Skip to main content
Log in

Optimal binarization of images by neural networks for morphological analysis of ductile cast iron

  • Short Paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This work aims to characterize different objects on a scene by means of some of their morphological properties. The leading application consists in the analysis of ductile cast iron specimen pictures, in order to provide a quantitative evaluation of the graphite nodules shape; to this aim the material specimen pictures are binarized. Such a binarization process can be formulated as an optimal segmentation problem. The search for the optimal solution is solved efficiently by training a neural network on a suitable set of binary templates. A robust procedure is obtained, amenable for parallel or hardware implementation, so that real-time applications can be effectively dealt with. The method was developed as the core of an expert system aimed at the unsupervised analysis of ductile cast iron mechanical properties that are influenced by the microstructure and the peculiar morphology of graphite elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math XLII(4):577–685

    Article  MathSciNet  Google Scholar 

  2. Dal Maso G, Morel JM, Solimini S (1992) A variational method in image segmentation: existence and approximation results. Acta Matematica 168:89–151

    Article  MATH  MathSciNet  Google Scholar 

  3. Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on the Hamilton–Jacobi formulation. J Comput Phys 79(12):12–49

    Article  MATH  MathSciNet  Google Scholar 

  4. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and material science. Cambridge monograph on applied and computational mathematics. Cambridge University Press, Cambridge

  5. Aubert G, Vese LA (1997) A variational method in image recovery. SIAM J Numer Anal 34(5):1948–1979

    Article  MATH  MathSciNet  Google Scholar 

  6. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  7. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  8. Alvarez L, Lions PL, Morel JM (1992) Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal 29:845–866

    Article  MATH  MathSciNet  Google Scholar 

  9. Weickert J, Romeny BMTH, Viergever MA (1998) Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans Image Process 7(3):398–410

    Article  Google Scholar 

  10. Cheng HD, Jiang XH, Sun Y, Wang J (2001) Color image segmentation: advances and prospects. Pattern Recognit 34:2259–2281

    Article  MATH  Google Scholar 

  11. Imasogie BI, Wendt U (2004) Characterization of graphite particle shape in spheroidal graphite iron using a computer based image analyzer. J Miner Mater Charact Eng 3(1):1–12

    Google Scholar 

  12. Sund T, Eilertsen K (2003) An algorithm for fast adaptive image binarization with applications in radiotherapy imaging. IEEE Trans Med Imaging 22:1–8

    Article  Google Scholar 

  13. Landabaso JL, Li-QunXu, Pardas M (2004) Robust tracking and object classification towards automated video surveillance. Lecture notes in computer science. Springer, Berlin Heidelberg New York, p 3212

  14. Stringa E (2000) Morphological change detection algorithms for surveillance applications. In: The 11th British machine vision conference, University of Bristol, 11–14 September

  15. Sauvola J, Pietikäinen M (2000) Adaptive document image binarization. Pattern Recognit 33(2):225–236

    Article  Google Scholar 

  16. Ying Liu, Srihari SN (1997) Document image binarization based on texture features. IEEE Trans PAMI 19(5):540–544

    Google Scholar 

  17. Greno GL, Otegui JL, Boeri RE (1999) Mechanism of fatigue crack growth in austempered ductile iron. Int J Fatigue 21:35–43

    Article  Google Scholar 

  18. Labrecque C, Gagne M (1998) Review ductile iron: fifty years of continuous development. Can Metall Q 37(5):343–378

    Article  Google Scholar 

  19. Ward RG (1962) An introduction to the physical chemistry of iron and steel making. Arnold, London

    Google Scholar 

  20. ASTM Designation (1985) A445-63T, part 2; ASTM Designation A247-67, annual book

  21. Bhandarkar SM, Koh J, Suk M (1996) A hierarchical neural network and its application to image segmentation. Math Comput Simul 41:337–355

    Article  Google Scholar 

  22. Special issue on neural networks applications to image processing (1998) IEEE Trans Image Process 7(8)

  23. Lin-Chen W, Der SZ, Nasrabadi NM (1998) Automatic target recognition using a feature-decomposition and data-decomposition modular neural network. IEEE Trans Image Process 7(8):1113–1121

    Article  Google Scholar 

  24. Zhigang Z, Shiqiang Y, Guangyou X, Xueyin L, Dingij S (1998), Fast road classification and orientation estimation using omni-view images and neural networks. IEEE Trans Image Process 7(8):1182–1197

    Article  Google Scholar 

  25. Shen D, Ip HHS (1997) A Hopfield neural network for adaptive image segmentation: an active surface paradigm. Pattern Recognit Lett 18:37–48

    Article  Google Scholar 

  26. Ma L, Staunton RC (2005), Integration of multiresolution image segmentation and neural networks for object depth recovery. Pattern Recognit 38:985–996

    Article  Google Scholar 

  27. Restrepo HF, Hoffmann R, Perez-Uribe A, Yeuscher C, Sanchez E (2000) A networked FPGA-based hardware implementation of a neural network application. IEEE symposium on field-programmable custom computing machines, pp 337–338

  28. Moerland PD, Fiesler E (1997) Neural network adaptations to hardware implementations. In: Handbook of Neural Computation

  29. Negnevitsky M (2002) Artificial intelligence. Addison-Wesley, Reading

  30. Combettes PL, Pesquet JC (2004) Image restoration subject to a total variation constraint. IEEE Trans Image Process 13(9):1213–1222

    Article  Google Scholar 

  31. Pang CCC, Lam WWL, Yung NHC (2004) A novel method for resolving vehicle occlusion in a monocular traffic-image sequence. IEEE Trans Intell Transp Syst 5(3):129–141

    Article  Google Scholar 

  32. Soatto S, Yezzi A, Duci A (2003) Region matching and tracking under deformations or occlusions, in geometric level set methods in imaging, vision and graphics. In: Osher S, Paragios N (eds). Springer, Berlin Heidelberg New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. De Santis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Santis, A., Di Bartolomeo, O., Iacoviello, D. et al. Optimal binarization of images by neural networks for morphological analysis of ductile cast iron. Pattern Anal Applic 10, 125–133 (2007). https://doi.org/10.1007/s10044-006-0052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-006-0052-8

Keywords

Navigation