i(¢;)) (18)

jeJ

The fuzzifying function is p(§) = p(£(4)) and the fuzzy
periodic histogram is, analogously to (8)

He(€) =Y w&—i(d;) =Y HiuE&—i) (19

JjeJ el

The formulae do not differ from (7) and (8) by anything but
the fact that the indexing function 7(¢), and variables & and
¢, are now periodic.

Analogous to the quadratic function in the case of an ape-
riodic histogram, for a periodic histogram the cosine square
function is the fuzzifying function that leads to the conver-
gence of the mode of the fuzzified histogram to some charac-
teristic value for the set of the accumulated data. This char-
acteristic value in the case of periodic data can be called the
dominating value. If the period is 27, this value can be strictly
treated as the mean value. In the case of an arbitrary period,
the same way of understanding the dominating value as the
mean value can be adopted. As in the case of an aperiodic
histogram, the considerations are related to the data quantized
according to the indexing function. The following properties
hold:
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Property 3 (Cosine square fuzzifying function)

The mode &, of the fuzzy periodic histogram Hy.({) ob-
tained by fuzzification of the crisp periodic histogram H (7),
1 € I, with the cosine square fuzzifying function

pe(€) = cos®(m ¢(€)/T) (20)

where T is the period of the data accumulated in the his-
togram, as well as of the function (20), corresponds to the
dominating value or, in other words, to the mean of the his-
togram H (i). Namely,

&m = argmax(Hy.(£)) 1)
where
Hye(§) = H(i)pe(§ — ) (22)
el

What is exactly meant as the dominating value or the
mean value in the case of periodic data will be explained by
the following property. First, let us introduce the period ra-
tio which indicates how many times the period 7' fits into the
round angle:

T=2m/T (23)

Property 4 (Intensity of the fuzzy periodic histogram)

The fuzzy histogram H.(§) according to (22) in which the
fuzzifying function is (20) can be written down as a harmonic
with a bias, in terms of the crisp histogram H (1), as follows:

Z H(i) (24

161

H (&) = fH cos(T¢(§)

where the amplitude and phase of the harmonic are

H=/H2+ H?

sinf = H,/H
cosfp=H,/H (25)
H, = ZH(i)cosﬁi = ZH””
il iel
H, =Y H(i)sinB; =Y Hy
il il
Bi = T¢(i)

Equations (25) are the expressions for summing the vectors
H; = (H.i, Hy;), which have moduli equal to the values
of the crisp histogram H (i) and phases equal to the angle
measures 7¢(¢) proportional to the indices in this histogram.
The result of this vector sum is the vector H = (H,, Hy)
having modulus H and phase 3, which is the angle measure
of the mode of the histogram, and

Em = f(ﬁ/T) (26)

From this, the interpretation of the dominating value or the
mean value of the data in the crisp histogram H (i) follows.
This is the vector sum of the vectors derived from the ele-
ments of the crisp histogram by taking the intensities of the
histogram as the moduli of the vectors, and the phases of
these elements multiplied by the period ratio 7 as the phases
of the vectors. This sum is proportional to the mean of the
vectors Hj;, equal to +H.
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Fig. 5 Periodic histogram for the same simple data as in Fig. 4 with
the period T = 7 and ¢(1) = 7 /4, £(p) = 4¢/m. Thick bars: crisp
histogram H (%), © = &min, ---, tmax; dashed line: its fuzzy version
Hy (&) for real argument &; thin line: fuzzy membership functions
(& — ix) according to (20) for elements i of the crisp histogram;
points: fuzzy histogram H . (%) for integer argument ¢; £, = 2.5 at
¢(&m) = 5m/8: mode of the fuzzy histogram H () equal to the
dominating value for crisp histogram H (¢). Thick dotted line: cir-
cles indicating the minimum and maximum value of the histogram.
(The histogram is supplemented with an additional period 7 to form
a full circle, so that angles between histogram elements correspond
to angles in the image)

The joint proof of the Properties 3 and 4 is given in Ap-
pendix A.

These properties are illustrated by an example of simple
data shown in Fig. 5. The data éj in this example are the
data used in Fig. 4 multiplied by 7 /4, so ¢(1) = 7/4 and
&(¢p) = 4¢/m. The period of the data is 7, so the period ratio
isT=2.

What seems the most conspicuous is that in the case of
periodic data the dominating value falls between indices 2
and 3, while in the case of aperiodic data it was between 1
and 2. This is reasonable, however, because now the value
H(0) is opposite to H(2): if they were equal, the fuzzified
histogram containing only these two values would be strictly
a circle. The reader is encouraged to investigate this con-
tradiction by doubling the phase of histogram elements and
treating them as vectors, according to Property 4. The net ef-
fect of the elements H(0) and H(2) is 1 at ¢ = 1, so after
adding H(3) = 1 the result falls between ¢ = 1 and 2, and
the intensity of the result is V2.

The histogram in Fig. 5 interpreted in terms of the formu-
lae (25) can be viewed as the superposition of the evidence
coming from three line intensities, appearing jointly at one
point. This is the vector H such that

H = Hmcax _ H}Ign (27)

HY = max(Hyo(6))

Hmcln — Hélg(ch(g))
which is characteristic of what can be called the combined
intensity of these lines. In this case H = V2.

The form of the equations (25) indicates that there is an
analogy between a periodic quantity with intensity A and
phase [ having the period 7, to a vector with modulus A and
phase 78 = (2x/T)Q. This analogy, described in 1972 by
Mardia [35], was recalled by Zwiggelaar et al. in 1999 [36].
There exists a difficulty in some calculations on the direc-
tions of elongated objects in the images, for which the sense
(in the meaning of the sense of a vector) is not defined, so
the period of the angle which characterizes the direction is .
Therefore, the angle of a line can have two values differing
by 7, and there exists the problem of phase wrapping, which
makes it arduous to calculate such an otherwise straightfor-
wardly defined function on a set of data like the mean value.
The same applies to the gradient if its sense is not important
in the given application. An attempt to find the mean direction
without using the vector analogy of the periodic quantity has
been described and successfully used in [37]. Some heuristics
must have been used in that paper to avoid the ambiguity re-
sulting from the phase wrapping. Zwiggelaar et al. [30] used
the transformation of angles into vectors according to [35]
to calculate the mean direction, thus obtaining simple, well-
defined formulae. In the case considered in [36] the angles
alone were important, not the line intensities, so unit vectors
were used. The formulae (25) make it possible to treat peri-
odic quantities having arbitrary moduli.

It should be remarked that the use of the vector analogy is
not the only way of overcoming the difficulty with the angles
of elongated structures. The feature ALOE [38] is calculated
as the standard deviation of the histogram of directions in-
stead of the directions themselves, so the quantities of which
the mean is calculated are not periodic.

Similar to the aperiodic case and the quadratic function
(12), in the case of periodic histograms the degree of fuzzi-
fication can be defined. This can be done in relation to the
cosine square fuzzifying function. Let us define a function
based on cosine square, with a support depending on the pa-
rameter of scale s:

’ o QC(g)v if ¢(§) € [_svs]
Hel8) = { 0, otherwise (28)
where s > 0 and
2 (&)

_ Jcos® =525, if >0
4:(¢) { e (29)

By analogy to the aperiodic case, if for the half-width it is
$ = Smax = 1'/2 then the accumulation corresponds to sum-
mation, as defined by (25). The support of the fuzzification
function comprises the whole period and therefore is at the
limit. The degree of fuzzification is then

s _25

df = (30)

Smax 1



It is not meaningful to investigate the case s > T/2.

In the periodic case, the property of similarity of other
functions to the function (28) which could be analogical to
the case of the property 2 for the aperiodic case does not exist.

As has been said in Sect. 1, the considerations on the
quadratic function as the fuzzification function and the use
of its clipped version (12) is only a kind of reformulation,
on the grounds of histogram fuzzification, of the notions al-
ready known from the domains of kernel density estimation
(Epanechnikov kernel) and robust statistics (Huber-type skip-
ped mean). However, to the best of author’s knowledge, it
seems that the use of the clipped cosine square function (28)
to the fuzzification of a periodic histogram, and the resulting
definition of the fuzzification degree, has not been presented
up till now.

5 Implications of the transition between the mode
and the mean

In the preceding parts of the paper it has been demonstrated
that for any crisp histogram, a piecewise continuous transi-
tion can be made between its mode and the mean of the data
accumulated in the histogram. This is done by fuzzifying the
histogram with the fuzzification function (12) for the case of
an aperiodic histogram and with the function (28) for the pe-
riodic case, with the scale s changing so that the degree of
fuzzification, according to (14) or (30), respectively, changes
from zero to one. The fuzzy histogram with the real argu-
ment or with the integer argument can be considered (see
Figs. 4, 5). The piecewise continuity consists in that the mode
of the fuzzy histogram with a real argument changes smoothly
between the jumps, and these jumps appear when the maxi-
mum of the histogram with the integer argument moves from
one index to another.

A similar transition can be made with fuzzifying func-
tions depending on the scale, other than (12) or (28), but then
the definition of the degree of fuzzification has to be modified
accordingly.

The most immediate implication of the statement that
there exists the limit fuzzification and that it is equivalent to
replacing the mode by the mean of the data is that if the ro-
bustness offered by using the mode as the estimate of the
result is to be maintained, then the degree of fuzzification
should be kept relatively small. A practical observation re-
lated to this implication is that it is enough to use such a fuzzi-
fying function which makes it possible for the values imme-
diately neighbouring in the histogram to interact in building
a common peak. An example of such a function and the result
of the fuzzification of the histogram from Fig. 1 is shown in
Fig. 6. The fuzzy histogram has the same mode as in Fig. 3
for s € [0.8,4.9], approximately (according to (6)). In Sect. 2
this mode has been specified as the proper estimate of the
result. The simple fuzzification function from Fig. 6, called
here fi2392, having non-zero values 2/3, 3/3 and 2/3, can
be recommended for many histogram fuzzification tasks. It
is equal to the quadratic function p, according to (12) with
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Fig. 6 a Simple fuzzification function p2s2(i) with values

2/3,3/3,2/3. b Histogram from Fig. 1 fuzzified with this function,
having the mode considered as the proper estimate of the result

s = /3, for an integer argument. In the case of the histogram
from Fig. 1 this corresponds to dy = \/3/19 ~ 0.091 (14)).

Another implication, important for the algorithms which
incorporate the process of estimating the result on the basis
of a set of data, is as follows. It can be observed in the contin-
uous way how the change of the degree of fuzzification influ-
ences the result and an optimum in respect of some measure
of quality of the result can be found. If and only if the op-
timum is not far from the limit fuzzification, which can take
place when the data do not contain many outliers, the accu-
mulation of the data followed by finding the mode of the his-
togram can be replaced by the calculation of the mean value
of the data, which is simpler and requires less memory.

Examples of the application of weak and strong fuzzifi-
cation will be presented in the next section.

6 Examples: the choice of scale
6.1 Image registration with the HT

Let us consider the problem of feature-based image registra-
tion with the HT. The boolean images containing the feature
pixels labelled will be denoted as F"(x,y), the reference
image, and F°(z,y), the overlaid image. Let us consider an
affine transformation of the overlaid image into the reference
image:

{:cg —xs} . [cosgp —sin<p:| {x?—$5}+ {TL}
Yi —Ys sing  cose | | Y] —Ys T,
(3D
where (T3, T,)”, ¢ and c are the registering transformation
parameters: translation vector, angle, and scale, respectively;
(zs,ys) is the centre of scaling and rotation (constant); in-
dices i, © = 1,..., N" refer to feature pixels of the refer-
ence image, and j, j = 1,...,N° to those of the overlaid
image. Let the parameters be collected in the parameter vec-

tor (in the sense of a data structure, not a vector in space)
o= (T,;,T,, ¢c).
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The smallest subset of the set of feature pixels necessary
to find all the transformation parameters is called the elemen-
tal subset [29]. In the case of four parameters, it contains
m = 4 pixels: two from each image. By taking all the possi-
ble elemental subsets, accumulating the calculated transfor-
mation parameters in a four-dimensional accumulator, and
finding its maximum, the registering transformation parame-
ters can be found. To reduce the number of calculations, some
randomly chosen part of the set of all the elemental subsets
can be taken into account [39]. Further, only pairs of pixels in
each image farther from each other than a specified distance
can be considered. This and very similar versions of the HT
have been described in [31,32,33] and compared with other
versions in [34]. The reviews of image registration techniques
can be found in [40,41,42,43].

The fuzzification degree was calculated according to the
ranges of parameters used in the accumulator, as shown in
Table 3. The rotation was much smaller than the round angle,
so in this example the periodic character of the angle could
not be taken into account. First, the scale for each compo-
nent of the transformation parameter vector was found for
a given fuzzification degree, according to the formula cor-
responding to (14). The above given bounds of the domains
of each transformation parameter vector component, oz?lin,
o', 4 = 1,...,4, respectively, were used to calculate the

scale for each component

si = dp (@™ —a"™) (32)
Then, the four-dimensional fuzzification function, correspond-

ing to (12) was used, as follows:

_ Ja(e), if g(a) >0
p(er) { 0, otherwise (33)

where

4 oz? .
1, if dy =0

The histogram of c, or the accumulator, was fuzzified with
this function, and the parameters were found as the compo-
nents of its mode.

The robustness of the registration method has been tested
with the use of example feature images derived from real-life
images received from a medical application, which will be
described further. The images were corrupted in such a way
that a specified share { of the feature pixels was moved from
their original position to a new position chosen randomly
from the whole image (except other feature pixels), with the
uniform probability density. These moved features are the
outliers, while the remaining ones are inliers. The parame-
ter ¢ can be called the outlier share or noise share.

Registration accuracy has been recorded for ( ranging
from 0 to 0.9. The accuracy was defined as the maximum dis-
tance measure (in calculating the accuracy the non-corrupted
images were taken):

T

g= max (i_{{}i_rlN d(f7, 17 ))) (35)

)

where d(ff (x5, v5), f (=}, y;)) is an Euclidean distance of
a feature pixel of the overlaid image after registration to a fea-
ture pixel of the reference image. The maximum share (p,ax
for which the registration error is acceptable can be consid-
ered as a simplified, experimental counterpart of the mea-
sure of global robustness defined in [29], chapter 4.2.3." In
the images to be used, as the acceptable error the condition
€ < b pixels can be considered.

It should be stressed that with the described method of in-
troducing noise to the data, the outlying data are not inserted
directly to the accumulator, but to the algorithm as a whole.
Therefore, the whole test concerns primarily the image regis-
tration algorithm as a whole. However, the contamination of
the input with strong noise implies the contamination of the
data in the histogram in an adequately strong way.

The figures to be registered will be the edges of the ana-
tomical structures selected from the images used in the qual-
ity assessment of teleradiotherapy—the treatment of patients
with cancer by irradiation with external beams of ionizing
radiation. The actual geometry in a therapeutical session is
recorded in a portal image. The planned geometry is recorded
in a simulation image, before the therapy begins. The sim-
ulation image should be registered with each of the portal
images, made during each of the therapeutical sessions. The
simulation image is an X-ray of high quality. The portal im-
age is produced by the therapeutical beam of the ionizing ra-
diation and is inherently of low contrast as different tissues,
like bones and muscles, attenuate the radiation very simi-
larly. In both images, the traces of anatomical structures of
the patient, the shape of the therapeutic beam, and possibly
the shields used to precisely shape the irradiation field are
visible. The quality assessment of the therapy by registra-
tion of portal and simulation images has been presented for
example in [44,45,46,47,48,49,50,51,52,53,54,55]. What
is most important is that generally the registration is per-
formed using the edges found in the images. From all the
edges, the significant fragments belonging to the patient’s
anatomical structures and irradiation fields are chosen semi-
automatically or fully automatically. In the present study it
was vital to have full information on the transformation be-
tween the images and to have the possibility to precisely eval-
uate the transformation error. Therefore, the pairs of images
to be registered have been derived from single simulation
images containing the edges of patient’s bony structures, by
transforming these images in a known way.

The source images are shown in Figs. 7 and 10. They
show the simulation images with the irradiation field geome-
try for the irradiation of brain (Fig. 7) and of axillar, subclav-
icular and supraclavicular lymph nodes (Fig. 10; this image
was supplemented to a square due to requirements of the soft-
ware described in [54] by adding a white stripe and smearing
it so that the emerging edge is not detected by the bone edge

! One reason why Cmax is only the simplified robustness measure
is that just one arrangement of outliers is considered for a given (,
not all the possible ones. Another obvious reason is that only two
pairs of registered images will be considered. See [29] for details.
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Fig. 7 Source image for registration: skull—the case of the irradi-
ation of brain. Selected edges of bones marked with white colour.
The shields and parts of the central and lateral lines of the irradia-
tion field marked with wires during the simulation process are also
visible

Fig. 8 Image of Fig. 9a without enhancement, for comparison. See
Fig. 9 for details

detection process). The edges of bones, selected for registra-
tion, are marked with white lines; this is the skull, and the
clavicle and chest wall, respectively. In the images of Figs. 8,
9 and 11 one pair of images prepared for registration for each
simulation is shown: the one with a considerably large share
of outliers, ( = 0.80. The images were prepared in the fol-
lowing way. The feature images were formed by taking only
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Fig.9 Images for registration derived from the skull edges of Fig. 7.
a, b feature images for registration, overlaid and reference, respec-
tively. Only one pair of the series is shown: that with the share of
outliers ¢ = 0.80. The feature pixels are black. Images enhanced
by replacing each black pixel with a black square 3 x 3 for better
visibility in print (see also Fig. 8)

the feature pixels from images 7, 10. The overlaid images and
the reference images were generated by transforming the fea-
ture images with the parameters shown in Table 2.

The ranges of the transformation parameters and the res-
olutions of the accumulator array used are collected in Ta-
ble 3. The bounds of the domains of the parameter vector
components have been chosen similar to those encountered
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Fig. 10 Source image for registration: chest—the case of the ir-
radiation of axillar, subclavicular and supraclavicular lymph nodes.
Selected edges of bones marked with white colour. The shields and
parts of the central and lateral lines of the irradiation field marked
with wires during the simulation process are also visible

‘ overlaid ‘ reference
tmage ‘ . Ty %) c ‘ T, Ty %) c
Fig. 7 0 0o -1° 1 -3 2 4° 1
Fig.10 | -4 5 3> 2|1 0 o0 ©0° 1
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Table 2 Parameters of the transformations used to form the overlaid
and reference images from feature images of Figs. 7 and 10

Tp=a1 Ty=a2 p=a3 c=ou
min | —20pix  —20 pix -10° 0.90
max | 20 pix 20 pix 10° 1.10
N 81 81 201 81
A | 05pix  05pix  0.01°  0.0025

Table 3 Ranges of the transformation parameters and resolutions
of the accumulator array. min, max: bounds of parameter domain;
N': number of accumulator elements; A: resolution

in the problem of registration of the simulation and portal im-
ages, which are reasonably well aligned before the registra-
tion starts. The resolutions of the accumulator array for each
parameter have been set to the values equal to the halves of
such values which make the feature image change by a single
pixel when transformed with it. This guarantees that the res-
olutions are commensurably accurate, and that the accuracy
is sufficient.

The number of elemental subsets has been reduced by
choosing one-fourth of feature pixels in each image at ran-
dom and specifying the minimum distance of pixels in a pair
as approximately half the characteristic dimension of the un-
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Fig. 11 Images for registration derived from the clavicle and chest
wall edges of Fig. 10. a, b feature images for registration, overlaid
and reference, respectively. Only one pair of the series is shown: that
with the share of outliers ( = 0.80. The feature pixels are black.
Images enhanced by replacing each black pixel with a black square
3 x 3 for better visibility in print

distorted figure. With the images used, each having about
1, 000 feature pixels, these conditions together with the limits
imposed by the bounds on the parameters in the accumulator
restrict the number of elemental subsets actually used in the
accumulation to about 200, 000 for the strongest noise and
about 4, 000, 000 for no noise, which is from 0.0002 to 0.85
of their total number.
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Fig. 12 Error measure for registration of images from Fig. 9.
a graph for full range and medium resolution of parameters dy
and ¢; b more detailed graph in the range dy € [0.00,0.30] and
¢ €[0.50,0.90]

The images of the skull, Fig. 9, were registered for 152
combinations of the fuzzification degree dy and the share
of outlying feature pixels ¢: d¢ from 0.0 to 0.8, at 0, 0.02,
0.05, 0.10, and further changing by 0.1, and ¢ from 0.0 to 0.9
changing by 0.05. Note that for this image both scale fac-
tors were set to one (Table 2). This has been done to make
it possible to solve the registration problem for this image in
only three dimensions, which made the calculations quicker.
The longest time was necessary to fuzzify the accumulator
for very large values of d.

The resulting measure of registration errors has been
shown in the graph in Fig. 12a. The general tendencies to be
noticed in this graph are as follows:

1. The more the noise, the larger the errors.

2. For a small share of noise, the errors grow slowly with the
growth of the fuzzification degree.

3. For large shares of noise, without fuzzification the errors
are large. They have a deep minimum for a weak fuzzifi-
cation, at dy = 0.05 and 0.1. For stronger fuzzification,
they grow similarly as for small noise share, but quicker.

4. This is less important, but there is an upper limit of regis-
tration error for very large noise and strong fuzzification,
related to the fact that the result of registration tends to
the average of the data, and with large noise it tends to the
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Fig. 13 Error measure for registration of images from Fig. 11

middle of the histogram, which in this case corresponds
to an identity transformation.

The minimum error is acceptably small, ¢ < 5 pixels, for
dy = 0.05 and 0.10, even for the largest shares of noise.
This excessively optimistic observation had to be verified by
making calculations for more densely displaced values of the
parameters in the interesting range of weak fuzzifications and
large noise.

The 287 pairs of values used were: dy from 0.0 to 0.3,
changing by 0.05, and ¢ from 0.5 to 0.9 changing by 0.01.

The results have been shown in Fig. 12b. The errors still
have a clear minimum for dy = 0.05 and 0.1. A closer anal-
ysis reveals that for d¢ = 0.10, for example, at { = 0.80
it is € = 3.61 pixels, then with the increase of ( the error
goes down, and further it grows and exceeds a reasonable
limit for { = 0.84 with & = 9.22 pixels. The range of ac-
ceptable errors for these degrees of fuzzification reaches the
share of noise (. = 0.80, and this value seems to consti-
tute the measure of global robustness of the fuzzified Hough
transform registration, in the considered case.

The next pair of images has been used to validate the
above finding. The images of the clavicle and chest wall of
Fig. 11 were registered for 20 pairs of values: dy from 0.0
to 0.2 and ¢ from 0.0 to 0.9. The full four-dimensional prob-
lem has been considered. The error measures received can
be seen in Fig. 13. Despite the fact that a smaller number of
points in the d¢-¢ plane were investigated, the result is simi-
lar to that of the previous trial: a weak fuzzification of the his-
togram eliminates the deteriorating influence of strong noise
on the result, up to 0.7-0.8 of noise share in the data. Such
fuzzification does not influence the result for small or zero
noise.

The observations made with the above experiments make
it possible to draw the following conclusion of general ap-
plicability. If the data collected in a histogram contain sig-
nificant noise, then the weak fuzzification of this histogram
makes it possible to localize its mode in a robust way. If the
noise is small or absent, the weak fuzzification has no harmful
influence on the mode. The weak fuzzification is such a fuzzi-
fication which makes the values of the neighbouring elements
in the histogram significantly cooperative in forming peaks.
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Fig. 14 Derivation of the accumulated value in the central point p.
from gradients G, G2 in two pixels p1, p2. T1, T2: vectors tangent
to the line; w: width of the line (see text)

6.2 Accumulation-based line detection

The issue of fuzzification at various degrees has been inves-
tigated for the accumulation-based line detection algorithm
described in [13, 14, 15]. The algorithm has been developed
primarily for the application of detecting blood vessels in
mammographic images, so the robustness to various kinds of
irregularities in the images was the basic challenge. There-
fore the principle of data accumulation and the analysis of
modes in fuzzified histograms has been used at various lev-
els in the algorithm. Here, only the basic information on the
method will be recalled; all the details can be found in the
papers cited above.

The detection of elongated structures is founded on the
search for loci of image intensity gradients cooperatively con-
forming to a model of a line, which is the ridge in the image
intensity graph. The evidence on the existence of such loci
is accumulated in the accumulator array congruent with the
image domain, keeping for each pixel the information on line
intensity and direction for a range of widths, limited by the
lower limit width w,, and upper limit width w,,. Then the ac-
cumulator is searched through for maxima, and those which
exceed the intensity f; times the intensity in the global max-
imum are retained, where f; is the lineness threshold coeffi-
cient. From these maxima the central lines of the elongated
structures are tracked across pixels and widths, as ridges in
the line intensity. The tracking stops if the intensity falls be-
low f, times the average ridge intensity in the current line,
where f, is the average accumulated value threshold coeffi-
cient.

The basic idea of the conformity of the gradients to the
model of a ridge is shown in Fig. 14. Pairs of pixels py, p2
lying at distances belonging to some range depending on the
limit widths w,, and w,, are analysed for the whole image.
Each such pair is a kind of an elemental subset for this prob-
lem. The gradients G1, G in these pixels are rotated by /2
in opposite directions to obtain the vectors T';, T'5 transversal
to the ridge. If these vectors fulfil a number of necessary ge-

ometrical conditions, they are summed to form V located in
the central point p. of the pair. Local line direction is accord-
ing to this vector, but the line has no sense (in the meaning
of the sense of a vector), so the period of the angle is 7. The
width w is the projection of distance between p; and p, on
a normal to V. Line intensity [ is calculated from the modu-
lus of V as

l=cqce |V|/w (36)

where the penalties of directional consistence cq and edge-
ness consistence c, are

cq = cos?[£(T1, Ty)] (37)
ce = cos’[m (1 — min(|G1l, |Ga|)/ max(|G1], |Gal)) / 2]

The intensity [ is normalized by w to make the detector sen-
sitivity dependent only on line intensity and invariant to line
width.

During accumulation, the result of (36) is subjected to
a number of fuzzifications: in location, to compensate for
inter-pixel locations of the central point p.; in line length,
to enhance line continuity; in line width, to enhance direction
invariance; finally, in line angle v, as described further. The
details are described in [13, 14]. Here it should be said that in
the fuzzification in location and in line width, a weak fuzzifi-
cation with the fuzzification function similar to that shown in
Fig. 6 is applied. For the fuzzification in line length there is
no reason to use weak fuzzification, as it has been designed
to improve the line continuity in a strong manner and the sup-
port of the fuzzification function should be related mainly to
the line width.

The lineness is accumulated in the central point p, of the
current pair p1, ps. As all the possible pairs are analysed (re-
duced by some reasonable conditions), each pixel of the im-
age (except its border pixels) is equivalent to the central point
of some pair for many times. In the present paper this accu-
mulation is of special interest. The lineness is characterized
by the intensity  and angle ¢ = £(Ox, V). In each pixel, for
each width, a histogram H;(i(1))) of I versus ¢ is formed and
fuzzified to obtain H;(£(1))) with a fuzzifying function (28).
The resulting line intensity in the pixel is calculated as the
difference between the histogram extrema, like in (27), with
the phase corresponding to the maximum. The fuzzification
degree dy according to (30) can be set to a chosen value from
an interval [0, 1].

An experiment has been performed which consisted in
the detection of lines in a series of phantom images with
the Gaussian noise. The images are described further. The
fuzzification degree d; has been set to a series of seven val-
ues in [0, 1] at intervals partly conforming to a geometric se-
ries. Other parameters were: lower and upper limits for line
width: w,, = 3 and w,, = 15, the lineness threshold coeffi-
cient f; = 0.25 and the average accumulated value threshold
coefficient f, = 0.25. In the histogram H y;(£(¢)) the angle
[0, 7] has been quantified into 90 intervals.

To make it possible to fully control the quality of result of
the experiment, a phantom image shown in Fig. 15 has been
used. Standard anti-aliasing procedures have been applied in
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Fig. 15 Phantom (250 x 250) for testing the line detector. Con-
trast enhanced for better visibility in print; actual intensities of the
phantom: 100 (represented by black), 110 (grey) and 115 (white)

rendering the geometrical objects: circles and rectangles. Pat-
terns which can be difficult to detect with a line detector were
not avoided: crossing lines having the same or slightly dif-
ferent brightnesses and lines located at a small distance from
each other, in relation to their widths.

The mean square amplitude of the image of Fig. 15 was
A = 5.4235. The centred Gaussian noise was added to form
a series of images with the signal to noise ratio (SNR) from
9 dB down to —9 dB, in steps of 3 dB. The series was comple-
mented with the noiseless image, which can be symbolically
denoted as SNR = oo. Eight values of noise have been used
in total. The parameters of noise are given in Table 4.

The quality measures of the 56 results have been col-
lected in the graph in Fig. 16. These are: the true positive ratio
(TPR)—ratio of correctly detected pixels of the object to the
actual number of pixels in the object—the measure of sensi-
tivity of the detector, and the false positive ratio (FPR)—ratio
of incorrectly detected pixels of the object to the actual num-
ber of pixels in the object, for which the expression (1 —FPR)
is treated as the measure of specificity. As the object, all pix-
els belonging to lines were taken (see Fig. 17b). The detector
starts to fail for noise at —6 dB. For the strongest acceptable
noise, the fuzzification with small fuzzification degrees gives

SNR | 9 6 3 0o -3 -6 -9

o?/A%? 1 013 0.25 050 1.00 2.00 398 7.94
o 1.92 272 3.84 542 7.66 10.82 15.29

Table 4 Signal to noise ratio SNR, ratio of the noise energy to
signal energy o2 /A? and standard deviation of noise &, for the mean
square amplitude A = 5.4235

Leszek J Chmielewski

Fig. 16 Measures of sensitivity and specificity: true positive rate
TPR full points, solid lines, and false positive rate FPR empty points,
dashed lines versus signal to noise ratio (SNR) and degree of fuzzi-
fication dy. Increasing dy does not decrease the result quality for
SNR> —3

SNR— 00 -3
ds | TPR FPR TPR FPR
0 0.872 0.062 | 0.907 0.078
1 0.939 0.065 | 0.889 0.058

Table 5 The values of the true positive rate (TPR) and false positive
rate (FPR) received for the acceptable values of SNR and ds used in
the experiment

some improvement in the FPR and no important decrease in
the TPR. For small or zero noise the FPR seems constant, but
TPR is better for weak fuzzification. Stronger fuzzification
does not change this effect. The values of the two measures
received for the extreme acceptable values of SNR and d s are
given in Table 5. In general, the results for very large noise
do not differ much from those obtained for small noise, in the
tested range.

The results indicate that the use of the limit fuzzifica-
tion is equally acceptable as the use of weaker fuzzification.
Therefore, it is justified to replace the accumulation with the
calculation of the mean value. Implementing the calculations
in the form of finding the mean of vectors according to [35],
as described in Sect. 4, instead of forming and analysing the
histograms of the line intensities versus direction at each pixel,
results in a dramatic reduction of the memory requirements.
Instead of a 90-element histogram for angular resolution of
2°, only three elements are necessary: for the modulus and
for the cosine and sine of the phase (phase could be stored in
one element as angle, but then the number of computations
would be larger). The time of operation is roughly the same
for both algorithms.

The possibility of applying the strong or limit fuzzifica-
tion in the considered stage of the algorithm can be explained
by the fact that in the previous stages the weak fuzzification
was already used. This could have significantly reduced the
number of the outlying votes in the final accumulation.

The algorithm based on summation has been actually uti-
lized from the early stage of development of the accumulat-
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ion-based line detection method, but the present study has
made this approach better validated.

An example of results of line detection in the phantom
image obtained with the described algorithm has been shown
in Fig. 17. For presentation, the result for the image with the
largest acceptable noise has been chosen to show the possi-
bilities of the method in a relatively difficult case.

The algorithm has been primarily developed for the detec-
tion of blood vessels and other elongated objects in mammo-
grams. An example of such detection can be seen in Fig. 18.
A fragment of an image from the publicly accessible database
of mammographic images MIAS MiniMammographic Data-
base [56] has been analysed. The fragment has been selected
as it contains an interesting and difficult detail visible in the
central upper part of Fig. 18b: the blood vessel seems to fork,
which can be the effect of projection of two vessels on one
another, and the contrast goes down considerably. The noise
in the image is strong, so locally the contrast of the vessels is
very near to that of the noise. This phenomenon is better seen
in the profile plot of the image intensity in Fig. 18c. The value
of the SNR cannot be easily estimated in this natural image,
but it can be safely stated that it is not larger than —3 dB, the
strongest noise for which the results of detection were good
(Fig. 16). The amplitude of the vessels is between 10 and 20
approximately, so it is close to the amplitude of lines in the
phantom, Fig. 15. Comparison of the image with the phan-
tom images, made by eye, for subsequent values of noise,
like in Fig. 17a, suggests that in the mammographic image
of interest it is SNR ~ 0 dB. This noise is smaller than the
largest noise for which the line detector was still operative
in the experiments with the phantom. Despite the closeness
of the contrast of the detected blood vessel to that of noise
in Fig. 18, the accumulation-based line detector was able to
detect the vessel at its whole length, without gaps. The two
branches of the object are merged into one wide vessel in the
binary image of Fig. 18d because their proximal edges over-
lap. The obtained shape of the detected vessel conforms to
the expectation of a human observer of the mammographic
image.

7 Conclusion

The problem of the influence of the scale of a fuzzy mem-
bership function used to fuzzify a histogram was analysed.
This problem arises, among others, in the context of the fuzzy
image processing methods related to the Hough transform
and other accumulation-based methods. The questions con-
cern the resolution of the accumulator, precision of results,
and their certainty. Both the cases of aperiodic and periodic
histograms were analysed.

The membership functions used in fuzzy voting are usu-
ally symmetrical and have a single maximum, located at the
histogram element for which the vote would be cast if the
voting were crisp. If a parameter of scale is introduced into
such a function, then for large scales the function tends to
a quadratic function. It has been stated that for a scaled and

clipped quadratic function it is possible to precisely define
the notion of the degree of fuzzification, belonging to the real
interval [0, 1]. For other functions the notion can be treated
as approximate. Thus, it is possible to indicate an upper limit
for fuzzification and thus to qualify the fuzzification as, for
example, weak or strong, using this limit as a reference.

It has been demonstrated that in the case of periodic his-
tograms, the fuzzifying function which makes the histogram
mode conform to the mean value is the cosine square func-
tion with the period equal to the period of the quantity of in-
terest. By analogy to the aperiodic case, this fuzzification can
be treated as the limit fuzzification. The scaled and clipped
cosine square function can then be used to fuzzify a periodic
histogram with the given degree of fuzzification.

While the quadratic function is related to the classical
Huber-type skipped mean, used in robust statistics, and to
the kernel function derived from the Epanechnikov kernel,
used in kernel density estimation, the use of the clipped co-
sine square function seems to be less known, at least on the
grounds of the fuzzy accumulation methods.

The conclusion pertaining both to aperiodic and periodic
cases is that if there are outliers among the accumulated val-
ues, then weak fuzzification is recommended, and if the in-
fluence of outliers is not significant, then strong fuzzification
can be used, which at the limit is equivalent to the simple
calculation of the mean value. The conclusion concerning the
mean value is trivial, but the one concerning the weak fuzzi-
fication is not easy to trace in the literature on accumulation-
based image processing. In practice, the weak accumulation
is meant as such that the values of the neighbouring elements
in the accumulator can strongly interact in forming common
peaks. In the considered examples this took place for the val-
ues of the degree of fuzzification close to 0.1.

The examples of the use of fuzzy histograms were the
classical HT image registration method and the recently pro-
posed evidence accumulation-based line detection algorithm.
It has been demonstrated how the proper choice of the de-
gree of fuzzification can improve the robustness of the al-
gorithms against strong noise. The images used in the ex-
periments were taken from medical applications. The image
registration was performed on test images derived from sim-
ulation images used in teleradiotherapy. The line detection
algorithm was tested with images related to mammograms.

8 Originality and Contribution

The concepts known from the domains of robust statistics and
kernel density estimation have been adapted to the fuzzifica-
tion of aperiodic histograms. The concept of limit fuzzifica-
tion has been described and the notion of the degree of fuzzi-
fication has been introduced for the scaled and clipped square
fuzzy membership functions, corresponding to the Huber-
type skipped mean, and to the kernel function derived from
the Epanechnikov kernel. The results have been extended to
the case of periodic histograms by using the scaled and clipp-
ed cosine square as the membership function. The choice of
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Fig. 17 Example of result of line detection for noise SNR = —3 dB and full fuzzification, dy =

the scale has been made departing from an upper limit for
fuzzification rather than from an estimate of scale made us-
ing the information on noise and outliers in the data. Sim-
ple indications for using strong or weak fuzzification, con-
trolled by the value of the fuzzification degree, have been
given. These indications have been justified by examples in
two image processing problems: image registration with the
Hough transform-based method and line detection with the
accumulation-based method, using images related to medical
applications, containing strong noise.

Leszek J Chmielewski
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1.0. a Source image (of Fig. 15) with added
noise; contrast enhanced for better visibility in print; b reference image for line detection: image of Fig. 15 thresholded at 102; ¢ result of
detection; d difference image between a and c: grey: correct result, white: false positive, black: false negative

Acknowledgements The research was financed by the Ministry of
Education and Science as the research project No 3 T11C 050 29 in
2005-2008.

A Proofs of the properties

The proofs of the properties presented in the paper are simple
and consist solely in straightforward transformations; never-
theless, they seem necessary to justify the statements made.
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¢ d

Fig. 18 Example of real-life result of the detection of a blood vessel in a mammogram. a Fragment 300 x 300 of a mammogram mdb042
from the MIAS MiniMammographic Database [56]; white frame: source image 100 x 100, shown in b (upper left corner of the window
in pixel (500,400) of the original image); b source image to be analysed (enhanced by local histogram equalization for better visibility);
¢ profile plot of intensity in the source image (natural contrast)—locally the contrast is comparable to noise; d binary result of line detection

Proof (of Property 1: Quadratic fuzzifying function) which holds when
The fuzzifying function according to (9) is convex in the real (i
interval [imin, imax), 0 (11) has a uni i h _ o, = el )
mins max|s que maximum when T =Ty = -
Eie[ H (i)

M = Z H(4) M =0 (38) This is the formula for the mean of the histogram. 0O
ox or

(39)

icl
' Proof (of Property 2: Symmetrical fuzzifying function)
Substituting (9) and expanding, one gets If the function p(z), € X, X = [imin — fmax, bmax — tmin)
can be expanded into a Maclaurin series (see e.g. [57]), then

2a . I
—3 [T HO - | =0 F(@/3) = £0) + g £0) + = FO0) + ... @0

iel iel 2152
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or, using an explicit form of the remainder and substituting
f(0) =1, f/(0) = 0 due to the presence of a maximum

2
f(x/s) :1+%f”(0)+R4,Where (41)

4
415t
All the even-order derivatives are zero for x = 0 due to sym-
metry. Note (Fig. 4) that in application to the fuzzification of
a histogram, X is the domain of f(x), and also the interval to
which the real expression Az belongs. If the derivative f(*)(-)
is bounded, i.e.,

Veex Jeaso [fP (k)] < ca (42)

where K = 0z, then it is possible to indicate the value of
the scale parameter s = sy for which the remainder R, is
arbitrarily small:

Ry = F@(0z) ,and 0 € [0,1]

v5>0 Vw,meX 334 <e€ (43)

4
10
4! s5 FH(x)

After elementary transformations the necessary condition is
received:

C4 . .

m y Lmax = tmax — ‘min
(44)

Then, the membership function (15) is arbitrarily close to the

quadratic function (9), with a = —f"/(0)/2!.

Similarly, it can be shown that the derivative of the func-
tion (15) is arbitrarily close to the derivative of the quadratic
function for a sufficiently large value of s, if the fifth deriva-
tive f(°)(-) is bounded, i.e.

Viex Jesso [fP (k)] < 5 (45)

To do this it is necessary to differentiate the expression (41)
with respect to . The problem resolves to showing that it is
possible to indicate a value of the parameter s = s5 for which
the derivative of the remainder R, /0x is arbitrarily small:

§ > sy, where s4 = Tynax |

493 z%0
v€>O vac,nGX 355 @.}“4)(/{) + 4'754]((5)(/6) < € (46)
* 25 * 95

The upper bound for z is Zpay, for 6 is 1, for f®*) (k) is ¢4
by virtue of (42), and for ) (k) is ¢5 by virtue of (45). The
moduli can be replaced by their arguments, as the estimations
of both addends are positive. It can then be written

3 4
4c4xmax + CSwmax
!
4!sz

Finally, combining with condition (44), one gets

s > max(sy, $5) , Where 47

_ 1] C4
S4 = Tmax Az

- 4 4C4/xmax + Cs
85 = Tmax T

which ends the considerations. Boundedness of the fourth and
fifth derivatives is equivalent to the continuity of the function
up to the fourth derivative. 0O
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Proof (of Properties 3: Cosine square fuzzifying function, and
4: Intensity of the fuzzy periodic histogram)
In the proof the basic properties of the harmonics will be
used.

Let us recall the formula (22) for the fuzzy histogram:

Hyc(§) = Z H{(i)pe(§ — 1) (48)

i€l
and for the fuzzifying function (20):

11c(§) = cos®(m ¢(£)/T) (49)

It holds that cos®(3) = 1 cos(28) + 3, so the function (49)
can be rewritten as

pel€) = 5 eos2rol©)/T) +5 ()

In the process of accumulation, the multiplicative and addi-
tive constants change the values of the histogram elements so
that these values are systematically affine transformed, which
does not change the relations between them. At this point the
requirement that the fuzzifying function as well as the his-
togram values must be non-negative is postponed. What has
been called fuzzification can now be treated as mere convo-
lution. In place of (49) the following function will be used:

vr(§) = cos(2m ¢(€)/T) (51)

and the convolution will be

Hee(§) =Y H(i)vr(§—i) = H(i)cos(2m ¢(§—i)/T)
i€l icl
(52)
By using the period ratio 7 defined by (23) and recalling that
@(¢) is linear in =, one gets

Heo(§) =Y H(i)cos(tp(§) —7¢(i))  (53)
i€l
This formulation is equivalent to the summation of harmon-
ics, where H (i) are amplitudes, T represents the constant fre-
quency and 7¢ (i) represents phases, different for each sum-
mand. The sum of harmonics is a harmonic, so (53) can be
written as

Hee(§) =Y H(i)cos(té() — B;) = H cos(¢(€) — B)

iel
(54)
where the phases are
Bi = 7¢(i) (55)
and the known formulae for addition of harmonics are
H=,/H2+ Hg
sinf=H,/H
cosf=H,/H (56)
H, = ZH(i)cosﬁq; = ZH“
i€l el

Hy, = H(i)sinB = > H,

iel i€l
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Having in mind (54), with the cosine function having the
maximum at 7¢(§) = [, it can be easily seen that 3 is the
angle measure of the mode of the histogram, and

Em = &(B/7) (57)

where () = ¢71(-) .

Returning to the full form of the fuzzifying function (50),

the formula (48) can be rewritten as

Hyo(€) = 5 3 H(i)cos(2n (6 —1)/T) + 3 - H()

i€l icl
1 , ‘ 1 ,
=537 Hi)cos(ro(€) — T6() + 5 > H(i)
icl i€l
~ iy (£>+EZ H(i) (58)
- 2 cc 2 : 1
el
Finally, H;.(§) can be rewritten as
1 1 )
Hyol€) = 5 H cos(16(€) = F) + 5 26; H@i)  (59)
O
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