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Abstract

This paper develops an approach to measure the information content of a biometric feature repre-

sentation. We define biometric information as the decrease in uncertainty about the identity of a person

due to a set of biometric measurements. We then show that the biometric feature information for a

person may be calculated by the relative entropy D(p‖q) between the population feature distribution

q and the person’s feature distribution p. The biometric information for a system is the mean D(p‖q)
for all persons in the population. In order to practically measure D(p‖q) with limited data samples,

we introduce an algorithm which regularizes a Gaussian model of the feature covariances. An example

of this method is shown for PCA and Fisher linear discriminant (FLD) based face recognition, with

biometric feature information calculated to be 45.0 bits (PCA), 37.0 bits (FLD) and 55.6 bits (fusion

of PCA and FLD features). Finally, we discuss general applications of this measure.
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I. INTRODUCTION

How much information is there in a face, or a fingerprint? This question is related to many

issues in biometric technology. For example, one of the most common biometric questions

is that of uniqueness, eg. to what extent are fingerprints unique? From the point of view of

identifiability, one may be interested in how much identifying information is available from

a given technology, such as video surveillance. In the context of biometric fusion [19] one

would like to be able to quantify the biometric information in each system individually, and the

potential gain from fusing the systems. Additionally, such a measure is relevant to biometric

cryptosystems and privacy measures. Several authors have presented approaches relevant to this

question. For example, Wayman et al. [23] introduced a set of statistical approaches to measure

the separability of Gaussian feature distributions using a “cotton ball model”. Another approach

was developed by Daugman [7] to measure the information content of iris images based on the

discrimination entropy [6], calculated directly from the match score distributions. Also, Golfarelli

et al. [11] showed that the most commonly used feature representations of handgeometry and

face biometrics have a limited number of distinguishable patterns, on the order of 105 and 103,

respectively, as measured by a theoretical estimate of the equal error rate. Other authors have used

information theoretic approaches, such as the approach of Ross and Jain [19] to biometric fusion.

However, none of these methods approach measurement of information content of biometric data

from an information theoretic point of view.

In this paper we elaborate an approach to address this question based on definitions from

information theory [2]. We define the term “biometric information” as follows:

biometric information: the decrease in uncertainty about the identity of a person due to a set

of biometric features measurements

In order to interpret this definition, we refer to two instants: 1) before a biometric measurement,

t0, at which time we only know a person p is part of a population q, which may be the whole

planet; and 2) after receiving a set of measurements, t1, we have more information and less

uncertainty about the person’s identity.

In order to motivate our approach, we initially consider the properties that such a measure

should have. Consider a soft biometric system which measures height and weight; furthermore,
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assume all humans are uniformly and independently distributed in height between 100–200 cm

and weight between 100–200 lb. If a person’s features were completely stable and could be

measured with infinite accuracy, people could be uniquely identified from these measurements,

and the biometric features could be considered to yield infinite information. However, in reality,

repeated biometric measurements give different results due to measurement inaccuracies, and

to short- and long-term changes in the biometric features themselves. If this variability results

in an uncertainty of ± 5 cm and ±5 lb, one simple model would be to round each measure

to 105, 115, ..., 195. In this case, there are 10 × 10 equiprobable outcomes, and an information

content of log2(100) = 6.6 bits.

Such an analysis is intrinsically tied to a choice of biometric features. Thus, our approach

does not allow us to answer “how much information is in a fingerprint?”, but only “how much

information is in the position and angle data of fingerprint minutiae?”. Furthermore, for many

biometrics, it is not clear what the underlying features are. Face images, for example, can be

described by image basis features or landmark based features. To overcome this, we may choose

to calculate the information in all possible features. In the example, we may provide height in

inches as well as cm; however, in this case, a good measure of information must not increase

with such redundant data.

Based on the definition of introduced, this paper develops a mathematical framework to

measure biometric feature information for a given system and set of biometric features. In

practice, there are limited numbers of samples of each person, which makes our measure ill-

conditioned. In order to address this issue, we develop a stable algorithm based on a distribution

modeling and regularization. We then use this algorithm to analyze the biometric information

content of two different face recognition algorithms.

II. METHODS

In this section we develop an algorithm to calculate biometric information based on a set

of features, using the relative entropy measure [6]. We explain our method in the following

steps: 1) measure requirements, 2) relative entropy of biometric features, 3) Gaussian models

for biometric features and relative entropy calculations, 4) regularization methods for degenerate

features, 5) regularization methods for insufficient data.
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A. Requirements for biometric feature information

In order to elaborate the requirements that a good measure of biometric feature information

must have, we consider system that measures height and weight. These values differ within the

global population, but also vary for a given individual, both due to variations in the features

themselves and to measurement inaccuracies. We now wish to consider the properties a measure

of biometric feature information should have:

1) If an intra-person distribution p is exactly equal to the inter-person q distribution, then

there is no information to distinguish a person, and biometric feature information is zero.

2) As the feature measurement becomes more accurate (less variability), then it is easier

to distinguish someone in the population and the biometric information increases (this

criterion may appear counterintuitive, but a biometric system is being evaluated, not the

raw feature values).

3) If a person has unusual feature values (i.e. far from the population mean), they become

more distinguishable, and their biometric feature information will be larger.

4) The biometric information of uncorrelated features should be the sum of the biometric

information of each individual feature.

5) Features that are unrelated to identity should not increase biometric information. For

example, if a biometric system accurately measured the direction a person was facing,

information on identity would be unchanged.

6) Correlated features such as height and weight are less informative. In an extreme example

consider the height in inches and in cm. Clearly, these two features are no more informative

than a single value.

Based on this definition, the most appropriate information theoretic measure for the biometric

feature information is the relative entropy (D(p‖q)) [6] between the intra- (p(x)) and inter-person

(q(x)) biometric feature distributions. D(p‖q), or the Kullback-Leibler distance, is defined to be

the “extra bits” of information needed to represent p(x) with respect to q(x). D(p‖q) is defined

to be

D(p‖q) =

∫

x

p(x)log2
p(x)

q(x)
dx (1)

where the integral is over all feature dimensions, x. p(x) is the probability mass function or

distribution of features of an individual and q(x) is the overall population distribution. A comment
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on notation: we use p to refer to both an individual person, and the distribution of the person’s

features, while q represents the population and the distribution of its features.

This measure can be motivated as follows: the relative entropy, D(p‖q), is the extra information

required to describe a distribution p(x) based on an assumed distribution q(x) [6]. D(p‖q) differs

from the entropy, H(p), which is the information required, on average, to describe features x

distributed as p(x). H is not in itself an appropriate measure for biometric feature information,

since it does not account the extent to which each feature can identify a person p in a population

q. An example of a feature unrelated to identity is the direction a person is facing. Measuring

this quantity will increase H of a feature set, but not increase its ability to identify a person. The

measure D(p‖q) corresponds to the requirements: given a knowledge of the population feature

distribution q, the information in a biometric feature set allows us to describe a particular person

p.

B. Distribution modeling

In a generic biometric system, F biometric features are measured, to create a biometric feature

vector x (F×1) for each person. For person p, we have Np features samples, while we have

Nq samples for the population. For convenience of notation, we sort p’s measurements to be the

first grouping of the population. Defining x as an instance of random variable X , we calculate

the population feature mean µq

µq = E
q

[X] =
1

Nq

Nq∑
i=1

xi (2)

where the feature mean of person p, µp, is defined analogously, replacing q by p. The population

feature covariance Σq is

Σq = E
q

[
(X − µq)

t(X − µq)
]

=
1

Nq − 1

Nq∑
i=1

(xi − µq)
t(xi − µq) (3)

where the feature correlation of person p. The individuals feature convariance, Σp, is again

defined analogously.

Features are calculated from a set of Nq images using different component analysis methods

such as Principal Component Analysis (PCA, also referred to as Eigenface features) [12][21] and

Fisher linear discriminant (FLD) [13]. µp and µq are F×1 vectors of the population and individual
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mean distributions, while Σp and Σq are F×F matrices of the individual and population

covariance matrices.

One important general difficulty with direct information theoretic measures is that of data

availability. Distributions are difficult to estimate accurately, especially at the tails; and yet

log2 (p(x)/q(x)) will give large absolute values for small p(x) or q(x). Instead, it is typical to

fit data to a model with a small number of parameters. The Gaussian distribution is the most

common model; it is often a good reflection of the real world distributions, and is analytically

solvable in entropy integrals. Another important property of the Gaussian is that it gives the

maximum entropy for a given standard deviation, allowing such models to be used to give an

upper bound to entropy values. Based on the Gaussian model, which seems to be the simplest

and appropriate for p and q, we write:

p(x) =
1√|2πΣp|

exp

(
−1

2

(
x− µp

)t
Σp

−1
(
x− µp

))
(4)

q(x) =
1√|2πΣq|

exp

(
−1

2

(
x− µq

)t
Σq

−1
(
x− µq

))
(5)

From which we can calculate D(p‖q).

D(p‖q) =

∫
p(x) (log2p(x)− log2q(x)) dx (6)

= −k

(
ln|2πΣp| − ln|2πΣq|+ 1− E

p

[(
x− µq

)t
Σq

−1
(
x− µq

)])
(7)

= k

(
ln
|2πΣq|
|2πΣp| + trace

(
(Σp + T)Σq

−1 − I
))

(8)

where T = (µp − µq)
t(µp − µq) and k = log2

√
e.

This expression calculates the relative entropy in bits for Gaussian distributions p(x) and

q(x). This expression corresponds to most of the desired requirements for a biometric feature

information measure introduced in the previous section:

1) If person’s feature distribution matches the population, p = q; this yields D(p‖q) = 0, as

required.

2) As feature measurements improve, the covariance values, Σp, will decrease, resulting in a

reduction in |Σp|, and an increase in D(p‖q).
3) If a person has feature values far from the population mean, T will be larger, resulting in

an larger value of D(p‖q).
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4) Combinations of uncorrelated feature vectors yield the sum of the individual D(p‖q) mea-

sures. Thus, for uncorrelated features f1 and f2, where {f1, f2} represents concatenation

of the feature vectors, D(p(f1)‖q(f1)) + D(p(f2)‖q(f2)) = D(p({f1, f2})‖q({f1, f2}))
5) Addition of features uncorrelated to identity will not change D(p‖q). Such a feature will

have an identical distribution in p and q. If U is the set of such uncorrelated features,

[Σp]ij = [Σq]ij = 0 for i or j ∈ U , and i 6= j, while [Σp]ii = [Σq]ii and [µq]i = [µp]i.

Under these conditions, D(p‖q) will be identical to its value when excluding the features

in U . One way to understand this criterion is that if the distributions for q and p differ for

features in U , then those features can be used as a biometric to help identify a person.

6) Correlated features are less informative than uncorrelated ones. Such features will decrease

the condition number (and thus the determinant) of both Σp and Σq. This will decrease

the accuracy of the measure D(p‖q). In the extreme case of perfectly correlated features,

Σp becomes singular with a zero determinant and D(p‖q) is undefined. Thus, our measure

is inadequate in this case. In the next section, we develop an algorithm to deal with this

effect.

C. Regularization Methods for degenerate features

In order to guard against numerical instability in our measures, we wish to extract a mutually

independent set of G “important” features (G ≤ F ). To do this, we use the principal component

analysis (PCA) [10][12] to generate a mapping (Ut : X → Y ), from the original biometric

features X (F × 1) to a new feature space Y of size G× 1. The PCA may be calculated from

a Singular Value Decomposition (SVD) [3] of the feature covariance matrix, such that

USqU
t = svd(cov(X)) = svd(Σq) (9)

Since Σq is positive definite, U is orthonormal and Sq is diagonal. We choose to perform the

PCA on the population distribution q, rather than p, since q is based on far more data, and is

therefore likely to be a more reliable estimate. The values of Sq indicate the significance of

each feature in PCA space. A feature j, with small [Sq]j,j will have very little effect on the

overall biometric feature information. We use this analysis, in order to regularize Σq, and to

reject degenerate features by truncating the SVD. We select a truncation threshold of j where

[Sq]j,j < 10−10[Sq]1,1. Based on this threshold, Sq is truncated to be G×G, and U is truncated
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to F × G. Using the basis U calculated from the population, we decompose the individual’s

covariance into feature space Y:

Sp = UtΣpU (10)

where Sp is not necessarily a diagonal matrix. However, since p and q describe somewhat similar

data, we expect Sp to have a strong diagonal component, as seen in Fig. 4.

Based on this regularization scheme, (8) may be rewritten in the PCA space as:

D(p‖q) = k
(
β + trace U

(
(Sp + St)Sq

−1 − I
)
Ut

)
(11)

where β = ln |Sq |
|Sp|

and St = UtTU

D. Regularization Methods for insufficient data

The expression developed in the previous section solves the problem of ill-poseness of Σq.

However, Σp may still be singular in the common circumstance in which only a small number

of samples of each individual are available. Given Np images of an individual from which G

features are calculated, Σp will be singular if G ≥ Np, which will result in D(p‖q) diverging

to ∞. In practice, this is a common occurrence, since most biometric systems calculate many

hundreds of features, and there are only rarely more then ten of samples of each person. In order

to address this issue, we develop an estimate which may act as a lower bound. In order to do

this, we make the following assumptions:

1) Estimates of feature variances are valid [Sp]i,i for all i.

2) Estimates of feature covariances [Sp]i,j for i 6= j are only valid for the most important L

features, where L < Np.

Features which are not considered valid based on these assumptions, are set to zero by multiplying

Sq by a mask M, where

M =





1, if i = j or (i < L and j < L);

0, otherwise
(12)

Using (12), [Sp]i,j = (Mi,j)[U
tΣpU]i,j .

This expression regularizes the intra-person covariance, Σp, and assures that D(p‖q) does

not diverge. To clarify the effect of this regularization on D(p‖q), we note that intra-feature
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covariances will decrease |Σp| toward zero, leading a differential entropy estimate diverging to∞.

We thus consider this regularization strategy to generate a lower bound on the biometric feature

information. The selection of L is a compromise between using all available measurements (by

using large L) and avoiding numerical instability when Sp is close to singular (by using small

L).

E. Average information of a biometric system

This section has developed a measure of biometric feature information content of a biometric

feature representation of a single individual with respect to the feature distribution of the

population. As discussed, the biometric feature information will vary between people; those

with feature values further from the mean have larger biometric feature information. In order to

use this approach to measure the biometric feature information content of a biometric system,

we calculate the average biometric feature information for each individual in the population

(weighted by the probability of needing to identify that person, if appropriate).

III. FACE RECOGNITION

Fig. 1. An example of PCA (Eigenface) face features. From left to right, PCA features number 2, 5, 25, 60 are shown. The

PCA features are othonormal and fit the data in a least squares sense.

Information in a feature representation of faces is calculated using our described method for

different individuals. In order to test our algorithm, it is necessary to have multiple images of

the same individual.For this reason, using the Aberdeen face database [4], we chose 18 frontal

images of 16 persons, from which we calculate the PCA (eigenface) features using the algorithm

of [12] and the FLD face features components using the algorithm described in [24]. Initially,

all face images were registered by rotation and scaling to have eye positions at (50, 90) and
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Fig. 2. An example of FLD face features. From left to right, FLD features number 2, 5, 25, 60 are shown. FLD attempts to

maximize class separation while minimizing the within class scatter.

(100, 90). Images were then cropped to 150 × 200 pixels and histogram equalized to cover

the intensity range 0–255. The same set of operations is applied to all images using the same

thresholds. This results with the same effect on all images when computing the biometric feature

information.

The feature decomposition process was conducted on 18 images of each of 16 persons,

giving 288 total images. For PCA and Fisher feature decompositions, 288 seperate vectors were

computed, and the most significant 100 features used for subsequent analysis. Fig. 1 and Fig. 2

illustrate PCA and FLD features, respectively. From this, D(p‖q) is computed for each of 16

persons using (11), which assumes that p and q have Gaussian distributions. In order to test the

validity of the Gaussian model for our data, we use the following normality tests:

• Kolmogorov-Smirnov test: compares the distributions of values in the two data vectors X1

and X2, where X1 represents random samples from the underlying distribution and X2

follows an ideal Gaussian with zero mean and variance. The null hypothesis is that X1 and

X2 are drawn from the same continuous normal distribution. We reject the null hypothesis

at p < 0.01.

• The Lilliefors test [5]: evaluates the hypothesis that x has a normal distribution with

unspecified mean and variance, against the alternative that x does not have a normal

distribution. This test compares the empirical distribution of X with a normal distribution

having the same mean and variance as X . We reject the null hypothesis at p < 0.01.

Using these tests, on average 89% of the marginal distribution of all the FLD and PCA

computed features is normally distributed.
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Fig. 3. Biometric information as a function of feature number (circles) for (A) PCA (Eigenface) and (B) FLD (bottom) face

feature decomposition.

Fig. 4. The regularized intra-person covariance matrix Sp showing dominant components along its diagonal. Since Σp represents

similar information to Σq it is reasonable to expect the matrices have similar eigenvectors, resulting in strong diagonal components

in Σp.

A. Biometric information calculations

After fitting the distributions of p(x) and q(x) to a Gaussian model, we initially analyse

the biometric feature information in each PCA and Fisher feature separately. PCA features are

shown in Fig. 3, and show a gradual decrease from an initial peak at feature 2. The form

of the curve can be understood from the nature of the PCA decomposition, which tends to
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Fig. 5. Biometric information (in bits) (y-axis) vs. the mask size (L) (x-axis) for each person. Each subfigure represents a

different value of Np (images of the same person): (A) 8, (B) 12, (C) 16 and (D) 18. The curves show that D(p‖q) diverges

as Σp becomes singular (L ≥ Np). The relative entropy increases with the size of the mask.

place higher frequency details in higher number features. Since noise tends to increase with

frequency, the biometric information in these higher numbered PCA features will be less. A

sum of biometric feature information over the first 100 PCA features gives 40.5 bits. This does

not assume statistical independence nor uncorrelatedness of PCA coefficients. Biometric feature

information calculated using FLD features seems to be similar to PCA features such that most

biometric feature information is computed for the most dominant fisherfaces.

In order to calculate D(p‖q) for all features, we are limited by the available information. Since

Np = 18 images are used to calculate the covariances, attempts to calculate D(p‖q) for more

than 17 features will fail, because Σp is singular. This effect is seen in the condition number

(ratio of the largest to the smallest singular value) which was 4.82×103 for Sq and 1.32×1020

for Sp. The relatively small condition number of Sq indicates that no features are degenerate for

PCA and FLD face recognition features. However, Sp is severely ill-conditioned. To overcome

this ill-conditioning, we introduced a regularization scheme based on a mask (equation 12) with

a cut-off point L. This scheme is motivated by the diagonal structure of Sp, as shown in Fig. 4.

To ensure convergence, the mask size L is set to a value smaller than Np.

We solve this singularity of (11) using a mask for Sp based on a parameter L. To further
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explore the effect of parameters L and Np, we artificially reduce the Np by randomly eliminating

some images from individuals. Results for D(p‖q) for PCA features for each person as a function

of L are shown in Fig. 5 for Np = 8, 12, 16 and 18. In these curves, we observe a “hockey

stick” shape. The relative entropy measure remains stable when L < Np, but if L ≥ Np, we

observe a dramatic increase in D(p‖q) as the algorithm approaches a singularity of Σp and the

ill-conditioning of Σq. When L < Np, D(p‖q) is stable with a lower and upper bounds between

35 to 50 bits. However, when L ≥ Np, D(p‖q) estimates start diverging and reach very large

values.

Clearly, points for L greater than the knee in the hockey stick do not represent accurate

estimates of D(p‖q). We also argue that when L approaches Np, the inherent ill-conditioning

of Σp makes the our algorithm over-estimate D(p‖q). On the other hand, small values of L

will under-estimate D(p‖q), since these values will mask inter-feature correlations. This effect

increases |Sp| as L decreases. However, the results suggest that this effect is minor, especially

in Fig. 4A and 4B, where the “base” of the hockey stick is more flat. In order to produce an

unique and stable estimate for D(p‖q), it is necessary to choose a compromise between these

effects. We recommend choosing L = 3
4
Np, since a larger value of L puts the estimate in an

unstable region of Fig. 4.

Using this algorithm and value of L, we calculate the overall biometric feature information

for different face recognition algorithms. For PCA features, the average D(p‖q) is 45.0 bits,

and for FLD features D(p‖q) is 37.0 bits. If PCA and FLD features are combined (making

200 features in all), average D(p‖q) is 55.6 bits. This combination of features illustrates that a

biometric fusion of similar features may offer very little information above that of the individual

underlying features. It is intially somewhat surprising that FLD feature information is measured

to be lower than that from PCA. This results may be understood becuase PCA features retain

unwanted information due to variations in facial expression and lighting, while FLD ”projects

away” variations in lighting and facial expression while maintaining the discriminant features. .

In addition, feature decomposition using independent component analysis (ICA) [10] was also

conducted on the same set of faces. ICA has the advantage that it does not only decorrelate

the signals but also reduces higher-order statistical dependencies in order to make the signals as

statistically independent as possible [14]. Since ICA maximizes non-gaussianity, it fits less well

to the assumptions of our model. For ICA features, an average of 39.0 bits was computed for
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D(p‖q).

IV. DISCUSSION

This paper has introduced a definition of biometric feature information and an algorithm to

measure it from a set of population and individual biometric features, as measured by a biometric

algorithm under test. Biometric information is defined in terms of the reduction in uncertainty

of the identity of a person resulting from a set of biometric feature measurements. Based on this

definition, we show that this concept matches the information theoretic concept of relative entropy

D(p‖q), where p is the probability distribution of the persons’s features, and q is the distribution

of features of the population. Examples of its application were shown for two different face

recognition algorithms based on PCA (Eigenface) and FLD feature decompositions. Clearly, the

framework developed in this paper depends on accurate estimates of the population distributions

q. Developing a good estimate of the ”world model” is known to be a hard problem; in this

work, we use the typical approach of assuming our database is an adequate representation of

the population.

The result of our calculations (approximately 40 bits per face) is reasonable when compared

with previous analysis of face recognition accuracy. From the FRVT results, we extrapolate the

gallery size for an identification rate of 0.5 ([17], [18]). This is taken to be a rough model of

the population for which the algorithm can reduce the identity uncertainty to 50%. For the top

three algorithms, the gallery sizes were 1.67 × 108, 3.53 × 107, and 2.33 × 106, corresponding

to 27.3, 25.1, and 21.2 bits. This value is over half that calculated here, and is reasonable since

the FRVT database appears to be significantly more difficult than the one used here [4], and

current face recognition algorithms are not yet considered to be close to optimal since they

seem to use approximately 1/2 to 2/3 of the available feature information. Similarly, our work

on biometric encryption [1] seemed to suggest an upper limit of approximately 20 bits of key

into face images, using the algorithm of [20].

As an exploration of the implications of this work, an analogy can be made between a biometric

system and a traditional communication system in terms of information capacity [6]. The signal

source transmits one symbol from an alphabet; this corresponds to one person from a population

to be identified. The symbol is encoded and sent across a channel and is subject to channel noise;

similarly, biometric features from a person are measured, and are subject to variability due to
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noise in the measurement system and to inherent feature variability. Thus the biometric feature

measurement system corresponds to the communication channel. The communications system

receiver detects a signal and must decide which symbol was sent, corresponding to the role of

the biometrics identification process. In this context, D(p‖q) is the differential information of

a single signal, and the average D(p‖q), weighted by the probability of each signal p, is the

channel capacity. Based on this analogy, we can say that biometric feature information is the

channel capacity of a biometric measurement system.

In a general biometric system, the following issues associated with biometric features must

be considered:

• Feature distributions vary. Features, such as minutiae ridge angles may be uniformly dis-

tributed over 0–2π, while other features may be better modeled as Gaussian. In this paper,

all features are modeled as Gaussian. This is valid model for most PCA and FLD features,

but is not valid for any ICA features (since ICA is designed to maximize non-Gaussianity).

On the other hand, a Gaussian model may be considered to estimate an upper bound for

the entropy.

• Raw sample images need to be processed by alignment and scaling before features can

be measured. Any variability in registration will dramatically increase the variability in

measured features and decrease the biometric feature information measure.

• Feature dimensionality may not be constant. For example, the number of available minutiae

points varies. The method presented in this paper does not address this issue, since the

dimensions of p(x) and q(x) must be the same. Generalized Entropy measures exist which

may allow an extension of this approach to non-constant dimensional features.

It is interesting to note that the biometric entropy is larger for some faces. Fig. 5 shows a

range of biometric information (from 32 to 47 bits) for different individuals, which may help

explain why some people are potentially easier to recognize than others. This is perhaps some

evidence for the “biometrics zoo” hypothesis [8]. In order to explore this effect, we plot the

biometric feature information as a function of average feature variance for each person (Fig. 6).

A significant correlation (p < .01) is detected, indicating that features are less variable in those

subjects with higher biometric feature information.

While we have introduced a measure in the context of face recognition, we anticipate that such

a measure may help address many questions in biometrics technology, such as the following:
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Fig. 6. Average D(p‖q) in bits (y-axis) as a function of the mean feature variance (arbitrary units) (x-axis) for 16 different

persons. The mean feature variance is computed by summing all the diagonal components of Sp matrix for each person. The

correlation coefficient is −0.62, which is significant at p < 0.01.

• Uniqueness of biometric features: A common question is ”are fingerprints really unique?”.

While Pankanti et al. [16] have recently provided a sophisticated analysis of this problem

based on biometric feature distributions directly, a general approach based on information

content would help address this question for other biometric modalities.

• Inherent limits to biometric template size requirements. A maximum compression of bio-

metric features will be limited to the biometric feature information. This theoretical lower

limit may be of use for ID card applications with limited data density.

• Feasibility of biometric encryption: Proposed biometric encryption systems use biometric

data to generate keys [22], and thus the availability of biometric feature information lim-

its the security of cryptographic key generation. In fact, the original motivation for this

work was from Smith [9] who wanted to quantify the cryptographic security of biometric

encryption.

• Performance limits of biometric matchers: While some algorithms outperform others, it

clear that there are ultimate limits to error rates, based on the information available in the

biometric features. In this application, the biometric feature information is related to the

discrimination entropy [7].

• Biometric fusion: Systems which combine biometric features are well understood to offer

increased performance [19]. It may be possible to use the measure of biometric feature
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information to quantify whether a given combination of features offers any advantage, or

whether the fused features are largely redundant. The example of fusion of FLD and PCA

(200 features) given here clearly falls into the latter category, since it does not necessarily

offer double the amount of information.

• Novel biometric features: Many novel biometric features have been suggested, but it is often

unclear whether a given feature offers much in the way of identifiable information. Biometric

information measurement may offer a way to validate the potential of such features.

• Privacy protection: It would be useful to quantify the threat to privacy posed by the release

of biometric feature information, and also to be able to quantify the value of technologies

to preserve privacy, such as algorithms to de-identify face images [15].
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