
THEORETICAL ADVANCES

A multiscale approach to texture-based image retrieval

Mohammad Faizal Ahmad Fauzi Æ Paul H. Lewis

Received: 3 November 2005 / Accepted: 19 July 2007 / Published online: 26 September 2007

� Springer-Verlag London Limited 2007

Abstract This paper presents research on a robust tech-

nique for texture-based image retrieval in multimedia

museum collections. The aim is to be able to use a query

image patch containing a single texture to retrieve images

containing an area with similar texture to that in the query.

The feature extractor used to build the feature vectors is

based on an improved version of the discrete wavelet

frames (DWF), proposed elsewhere. In order to utilise the

feature extractor on real scene image datasets, a block-

oriented decomposition technique, termed the multiscale

sub-image matching method, is presented. The multiscale

method, together with the DWF, provide an efficient con-

tent-based retrieval technique without the need for

segmentation. The algorithms are tested on a range of

databases of texture images as well as on real museum

image collections. Promising results are reported.

Keywords Content-based image retrieval �
Texture analysis � Discrete wavelet frames �
Multiscale image matching

1 Originality and contribution

The paper investigates the multiscale sub-image matching

technique for texture-based image retrieval. The multiscale

method, previously used in color-based image retrieval, is

modified to suit the texture retrieval applications. Two

types of overlapping is considered, namely case 1 and

case 2 overlapping, and it was found that even though

case 2 overlapping is more time consuming during feature

extraction stage, the improvement in performance over

case 1 overlapping is huge. Important parameters of the

algorithm, such as the number of sub-images generated, the

number of scales involved, sub-image coverage and scale

invariance property are described in detail. Comprehensive

experiments were conducted to test the reliability of the

algorithm, which includes experiment on different loca-

tions of the target sub-image, different scales and sizes of

the query image, decomposition order issue, as well as

experiments on arbitrary size Brodatz database and

museum collections. Promising results were reported.

2 Introduction

Image retrieval has been a very active research area since

the 1970s, with the thrust from two major research com-

munities; database management and computer vision [1].

Image retrieval can be divided into text-based image

retrieval (TBIR) and content-based image retrieval (CBIR).

The text-based approaches first annotate the images with

text, and subsequently use text-based techniques to perform

image retrieval. The use of TBIR was popular in the early

days of computer vision, but its usage has been less dom-

inant in recent years. There are two major factors that

account for this decline in popularity; the vast amount of

labour required in manual image annotation and the sub-

jectivity of human perception. This results in the need for

further research effort on CBIR. Using this approach,

images are indexed by signatures of their own visual

content, such as colour, texture or shape. CBIR has been

M. F. A. Fauzi (&)

Faculty of Engineering, Multimedia University,

Jalan Multimedia, 63100 Cyberjaya, Selangor, Malaysia

e-mail: faizal1@mmu.edu.my

P. H. Lewis

School of Electronics and Computer Science,

University of Southampton, Southampton SO17 1BJ, UK

123

Pattern Anal Applic (2008) 11:141–157

DOI 10.1007/s10044-007-0085-7

increasingly pertinent, particularly with the advancement

in computer technology, and it could potentially provide

resolutions to the two drawbacks of the TBIR approach

mentioned above.

Among the numerous retrieval features associated with

CBIR, texture retrieval is one of the most difficult. This is

mainly because no widely accepted satisfactory quantita-

tive definition of texture currently exists. Texture analysis

has a long history and texture analysis algorithms range

from the use of random field models to multiresolution

filtering techniques such as the wavelet transform. Unlike

colour, texture cannot be represented by a single pixel, thus

making texture analysis a more complex challenge. One

way to perform CBIR, using texture as the cue, is to first

segment an image into a number of different texture

regions and then apply a texture analysis algorithm to each

texture segment [2–5]. However, segmentation can some-

times be problematic for image retrieval [6]. In this paper,

we propose a simple but effective algorithm for texture-

based image retrieval without the need for segmentation.

Our algorithm uses a multiscale sub-image matching

method together with the discrete wavelet frames (DWF)

technique. Note that the focus of the paper is on the mul-

tiscale sub-image matching and its effectiveness in

replacing the segmentation process in CBIR, and not on the

texture analysis algorithm itself.

The idea of multiscale feature extraction techniques has

found much success in the area of colour analysis. One

example can be found in the work of Chan et al. [7], where

a multiscale approach is used to extract colour features

using the colour coherence vector (CCV) technique. The

resulting algorithm, which is called the multiscale colour

coherence vector (MCCV), manages to handle the problem

of sub-image colour retrieval effectively, without the need

for segmentation. With minor modifications, the multiscale

approach can be used in a similar way in order to extract

texture information using any texture feature extraction

method, although those with low computational load are

preferable. In this work, the improved DWF proposed in

[8] will be used. The multiscale approach, together with the

DWF technique, is not only able to provide good retrieval

accuracy, but also reduces the scale dependence of the

algorithm, hence incorporating scale invariance to the

retrieval process. The algorithm, however, is not rotation

invariant, but it is one of our targets to include this property

in our CBIR system. Wavelet-based methods, to which the

DWF technique belongs, can be further improved to

achieve rotational invariance, as reported in several papers

[9, 10].

This paper is organized as follows. Section 3 briefly

reviews some block decomposition algorithms used in

image retrieval, while Sect. 4 explains the DWF approach.

Section 5 presents the details of the multiscale algorithm,

and the experimental evaluation of several image datasets,

including real museum collection databases, is highlighted

in Sect. 6. Finally the conclusion and potential future work

on the proposed algorithm are presented in Sect. 7.

3 Review of block-oriented decomposition techniques

There are several different approaches to using a local

mask in CBIR. These include a simple sliding mask [11,

12], the quad-, quin- and nona-tree decompositions [13,

14], and a multiscale decomposition [7], among others.

3.1 Sliding windows

Sliding windows is the simplest block-oriented approach in

texture localisation and is usually used in texture retrieval.

Given an image, a collection of small to medium sized sub-

images is produced by a simple image cropping procedure.

The sub-images could be overlapping or non-overlapping,

with overlapping windows providing better localisation,

but with many more sub-images, which affects the speed of

the feature extraction process. The size of windows gen-

erally depends on the application, with large windows

providing better localisation for coarse texture, but with a

risk of failing to capture small texture regions. The feature

extraction process is then performed on the sub-images.

During matching, the feature vector of the query image is

compared with all the feature vectors from the sub-images,

and the sub-image with the closest matching feature vector

is taken as the region most similar to the query. Manjunath

and Ma [11] used non-overlapping windows of size 128 ·
128 for browsing large satellite images and air photos

(about 5,000 · 5,000 pixels) with Gabor transform as the

texture features. Another example of image retrieval that

used sliding windows can be found in the WALRUS sys-

tem [12].

3.2 Quad-tree decomposition

A quad-tree is a hierarchical image decomposition struc-

ture which can provide quick access for image retrieval. A

quad-tree is based on the principle of recursive decompo-

sition of images. Each decomposition of an image segment

produces four equal-sized quadrants. The root node in the

quad-tree represents the entire image, and its four child

nodes represent the decomposed segments; these, in turn,

become roots for further segmental decomposition. The

original quad-tree decomposition for binary images labeled

the decomposed segments white if they consist of white

pixels only, black if they consist of black pixels only, and

142 Pattern Anal Applic (2008) 11:141–157

123

grey if they consist of both black and white pixels. Further

decompositions are only carried out on grey segments.

Smith and Chang [13] have presented a query by texture

approach that uses the quad-tree segmentation and the

wavelet transform. In their application of the quad-tree

structure, the definition of leaf nodes is slightly changed.

Before four children are generated by each parent, condi-

tions for merging are tested. A distance threshold is

computed for each child on the basis of extracted texture

features. The distances in the feature space are measured

from the parent node to each child. If the distance to all

four children falls within the thresholds of the children, a

single texture is declared in the parent node, and no further

decomposition is necessary. Otherwise, pairwise grouping

of the children is performed, that is, if the distance between

two neighbouring children falls below the thresholds of

both, the children are merged as a single child. The quad-

tree decomposition is then iterated on each child until the

size of the smallest child reaches a certain number of

pixels. Generally, the maximum number of children gen-

erated by a quad-tree decomposition is 4i, where i is the

number of the decomposition levels.

3.3 Quin-tree decomposition

A quin-tree is a hierarchical image decomposition struc-

ture, which is based on a slight modification of the

recursive decomposition of images that are used in quad-

trees. Each decomposition of an image segment produces

five sub-segments of equal size. In addition to the four

equal-sized quadrants obtained in quad-tree decomposition,

a fifth sub-segment, equal in size to each quadrant, is

generated from the central area of the image segment.

Each internal node has a maximum of five children. The

strategy of quad-tree decomposition proposed by Smith and

Chang [13] was used by Guo and Zhang [14] to guide the

decomposition of sub-segments 1, 2, 3 and 4 in the quin-

tree. Whether or not these sub-segments are generated

determines the generation of sub-segment 5. Generally, the

maximum number of children generated by a quin-tree

decomposition is (4i+1 – 1)/3 (after eliminating redundant

block segments caused by the overlapping of sub-segment

5 with sub-segments 1, 2, 3 and 4), where i is the number of

decomposition level.

3.4 Nona-tree decomposition

A nona-tree is a hierarchical image decomposition which is

based on a further modification to the recursive decom-

position of images in quin-trees. Each decomposition of an

image segment produces nine sub-segments of equal sizes.

In addition to the five equal segments in quin-tree, four

additional segments, again of the same size, are produced

from the central areas of the upper, bottom, left and right

halves of the image segment.

Each internal node has a maximum of nine children.

Similar to the definition of the leaf nodes in the quin-tree,

the strategy of quad-tree decomposition proposed by Smith

and Chang [13] is used by Guo et al. [14] to guide the

decomposition of sub-segments 1, 2, 3 and 4 in the nona-

tree. Whether or not sub-segments 1, 2, 3 and 4 are gen-

erated determines the generation of sub-segments 5, 6, 7, 8

and 9. Generally, after eliminating the redundant sub-seg-

ments caused by the overlapping of additional sub-

segments, the maximum number of children generated by a

nona-tree decomposition is (2i+1 – 1)2, where i is the

number of decomposition level.

3.5 Multiscale image decomposition

Multiscale image decomposition can be viewed as a mul-

tiscale version of the sliding windows described

previously. In [7], Chan et al. used a multiscale image

decomposition approach in order to support colour locali-

sation within high resolution images. Although their

application is for colour localisation, it may be appropriate

for texture localisation applications as well. The idea of the

multiscale approach is to divide the database images into

pyramids of patches and record the features for each. All

images are first resized to a dyadic size, and overlapping

patches of size 64 · 64 are slid across the image. The

patches are slid by an amount equal to half the length of the

patch size. The feature vectors computed from each sub-

image patch are used as the feature vectors for that par-

ticular scale.

The image is then halved, resulting in images corre-

sponding to a lower resolution, and overlapping patches of

the same 64 · 64 size are used to compute the feature

vectors at that scale. This process is repeated until the

reduced image corresponds to a single patch, i.e. of size

64 · 64. This decomposition approach results in the pat-

ches corresponding to the lowest scale to represent the

parent images. The patches corresponding to the higher

scales, on the other hand, correspond to specific parts of the

parent image. Hence, this method is deemed an appropriate

tool to capture both the global and local features of an

image.

4 The discrete wavelet frames

Discrete wavelet frames is a variation of the wavelet

transform family. The fundamental idea of the wavelet

Pattern Anal Applic (2008) 11:141–157 143

123

transform is to analyse data in the spatial-frequency

domain. It is based on the dilations and translations of a

mother wavelet, w, which is a function with some special

properties. In image processing terms, the dilations and

translations of the mother functions w are given by the

wavelet basis function:

wðs;lÞðtÞ ¼ 2�s=2wð2�sx� lÞ:

The variables s and l are integers that dilate and orientate

the mother function w to generate a family of wavelets,

such as the Daubechies wavelet family [15]. The scale

index s indicates the wavelet’s width, and the location

index l gives its position in 2-D.

Wavelets can be divided into orthogonal and non-

orthogonal. They are orthogonal if their basis functions are

mutually orthogonal. The orthogonality feature results in a

series of coefficients that represent the wavelet decompo-

sition for the whole family of a particular wavelet. The

series of coefficients is known as the quadrature mirror

filter (QMF). This concept, along with the theory of filter

banks, is the basis with which the famous fast algorithm

wavelet transform was produced by Mallat [16]. The QMF

is a filter that can be either low-pass or high-pass just by

changing signs and rearranging its coefficient. In the

wavelet decomposition of an image, the QMFs are used as

high-pass as well as low-pass filters in both horizontal and

vertical directions, followed by a 2 to 1 subsampling of

each output image. This generates four wavelet coefficient

images, i.e. the low–low, low–high, high–low and high–

high (LL, LH, HL, HH, respectively) channels. The process

is repeated on the LL channels until some pre-determined

condition are met. The number of channels generated for is

therefore 3 · l + 1, where l is the number of decomposi-

tion levels.

The DWF is almost identical to the wavelet transform,

except that it upsamples the filters, rather than downsam-

pling the image. While the frame representation is over-

complete, and computationally more intensive than the

wavelet transform, it holds the advantage of being trans-

lationally invariant [17]. Given an image, the DWF

decomposes its channel by using the same method as the

wavelet transform, but without the subsampling process.

This results in four filtered images with the same size as the

input image. The decomposition is then continued on the

LL channels, as in the wavelet transform, but since the

image is not sub-sampled, the filter has to be upsampled by

inserting zeros in-between its coefficients. Similar to the

wavelet transform, the number of channels for the DWF is

3 · l + 1. A more detailed description of DWF and the

wavelet family in general can be found in [15–18].

Based on our previous work [8, 19], we find that the

DWF technique is appropriate for use as a texture feature

for both the segmentation-based and block-based texture

retrieval applications. We also proposed suitable parame-

ters to be used with DWF in order to optimise its retrieval

performance, and these are summarized in Table 1.

Throughout this paper, DWF, with the specifications shown

in the table, will be used as the texture feature extraction

technique.

5 The multiscale technique for texture retrieval

An improved multiscale decomposition approach, suitable

for use with texture in CBIR of museum images, is pro-

posed in this paper. Before a description of the proposed

algorithm is presented, it is necessary to point out that the

DWF technique is not a scale invariant texture feature.

The distribution of energy in the wavelet decomposition

is based on frequency or scale. Hence the energy of a

particular texture with a coarser scale focuses within a

certain frequency range, for instance the LH channel of the

first level decomposition, while the energy of a finer scale

version of the same texture focuses within some other

frequency range, for instance the LH channel of the second

level decomposition. To obtain the features of a particular

texture, the DWF texture feature method computes two

statistical measures from each channel, namely the stan-

dard deviation of the wavelet coefficients and the number

of zero-crossings.

To compare the similarity between two textures, the

normalized Euclidean distance is employed, where a

channel by channel comparison of the two statistical mea-

sures mentioned above is carried out. If the channel energy

distribution of any two textures differ, the dissimilarity

distance will be large and the algorithm will perceive the

textures as different. In the case of coarse against fine

versions of the same texture, we would like the algorithm to

consider them as the same texture, but unfortunately the

Table 1 Summary of the best discrete wavelet frames parameters

Parameters Identified parameter value/type

Level of decomposition 3

Wavelet basis Not crucial, but Daubechies

8-tap is chosen

[–0.2304 0.7148 –0.6309 –0.0280

0.1870 0.0308 –0.0329 –0.0106]

Padding type Periodic

Distance metric Normalized Euclidean

Statistical features Standard deviation energy,

zero-crossings

Channels selection All channels

144 Pattern Anal Applic (2008) 11:141–157

123

DWF is unable to attain it, hence the term scale dependence.

However, by using the multiscale sub-image matching, the

scale dependence of DWF can be reduced. Hence, we opt to

use the multiscale decomposition approach instead of other

block-oriented decompositions such as the quad-tree

decomposition.

5.1 Decomposition algorithm

The proposed algorithm is based on the multiscale algo-

rithm of Chan et. al., where in their work, the CCV is used

to extract features from each sub-image. Since the colour

property does not change when re-scaling the images

without maintaining the aspect ratio, Chan et al. resized all

the database images to dyadic sizes to facilitate easier

image cropping and re-scaling. This suggests that at the

lowest level, the database image will always be of size

64 · 64, and hence the same size as the sub-image patch. If

we are to use the multiscale approach for texture retrieval,

a modification is necessary since re-scaling the image

without maintaining the aspect ratio tends to alter the

properties of the underlying texture. We wish to ensure that

the texture properties are unaltered at every level, in order

for the retrieved images to offer a fairer resemblance of the

query image.

The proposed multiscale image decomposition algo-

rithm is summarized in Fig. 1. The basic sub-image patch

used is the same as proposed by Chan et al., that is 64 · 64,

since in real applications, we believe that the query image

should not be smaller than this size. Consider a texture of

size 256 · 256. As the image size is a multiple of 64, the

sub-images can be fitted to cover the whole image at the

root level. Now, consider a texture of size 300 · 300. As

the image size is not a multiple of 64, some overlapping

between sub-images are necessary, if the whole image is to

be covered. In this case, 25 evenly distributed sub-images

are required to cover the root level, with a five-pixel

overlap between them in both the horizontal and vertical

dimensions. This arrangement, where the overlapping

between sub-images is between 0 to 63 pixels in either

dimension, is one of two approaches we will consider, and

is termed case 1 overlapping.

One might argue that better localisation can be achieved

by increasing the minimum number of the overlapped

pixels. If we increase the minimum number to half the sub-

image size, i.e. 32 pixels in either dimension, we will have

a much better localisation than in the previous case. The

overlapping range is now between 32 and 63 pixels in

either dimension. We call this type of localisation case 2

overlapping. Although the image is better localised using

this arrangement, it requires more sub-images, which

suggests more computation for each scale. It is interesting

to observe the performance of the two approaches, in terms

of both accuracy and speed. There are two factors that are

important when observing the performance, which are the

total number of sub-images and the sub-image coverage.

Higher total number of sub-images provides better sub-

image coverage, which in theory should lead to better

performance, but at the cost of higher computational load.

Thus these two factors need to be considered when deter-

mining the better approach between case 1 and case 2

overlapping.

For a square-sized sub-image, the number of sub-images

generated, K for case 1 and case 2 overlapping for any

single level is calculated as

Kcase 1 ¼
M

64

� �� �2

ð1Þ

Kcase 2 ¼
M

64

� �
� 2� 1

� �2

ð2Þ

where M is the length of the sub-image, and d:e is defined

to be the smallest integer greater than or equal to a given

Get a sub-image,
perform DWF decom-
position and compute

its feature vector

Add sub-image's
feature vector to the
final feature vector

Finish with all
sub-images?

min(M,N)=64?

No

Yes

No

Yes

Final Feature Vector

Resize image by
a factor of j/i, where:

i=min(M,N),
j=nearest dyadic integer

that is smaller than i,
j<i

Divide image into
several 64x64
sub-images

Image,
I(M,N)

Fig. 1 Flowchart of the proposed multiscale image decomposition

technique

Pattern Anal Applic (2008) 11:141–157 145

123

number. The d:e operator ensures the sub-images are

interconnected and no sections of the image will be left out.

The number of overlapping pixels (which relates to the

sub-image coverage) in any particular direction, J can be

computed for case 1 and case 2 overlapping, respectively.

Jcase 1 ¼ 64� M � 64
M
64

� �
� 1

" #
ð3Þ

Jcase 2 ¼ 64� M � 64
M
64

� �
� 2� 2

" #
ð4Þ

Figure 2a shows the variation of overlapping amount with

different sizes of image for the two approaches. In both

cases, minimum overlapping is achieved when image sizes

are multiples of 64. On the other hand, maximum over-

lapping is achieved when either the width or the height of

the image has a size of 65 (two sub-images, the first sub-

image takes the first 64 pixels, and the second sub-image

takes the last 64 pixels).

As mentioned earlier, the first level of the decomposi-

tion involves the original dimension of the image to be

processed. The re-scaling of the image can be described as

follows. For an image with M · N dimensions, the mini-

mum of the two dimensions, min(M,N) is taken as the basis

for re-scaling. Hypothetically, say the row, M, is the min-

imum of the two dimensions. The image is then re-scaled

to the nearest dyadic integer that is smaller than M, while

maintaining the aspect ratio of the image. The sub-image

decomposition described earlier is then performed on the

re-scaled image to obtain the sub-images that correspond to

the second level. Starting from the second level, to obtain

the parent image at the following level, the image is re-

scaled by a factor of 2. This process continues until

min(M,N) reaches 64.

For example, consider an image of size 783 · 556. The

resolution of the image will be 783 · 556 at the first level,

721 · 512 at the second level (512 is the nearest dyadic

integer smaller than min(783,556)), 361 · 256 at the third

level, 181 · 128 at the fourth level, and finally 91 · 64 at

the fifth level. The final level (91 · 64) will consists of two

sub-images for case 1 overlapping and three sub-images

for case 2 overlapping. In general, for an M · N image, the

number of scales, S can be computed as

S ¼ log2ðminðM;NÞd e � 5 ð5Þ

5.2 Total number of sub-images

Equations 1 and 2 give the number of sub-images gener-

ated at a particular scale for the case 1 and case 2

overlapping, respectively. The total number of sub-images

generated by the multiscale algorithm for all scales can be

computed by adding the number of sub-images at each

scale. Figure 2b shows the total number of sub-images

generated for case 1 and case 2 overlapping for a square

M · M image, with M ranging from 64 to 1,024. From the

figure, the number of sub-images for case 2 overlapping

increases almost quadratically with increase in M over the

number of sub-images for case 1 overlapping.

5.3 Sub-image coverage

We will now discuss the overlapping coverage between a

query image and the segments of a database image for

instances in which the query image is similar to a sub-

image of the database image. Let Q be a query image and

D be a database image. We assume, for simplicity sake,

that the query image is of size 64 · 64 and the database

image is of size 128 · 128. Assume that D contains a sub-

image d which is similar to Q and d may be located any-

where in D. We now examine the degrees of coverage

between the query image and the segments generated by

128 256 384 512
0

16

32

48

64

Image width

A
m

ou
nt

 o
f o

ve
rla

pp
in

g

Case 1 overlapping
Case 2 overlapping

64 256 512 768 1024
0

250

500

750

1000

1250

Image Width/Height

T
ot

al
 n

um
be

r
of

 s
ub

−
im

ag
es

Case 1 overlapping
Case 2 overlapping

(a) (b)

Fig. 2 Comparison between

case 1 and case 2 overlapping. a
Amount of pixels overlapping. b
Total number of sub-images

146 Pattern Anal Applic (2008) 11:141–157

123

the two approaches mentioned above, case 1 and case 2

overlapping.

5.3.1 Case 1 overlapping

For a 128 · 128 image, it is decomposed into four quad-

rants of size 64 · 64. The minimum coverage between

these four quadrants for D and Q will be 1/4 of Q, when d

is located in the centre of D, as illustrated in Fig. 3.

Obviously, when d is located in other places in D, the

coverage between Q and any quadrant of D will be larger

than 1/4 of Q. When the size of the database image is not a

multiple of 64, the coverage will be larger than 1/4 of Q

too.

5.3.2 Case 2 overlapping

For a 128 · 128 image, it is decomposed into nine quad-

rants of size 64 · 64, as is illustrated in Fig. 4. Sixteen non-

overlapping sub-images of size 32 · 32 is shown. The nine

quadrants can be obtained by grouping any four adjacent

32 · 32 non-overlapping sub-images in squares. Let d be

located at an offset of d1 and d2 at each side of the image as

indicated in Fig. 4.

The overlap between d and the closest quadrant is rep-

resented by the shaded area. Let L = 64 be the size of the

query image. In general, as shown in Fig. 4, the shaded

area A of the query image conforms to one of the following

cases:

• For 0� d1� 1
4

L (Fig. 4a):

If 0� d2� 1
4

L; A ¼ ðL� d1Þ � ðL� d2Þ;

If 1
4

L� d2� 1
2

L; A ¼ ðL� d1Þ � ð12 Lþ d2Þ;

If 1
2

L� d2� 3
4

L; A ¼ ðL� d1Þ � ð32 L� d2Þ;

If 3
4

L� d2� L; A ¼ ðL� d1Þ � d2;

• For 1
4
� d1� 1

2
L (Fig. 4b):

If 0� d2� 1
4

L; A ¼ ð1
2

Lþ d1Þ � ðL� d2Þ;

If 1
4

L� d2� 1
2

L; A ¼ ð1
2

Lþ d1Þ � ð12 Lþ d2Þ;

If 1
2

L� d2� 3
4

L; A ¼ ð1
2

Lþ d1Þ � ð32 L� d2Þ;

If 3
4

L� d2� L; A ¼ ð1
2

Lþ d1Þ � d2;

• For 1
2
� d1� 3

4
L (Fig. 4c):

If 0� d2� 1
4

L; A ¼ ð3
2

L� d1Þ � ðL� d2Þ;

If 1
4

L� d2� 1
2

L; A ¼ ð3
2

L� d1Þ � ð12 Lþ d2Þ;

If 1
2

L� d2� 3
4

L; A ¼ ð3
2

L� d1Þ � ð32 L� d2Þ;

If 3
4

L� d2� L; A ¼ ð3
2

L� d1Þ � d2;

• For 3
4
� d1� L (Fig. 4d):

If 0� d2� 1
4

L; A ¼ d1 � ðL� d2Þ;

If 1
4

L� d2� 1
2

L; A ¼ d1 � ð12 Lþ d2Þ;

If 1
2

L� d2� 3
4

L; A ¼ d1 � ð32 L� d2Þ;

If 3
4

L� d2� L; A ¼ d1 � d2;

For all cases, A is found to be greater than 9
16

L2; which

suggests the minimum coverage is 9/16 of d, or

equivalently 9/16 of Q. The above calculations are also

applicable to different image sizes and different scales.

Obviously, if the image size is not a multiple of 64, the

coverage will be larger than 9/16 of Q, since the

overlapping between sub-images increases. Although case

1 overlapping decomposition introduces fewer segments

than does case 2 overlapping, the latter provides a more

effective and robust platform for image retrieval. The

question of which of these approaches is better can only be

determined experimentally, where an evaluation of whether

it is worth generating the extra sub-images can be observed

in terms of retrieval accuracy.

5.4 Scale invariance

As mentioned earlier, the multiscale image decomposi-

tion can assist in reducing the scale dependence of the

DWF texture features. This section will outline how the

multiscale decomposition approach captures different

texture scales. Consider the image in Fig. 5, which is of

size 256 · 256. The sub-images generated by the multi-

scale decomposition (using case 1 overlapping) are also

shown in the figure. There are 16 sub-images corre-

sponding to level 1, four sub-images corresponding to

D

d

4

2

3

1
Fig. 3 Minimum coverage for

case 1 overlapping. The shaded
area represents the overlap

between query image Q and

database image D

Pattern Anal Applic (2008) 11:141–157 147

123

level 2, and one sub-image corresponding to the lowest

level. It is clear that the texture scales change from being

coarser to finer, with the increase of levels. Now, if a

similar texture, but with scale equivalent to the lowest

level in Fig. 5 is used as the query, the probability that

the parent image will be retrieved should be higher than

for the method using only one scale, since the compar-

ison is now performed on three scales, and the sub-image

corresponding to the lowest scale should have the least

dissimilarity compared to the sub-images corresponding

to the other two scales.

However, the above theory is not true for all cases.

Consider the image in Fig. 6. The image consists of a

combination of the tile texture and water, where the tile

texture is only a fraction of the whole image. From the

generated sub-images shown, only one of them manages to

capture the whole tile region of the image, i.e. the second

sub-image at level 1. Sub-images at levels 2 and 3 fail to

capture the unique tile region, thus resulting in no repre-

sentative of the tile texture at those levels. Hence, only the

original scale of the tile texture will be stored in the feature

d1

D

d

d2

d1

D

d

d2

d1

D

d

d2

d1

D

d

d2

(a)

d1

D

d

d2

d1

Dd2

d

d1

D
d2

d

d1

D

d2

d

(b)

d1

Dd2

d

d1

Dd2

d

d1

D
d2

d

d1

D

d2

d

(c)

d1

D

d2

d

d1

D
d2

d

d1

Dd2

d

d1

Dd2

d

(d)

Fig. 4 Minimum coverage for

case 2 overlapping. The shaded
area represents the overlap

between query image Q and

database image D

Fig. 5 Example of sub-images generated for image of size 256 · 256

148 Pattern Anal Applic (2008) 11:141–157

123

vector. The water texture, however, has representatives at

two different scales, i.e. at levels 1 and 2. We can conclude

that the multiscale nature of the multiscale decomposition

depends on the portion of the texture of interest within the

whole image. The larger the portion, the higher the number

of scales to be represented for the texture. Nevertheless,

since the portion of the texture of interest in the parent

image is quite small, it is unreasonable to expect the system

to process the texture at many scales, thus, this problem is

not considered a serious disadvantage for the multiscale

algorithm.

6 Experimental analysis

In this section, we will discuss the effectiveness of the

multiscale sub-image matching algorithm for CBIR. During

the offline feature extraction stage, feature vectors are

computed for all the images in the database, using the

multiscale image decomposition technique (Fig. 1), and are

stored. During the online retrieval stage, these feature

vectors will be compared to the feature vector of the query

texture patch. For a particular database image, each of the

sub-image feature vector will be compared to the query

feature vector and the one with the lowest dissimilarity

score will be considered as the score for that image. After all

the database images have been compared, the images are

then retrieved with increasing dissimilarity score. As shown

in Table 1, the dissimilarity measure used for comparison is

the normalized Euclidean distance. Experiments are con-

ducted on three separate databases. The first consists of

dyadic size Brodatz textures. This is just to make certain

evaluations easier. The second database consists of Brodatz

textures of random sizes. Finally, the third database consists

of museum image collections. The evaluation takes into

account several important factors, including the sensitivity

of various sub-image locations within database images to

which query images are compared, the size of the query

images and the scale of the query images.

6.1 Dyadic size image database

An image data testbed was constructed from Brodatz tex-

ture images [20]. For each of the 112 scanned 512 · 512

texture images, 9 overlapping sub-images of size 256 ·
256 are produced. Thus, there are a total of 1,008 texture

images in the database for the experiments. Ten Vision

textures [21] are selected and are cut-and-pasted onto a

selected image from the 1,008 Brodatz database to provide

target textures for the multiscale algorithm. The colour

Vision textures are of course converted to grey-scale before

the cut-and-paste process. Each Vision texture is pasted on

nine different database images at different locations within

the images, giving a total of 90 modified database images.

The Vision texture is then used as the query image and the

effectiveness of the multiscale algorithm is measured as the

ability of the algorithm to retrieve all nine similar textures.

Figure 7 shows the ten Vision textures used as query

images.

6.1.1 Location of the target sub-image in the database

image

In the first experiment, the sensitivity of the sub-image

locations is tested in order to compare case 1 overlapping

with case 2 overlapping. For the sake of simplicity, in this

experiment, the evaluation is based on a single scale only,

that is, the very first scale. In other words, the scale of the

query image is the same as the target sub-images, so that

the algorithm retrieves sub-images that correspond to only

the original scale. The size of the query images is 64 · 64,

Fig. 6 Another example of sub-images generated for image of size

256 · 256

Fig. 7 The ten vision textures selected for use as query in the

multiscale experiments. Queries 1–10 is read from left to right, top to

bottom. The textures are converted to grey scale for compatibility

with the Brodatz textures

Pattern Anal Applic (2008) 11:141–157 149

123

while the target sub-images pasted on the database images

of size 256 · 256 is set to 80 · 80 pixels. We consider two

sets of experiments. The first was performed by pasting

each Vision texture onto nine different locations that are

fully covered by case 2 overlapping but are only partially

covered by case 1 overlapping. This is intended to test

whether the case 1 overlapping approach is severely

affected by the location of target sub-images. In the second

set of experiments, each Vision texture is pasted at nine

random locations within the database images.

The experiment on the first set showed very poor results

for the case 1 overlapping approach, i.e. less than 10%

retrieval rate, compared to case 2 overlapping, which

showed a perfect 100% retrieval rate. This perfect perfor-

mance is because, in these specified locations, the sub-

image coverage for that particular approach is 100%. This

experiment shows that when the sub-image coverage of

case 1 overlapping is minimum, it results in a very poor

retrieval rate, but the case 2 overlapping approach showed

a very good performance. This is a huge advantage for case

2 overlapping as when the coverage of case 2 overlapping

is minimum (9/16 of the query image), the coverage of

case 1 overlapping is about the same, hence in overall

performance, case 2 overlapping should still be much

better than case 1 overlapping.

This is confirmed in the second set of experiments.

Using a randomly pasted target sub-image, the perfor-

mance of case 2 overlapping is almost double the retrieval

rate for case 1 overlapping (80 against 40%). We can

conclude that case 1 overlapping, although it has a much

lower computational intensity, is far behind case 2 over-

lapping in terms of retrieval accuracy. Figure 8 shows two

examples of retrieval results on randomly pasted targets,

using case 2 overlapping. The first example shows the best

recorded result (query image 7) while the second example

shows the worst recorded result (query image 4). The box

within the image shows part of the image found to be the

most similar to the query.

6.1.2 Scale of the query textures

This experiment is aimed at testing the multiscale nature of

the proposed algorithm. The same set of database images

as in the very first experiment (target located at nine

overlapping regions) is used in this experiment, but with

Fig. 8 Example of retrieval results for two different queries for the dyadic database. For each example, the query image is located at the top left,
and the top ten retrieved images are ranked from left to right, top to bottom

150 Pattern Anal Applic (2008) 11:141–157

123

different scales of the query images. Five different scales

are tested for the query images. The size of the query image

remains the same at 64 · 64 pixels. The five different scale

query images are produced from the original Vision texture

image by appropriate resizing of the original images. Fig-

ure 9 shows the five different image scales for each query

image. The multiscale algorithm used is case 2 overlap-

ping, as from the previous experiment, it is a much better

approach.

Table 2 shows the retrieval results for the experiment.

From the table, it is obvious that as the scale of the query

images moves away from the original scale, the retrieval

rate drops dramatically. By using the query images with the

same scale as the target sub-images, a 100% retrieval rate

is recorded. On the other hand, by using query images of

approximately twice the scale of the target sub-images

(scale 5), a very poor 5.5% retrieval rate is recorded.

However, note that in the database, the target sub-images

are only of size 80 · 80 pixels. Therefore, when the image

is re-scaled to the next resolution, there are no blocks that

manage to capture the homogeneous target sub-images.

During the second scale, the 80 · 80 target sub-images are

re-scaled to 40 · 40 pixels, hence the 64 · 64 block cap-

turing the target region also consists of another texture. If

the size of the target images is increased, the likelihood that

the 64 · 64 block will capture the homogeneous target

region is much better. To confirm this, another two sets of

experiments are conducted. In these experiments, the 80 ·
80 pixels target region is replaced by a much larger target.

We experimented with 140 · 140 and 200 · 200 pasted

sub-images. Note that only the size of the sub-image is

different, the scale of the target remains the same.

Tables 3 and 4 show the retrieval results of the respec-

tive experiments. The retrieval results, using different

scales, have improved tremendously, especially when

employing scales 3, 4 and 5. This confirms our previous

assumption that the multiscale algorithm works better if the

proportion of the target texture is of appropriate size. The

larger the proportion, the better the multiscale algorithm

works in reducing the scale dependence of the texture

feature. The difference will be more obvious if the database

images used are larger than 256 · 256, since more scales

will be involved. However, without a suitable indexing

system at this stage to speed up the matching process, we

restrict the database image size to 256 · 256. From

Fig. 9 The five different scales of query images (left to right) used to

test the multiscale nature of the algorithm

Table 2 Retrieval rate for five different scales of query images

Query image Scale 1

(original)

Scale 2 Scale 3 Scale 4 Scale 5

Average retrieval

rate (%)

100 71.1 18.9 4.4 5.5

Table 3 Retrieval rate for five different scales of query images, with

target region increased to 140 · 140

Query image Scale 1

(original)

Scale 2 Scale 3 Scale 4 Scale 5

Average retrieval

rate (%)

96.7 78.8 37.7 38.9 100

Table 4 Retrieval rate for five different scales of query images, with

target region increased to 200 · 200

Query image Scale 1

(original)

Scale 2 Scale 3 Scale 4 Scale 5

Average retrieval

rate (%)

100 86.7 46.7 41.1 94.4

Pattern Anal Applic (2008) 11:141–157 151

123

Tables 3 and 4, it can be seen that scale 5 shows a very

good retrieval result. This is probably because scale 5 is

very close to half of the original scale of the query image,

which makes the feature vector of the query image at scale

5 very much closer to the feature vector of the second level

sub-images.

Without the multiscale feature, only the original scale is

used for comparison, hence the larger the re-scale factor,

the higher the dissimilarity to the original texture.

Assuming the target texture is of appropriate size, the

multiscale algorithm helps in reducing the scale depen-

dence of the DWF texture feature. Without the multiscale

feature, textures with different scales will be much harder

to match and retrieve. Figure 10 shows an example of

retrieval results for different scales using query image 9

(best result). The target region size is 140 · 140. We can

see that when the scale of the query changes, the sub-

images corresponding to different scales are retrieved.

Fig. 10 Example of retrieval result for three different scales of query image

152 Pattern Anal Applic (2008) 11:141–157

123

6.1.3 Size of the query images

In the previous experiments, all the query images used

were of size 64 · 64. This section examines whether the

size of the query images is crucial to the results of the

retrieval. However, it is important not to misinterpret this

with the scale of the query which has already been inves-

tigated in the last section. What is meant by size is the

resolution of the query image itself. When we change

the size of the query image from 64 · 64 to say, 128 · 128,

the scale of the query image remains the same. For

instance, consider an image which has a large homoge-

neous texture region within it. In order to use the textured

region in the image as a query, we can simply crop parts of

the texture region and compute its feature vector. We can

either crop a large rectangle or a smaller one, as long as the

texture is well represented. This is what is meant by the

size of the query image. We would like to examine if there

are any differences if only a small rectangular patch is

used, instead of a larger rectangular patch. Theoretically,

the feature vectors of the two textures should not be sig-

nificantly different since the standard deviation and zero-

crossing computation is averaged over the total number of

pixels, hence the retrieval result should not be affected

much. However, to confirm this, a new set of experiments

are conducted. The database used is the same as the one

used in Sect. 6.1.1, where the target images are pasted on

nine different overlapping regions. The query images used

are of sizes 48 · 48, 64 · 64, 96 · 96, 128 · 128 and

150 · 150.

Table 5 shows the retrieval results for different sizes of

query images. The performance of the different query

image sizes do not seem to differ much, except for some

particular query images, namely queries 6, 8 and 9 (refer

Fig. 7). Although the retrieval accuracy for query 6, using

query size 48 · 48, is poor, it was observed that most of the

top ten retrieved images consist of visually similar textures

from the Brodatz collection. The ten target images are not

far down the ranking, hence the retrieval result in general is

still relatively good. As for queries 8 and 9, the reason for

poor results using sizes 128 · 128 and 150 · 150 is

probably because, as the size increases, the textures tend to

vary a little. For example, certain sections of the textures

darkened. Hence, in general we can conclude that, given

that the properties of the texture do not change very much,

the query image can take any size, which is an advantage if

the CBIR system supports image cropping to provide query

patches.

6.1.4 The decomposition issue

In our previous work [8], we found that periodic padding

should be used for the DWF, if the translation invariance

property is to be maintained. However, by using the mul-

tiscale image decomposition technique, we are dealing

with image blocks and not separate entities. Therefore, one

might argue that the border information can be extracted

from neighbouring image blocks by borrowing border

pixels in the filtering operation. Although the DWF

decomposition and feature extraction processes are no

longer independent for each spatial block, the exchange

offers an elegant solution for padding, and the order of

operation can be reversed.

First, the entire image is decomposed using wavelet

filtering, and then the patches are slid across the stack of

DWF coefficients in order to compute the features for each

sub-image. After the image is re-scaled to the appropriate

size, the DWF decomposition is continuously applied till

the lowest scale image. This implies the DWF decompo-

sition only has to be applied s times, where s is the number

of scales (once for each scale), instead of applying it to

each sub-image generated by the multiscale decomposition.

The parent images, however, will need to be padded with a

periodic padding. The feature extraction is also simplified

by using this technique, where the standard deviation and

the number of zero-crossings are computed immediately

within each block, like sliding a standard deviation and

zero-crossings function over a stack of images.

The database used is the one used in Sect. 6.1.1, where

each target image is pasted randomly on nine selected

database images. The query images are of the same scale as

the target images and of size 64 · 64. It was observed that

the DWF followed by the decomposition approach does not

result in satisfactory retrieval rate. The average retrieval

rate is recorded as below 50% compared to almost 80% for

the alternate approach. This is because of the brightness

invariance pre-processing operation of the DWF. Before

applying the wavelet frames decomposition to an image, a

common practice is to subtract the local mean of the image

in order to reduce the bias caused by different illumination

conditions. However, applying the DWF before the block

decomposition implies that the mean to be subtracted is the

global mean, and not the local mean of a particular texture.

In other words, only the parent image has a zero-mean. The

texture regions of interest will not record a zero-mean.

When the feature vectors of these non-zero-mean texture

regions are compared to the feature vector of the query

texture which is zero-mean, the dissimilarity will be larger

Table 5 Retrieval rate for five different sizes of query images

Query image 48 · 48 64 · 64 96 · 96 128 · 128 150 · 150

Average

retrieval

rate (%)

82.2 100 100 82.2 82.2

Pattern Anal Applic (2008) 11:141–157 153

123

due to the difference in the pixel histogram. We therefore

confined ourselves to the original approach, which is first to

perform the image decomposition, and second to apply the

DWF.

6.2 Arbitrary size images database

Now that important measurements of the multiscale algo-

rithm have been evaluated using a dyadic size image

database, the multiscale algorithm will be tested on an

arbitrary size image database. The procedure is not sig-

nificantly different from previous experiments. From each

512 · 512 scanned Brodatz texture image, nine randomly

sized images are produced, which can be of any height,

width and location within the parent images. This results in

1,008 random size images in the database. Next for each 10

Vision textures, target images of size 80 · 80 are randomly

pasted onto 9 different database images, resulting in 90

modified database images consisting of target textures.

Each of the ten Vision textures (of size 64 · 64) is used as

the query for the retrieval experiment.

An average of 87.8% accuracy is reported from the

experiment. If we compare this rate with the rate using the

dyadic image sizes, where the retrieval rate is 78.9%,

the difference is rather significant. This is mainly due to the

fact that, by using randomly sized images, we increase the

coverage of sub-images in the multiscale algorithm, hence

resulting in much better localisation. Recall that the mini-

mum coverage of the multiscale method is 9/16. This

minimum coverage is achieved only when the image size is

in multiple of 64. For images that are not of this size, the

sub-image coverage will be larger than 9/16. All the results

obtained from previous experiments using the dyadic

image database present the worst case scenario for each

experiment. If the database is not restricted to dyadic image

sizes, the retrieval rate will be better. Figure 11 shows

some retrieval results using an arbitrary size image data-

base. In order to accommodate the figure, images shown

are resized by different factors.

Fig. 11 Example of retrieval results for two different query images, using database of arbitrary size image. The images shown are not according

to scale

154 Pattern Anal Applic (2008) 11:141–157

123

6.3 Museum image collection

The proposed algorithm is now tested on a real database

created from museum image collections. We experimented

with three different museum image databases, namely the

National Gallery database (more than 1,000 images), the

Victoria and Albert Museum database (about 17,000 ima-

ges) and the Research and Restoration Centre for the

Museum of France (C2RMF) database (2,500 images), all

of which are provided by the respective galleries or

museums as part of the Artiste project [22].

The three databases present quite different challenges.

The Victoria and Albert Museum database consists of

mainly images of single objects, hence it is not too com-

plex, but the size of the database is the largest. The

National Gallery database contains more complex images,

as all of its images are of paintings. Finally, the C2RMF

database offers the most difficult challenge since some of

its images are of paintings in need of restoration and

sometimes not many textures are significantly visible.

Figure 12 shows some retrieval results for the museum

image database. It is not possible to conduct a quantitative

analysis for this experiment as there is no satisfactory

ground truth data, i.e. for any particular query patch, we are

uncertain as to how many images are in the database

containing a texture region similar to the query, unlike in

the previous experiments. However, from the figure, it can

be observed that the proposed approach works well with all

three databases, where almost all images in the top rank

contain regions of similar texture to the query. Even for the

C2RMF database, the algorithm manages to retrieve visu-

ally similar texture, although its performance is not as good

as for the other two databases. This is because the nature of

the images within the database makes it confusing. The

other two databases, on the other hand, show much better

retrieval results. Even for a database size of 17,000 images

Fig. 12 Example of retrieval results for two different query images, using museum image database. The images shown are not according to scale

Pattern Anal Applic (2008) 11:141–157 155

123

for the Victoria and Albert Museum database, the algo-

rithm manages to perform its task well. The proposed

algorithm can therefore be applied effectively in CBIR

applications and the approach has been incorporated into

the Artiste project CBIR system, and useful results have

been reported.

7 Conclusion and future works

In this paper, a modified multiscale sub-image matching

method is proposed. The multiscale algorithm was chosen

because of its simplicity and the fact that it can assist in

reducing the scale dependence of the feature extractor. The

modifications to the algorithm are necessary in order for it

to be used for texture retrieval and to improve perfor-

mance. These include the scaling factor for different scales,

as well as the positioning of the blocks within the entire

image of interest. Several experiments were carried out in

order to evaluate the performance of the multiscale algo-

rithm. In the first experiment, it was found that case 2

overlapping is far better than case 1 overlapping, hence

making the extra sub-images of the former worthwhile.

The experiments suggest that the multiscale algorithm is

in fact a very good method for achieving scale invariant

texture retrieval. Although it is not perfectly scale invari-

ant, the algorithm helps to reduce the scale dependence of

the texture features. It is also found that the size of the

query images has little effect on retrieval results, making it

a robust technique. Finally, the combination of the multi-

scale algorithm with the DWF can be used for an arbitrary

size image database, where good retrieval results are

observed with the Brodatz database as well as in real dat-

abases of museum image collections. The multiscale nature

of the approach is especially useful in capturing both

coarse and fine textures.

Future improvements to the algorithm will mainly be

concerned with reducing the computational load. One of

the possibilities might be to use case 1 overlapping for sub-

image coverage, instead of case 2 overlapping, although

the accuracy might drop quite drastically as well. Another

possibility is to introduce a texture identifier to decide

whether a particular sub-image is textured or not. The

feature vectors are then created only for the textured pat-

ches, reducing the total number of feature vectors to be

calculated and compared. We would also like to incorpo-

rate rotation invariance into the algorithm and a suitable

multidimensional indexing strategy to accelerate the

matching process.

Acknowledgments The authors are grateful to the Faculty of

Engineering, Multimedia University, Malaysia and the School of

Electronics and Computer Science at the University of Southampton,

UK for financial support. We are also grateful to the EU for their

support under grant number IST_1999_11978 (The Artiste Project),

and to our collaborators, the Victoria and Albert Museum (London,

UK), the National Gallery (London, UK) and the Research and

Restoration Centre for the Museum of France (Paris, France) for use

of their images.

References

1. Rui Y, Huang TS (1999) Image retrieval: current techniques,

promising directions, and open issues. J Visual Comm Image Rep

10:39–62

2. Hlaoui A, Sun H-J, Wang S-R (2002) Image retrieval using fuzzy

segmentation and a graph matching technique. In: Proceedings of

the international conference on machine learning and cybernetics,

pp 1987–1992

3. Liu Y, Zhou X (2004) Automatic texture segmentation for tex-

ture-based image retrieval. In: Proceedings of the international

conference on multimedia modelling, pp 285–290

4. Ko B, Peng J, Byun H (2001) Region-based image retrieval using

probabilistic feature relevance learning. Pattern Anal Appl

4:174–184

5. Choras RS, Andrysiak T, Choras M (2007) Integrated color,

texture and shape information for content-based image retrieval.

Pattern Anal Appl. doi: 10.1007/s 10044-007-0071-0(online first)

6. Rubner Y, Tomasi C (1999) Texture-based image retrieval

without segmentation. In: Proceedings of the IEEE international

conference on computer vision, pp 1018–1024

7. Chan S, Martinez K, Lewis P, Lahanier C, Stevenson J (2001)

Handling sub-image queries in content-based retrieval of high

resolution art images. In: Proceedings of the international con-

ference in cultural heritage and technologies, pp 157–163

8. Fauzi MFA (2004) Content-based image retrieval of museum

images. PhD Thesis, University of Southampton

9. Pun C-M, Lee M-C (2002) Rotation invariant texture feature for

content based image retrieval. In: Proceedings of the IEEE

international conference on multimedia and expo, pp 173–176

10. Muneeswaran K, Ganesan L, Arumugam S, Soundar KR (2005)

Texture classification with combined rotation and scale invariant

wavelet features. Pattern Recognit 38:1495–1506

11. Manjunath BS, Ma WY (1996) Texture features for browsing and

retrieval of image data. IEEE Trans Pattern Anal Mach Intell

18:837–842

12. Natsev A, Rastogi R, Shim K (1999) WALRUS: a similarity

retrieval algorithm for image databases. In: Proceedings of ACM

SIGMOD international conference on management of data, pp

395–406

13. Smith JR, Chang S-F (1994) Quad-tree segmentation for texture

based image query. In: Proceedings of the ACM multimedia

conference, pp 279–286

14. Guo J, Zhang A (1997) Image decomposition and representation

in large image database systems. J Visual Comm Image Rep

8:167–181

15. Graps A (1995) An introduction to wavelets. IEEE Comput Sci

Eng 2:50–61

16. Mallat SG (1989) A theory for multiresolution signal decompo-

sition: the wavelet representation. IEEE Trans Pattern Anal Mach

Intell 11:674–693

17. Unser M (1995) Texture classification and segmentation using

wavelet frames. IEEE Trans Image Process 4:1549–1560

18. Chang T, Kuo CCJ (1993) Texture analysis and classification

with tree-structured wavelet transform. IEEE Trans Image Pro-

cess 2:429–441

156 Pattern Anal Applic (2008) 11:141–157

123

http://dx.doi.org/ 10.1007/s 10044-007-0071-0

19. Fauzi MFA, Lewis PH (2006) Automatic texture segmentation

for content-based image retrieval application. Pattern Anal Appl

9:307–323

20. Brodatz P (1966) Textures: a photographic album for artists &

designers. Dover, New York

21. Picard R et al (1995) Vision Texture 1.0. MIT Media Lab, at

http://www-white.media.mit.edu/vismod/imagery/VisionTexture/

vistex.html

22. Artiste Project. At http://www.artisteweb.org

Author Biographies

Mohammad Faizal Ahmad
Fauzi received the B.Eng.

degree in electrical and elec-

tronic engineering from

Imperial College, London, UK

in 1999, and the Ph.D. degree in

electronics and computer sci-

ence from University of

Southampton, Southampton,

UK in 2004. He is currently

attached to the Multimedia

University, Malaysia as a lec-

turer/researcher. His main

research interests are in the area

of signal processing, analysis,

retrieval and compression of image, audio and video data, as well as

biometrics.

Paul H. Lewis received the B.S.

degree in physics from Imperial

College, London, and a Ph.D.

degree in physics from London

University in 1972. He is a

Professor of Computer Science

in the Intelligence, Agents,

Multimedia Group in the School

of Electronics and Computer

Science at the University of

Southampton in the UK. His

main research interests are in

the area of image and video

content analysis, semantic anal-

ysis and applications to

intelligent multimedia information handling. Particular application

areas include the medical domain and cultural heritage systems. He is

a member of the UK Multimedia Knowledge Management Network

Steering group.

Pattern Anal Applic (2008) 11:141–157 157

123

http://www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
http://www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
http://www.artisteweb.org

	A multiscale approach to texture-based image retrieval
	Abstract
	Originality and contribution
	Introduction
	Review of block-oriented decomposition techniques
	Sliding windows
	Quad-tree decomposition
	Quin-tree decomposition
	Nona-tree decomposition
	Multiscale image decomposition

	The discrete wavelet frames
	The multiscale technique for texture retrieval
	Decomposition algorithm
	Total number of sub-images
	Sub-image coverage
	Case 1 overlapping
	Case 2 overlapping

	Scale invariance

	Experimental analysis
	Dyadic size image database
	Location of the target sub-image in the database image
	Scale of the query textures
	Size of the query images
	The decomposition issue

	Arbitrary size images database
	Museum image collection

	Conclusion and future works
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

