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Abstract: We develop a multiresolution approach to the problem of polygonal curve approximation. We show 

theoretically and experimentally that, if the simplification algorithm A used between any two successive levels 

of resolution satisfies some conditions, the multiresolution algorithm MR will have a complexity lower than the 

complexity of A. In particular, we show that if A has a O(N
2
/K) complexity (the complexity of a reduced search 

dynamic solution approach), where N and K are respectively the initial and the final number of segments, the 

complexity of MR is in O(N).We experimentally compare the outcomes of MR with those of the optimal “full 

search” dynamic programming solution and of classical merge and split approaches. The experimental 

evaluations confirm the theoretical derivations and show that the proposed approach evaluated on 2D coastal 

maps either shows a lower complexity or provides polygonal approximations closer to the initial curves. 

Keywords: Polygonal approximation; Dynamic programming; Multiresolution;  

1. Introduction 

Approximation of multi dimensional discrete curves has been widely studied essentially to 

speed up data processing required by resource demanding applications such as Computer 

Vision, Computer Graphics, Geographic Information Systems and Digital Cartography, Data 

Compression or Time Series Data Mining. For polygonal approximation of discrete curves, 

the problem can be informally stated as follows: given a digitized curve X of N ≥ 2 ordered 

samples, find K dominant samples among them that define a sequence of connected 

segments which most closely approximates the original curve. This problem is known as the 

min-ε problem. Numerous algorithms have been proposed for more than thirty years to solve 

efficiently this optimization problem. Most of them belong either to graph-theoretic 

approaches (Imai and Iri, 1986, 1988; Melkman and O’Rourke, 1988; Chan and Chin, 1996; 

Zhu, and Seneviratne, 1997; Chen and Daescu, 1998; Katsaggelos et al., 1998), dynamic 
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programming (Perez and Vidal, 1994; Salotti, 2001; Horng, 2002, Kolesnikov et al., 2003, 

2004) or to heuristic approaches (Douglas & Peucker, 1973; Pratt & Fink, 2002; Debled-

Rennesson and Reveillès, 2003; Charbonnier  al., 2004).  This paper focuses on polygonal 

approximation of multidimensional curves using multiresolution. Our concern is the design 

of an algorithm that, starting from the finest resolution level, finds iteratively min-ε 

polygonal approximations for coarser resolution levels, exploiting at the any level the 

approximating segments obtained at the previous (finer) resolution level. In theory, such 

multiresolution approximation can exploit any polygonal simplification methods between 

two successive levels of resolution. Nevertheless, the effectiveness and efficiency of such 

approach is not guaranteed. The aim of this paper is to study the conditions required for 

efficiency and effectiveness of the multiresolution approach. 

The first part of the paper addresses a complexity analysis that sketches conditions for the 

efficiency of a “top-down” multiresolution approach. Some argumentation is also provided 

to outline the conditions for effectiveness. A proposal for a simple multiresolution algorithm 

that fulfils the previous conditions is then proposed. 

The second part of the paper addresses the evaluation of the proposed algorithm through 

experimentations that compare the efficiency and effectiveness of the multiresolution 

approach with heuristic and dynamic programming solutions.      

2. A Multi Resolution approach to Polygonal Curve 

Approximation (MR algorithm) 

Basically, the idea behind the multiresolution approach to polygonal curve simplification 

is to successively re-approximate previous approximations obtained by using some given 

simplification algorithm, this process being initiated from an original discrete time series. 

Following (Kolesnikov & al. 2004), we take a sequence of polygonal curves {X0, X1, X2,…, 
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Xr} as a multiresolution (multiscale) approximation of a N-vertex input curve X, if the set of 

curves {Xi}satisfies the following conditions:  

i) A polygonal curve Xi is an approximation of the curve X for a given number of 

segments Ki (min-ε problem) or error tolerance εi (min-# problem), where i is a 

resolution level (i=0,1,2,…, r). 

ii) The set of vertices of curve Xi for resolution level i is a subset of vertices of curve Xi-1 

for the previous (higher) resolution level (i-1). The lowest resolution level r is 

represented by the coarsest approximation of X. The highest resolution level i=0 is 

represented by the most detailed approximation (namely the original curve X0=X) with 

the largest number of segments K0 =N. (N=K0 > K1 > K2 >…> Kr) or smallest error 

tolerance ε0=0 for some distance measure (e.g. L2) (ε0<ε1<ε2<…<εr). 

 

Thus, an approximation curve Xi is either obtained by inserting new points into the 

approximation curve Xi+1 (bottom-up approach), or, conversely, Xi+1 is obtained by deleting 

points from the approximation curve Xi (top-down approach). These two variants have led to 

the development of two very popular heuristic approaches: respectively SPLIT and MERGE 

methods. In the SPLIT approach, an iterative mechanism splits the input curve into smaller 

and smaller segments until the maximum deviation is smaller than a given error tolerance ε 

(min-# problem), or the number of linear segments equals to the given Ki (min-ε problem) 

for the current resolution level i. A famous SPLIT method is the Douglas-Peucker algorithm 

(Douglas and Peucker, 1973); this algorithm is known to have a N)O(K ⋅ complexity; it has 

been used for multiresolution approximation in (Le Buhan Jordan & al., 1998, Buttenfield, 

2002) and in (Kolesnikov & al. 2004) that developed the optimal split algorithm (OSA).  

In the MERGE approach (Pikaz and Dinstein, 1995, Visvalingam and Whyatt 1993), the 

polygonal approximation is performed by using a cost function that determines sequential 

elimination of the vertices with the smallest cost value, while the two adjacent segments of 
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the eliminated vertex are merged into one segment. The approximation curve Xi is obtained 

by discarding vertices from the curve Xi-1 until the desired number of vertices Ki (min-ε 

problem) is reached. This Merge approach is known to have a O(N⋅log(N)) complexity.  

2.1. Complexity of multiresolution approach 

We address in this section the efficiency issue of the multiresolution approach 

comparatively to the complexity of an algorithm that provides the solution in a single step. 

Let T  be the complexity of an algorithm A  that simplifies a polygonal curve X having N 

segments into a polygonal curve having K segments (K<N). We suppose that  T  is a 

polynomial function of N and K, namely )( qp
KNO=T  where p and q are integers. For all 

N, 0<K<N and ρ in ]0;1[  there exists a natural number r  such that 
rr

NKN ρρ ≤<+1
. 

Given N, K<N and ρ, we construct the multiresolution {X0, X1, X2,…, Xr} of curve X such 

that NK
j

j ρ=  is the number of segments that compose Xj, the j
th

 nested polygonal 

approximation of X. 

 In this context, using algorithmA  during the first step, we obtain from an original curve 

(X) of size N a polygonal curve approximation (X1) having NK ρ=1  segments with 

complexity: )NO(ρ=)(ρρNO(N=)KO(N=T
q+pqqp

q

p

1
1  

Considering as a second step the simplification of the X1 polygonal curve seen as a 

polygonal curve having N1=K1 samples, still using algorithm A , we get a polygonal curve 

approximation X2 having Nρ=K 2

2  segments from the X1 curve with time complexity: 

)NO(ρ=)N)(ρO((ρ((=))(K)O((K=T q+p+pqpqp 2q2

212  

Iterating the process we get successively:  

)NO(ρ=)N)(ρN)O((ρ=))(K)O((K=T
q+p+qpqp 3q2p32

323  

By induction, it is easy to show that for all j in {1,..,r} we have : 

)NO(ρ=)N)(ρN)O((ρ=))(K)O((K=T
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The final iteration - required to ensure that the last approximation has exactly K segments 

– is performed using algorithm A  with the following complexity: 
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Finally, from the original time series of size N, we get after r+1 iterations of the previous 

process a polygonal approximation having K segments with time complexity: 

)ρNO(ρ+T=)NO(ρ+T=T
r

=j

q)+)(p(jq+pq
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In general, the multiresolution approach does not offer computation complexity reduction 

comparatively to the complexity of the algorithm A  applied in a single step. This is due to 

the presence of term 
qp

N
+

 in the polynomial function MRT . But for some specific cases, 

MRT simplifies nicely as shown below. 

From formula (1), we see that if  0≤q ,  
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hence, if 0≠+ qp  and q<0, we note that MRT is upper bounded by a polynomial function 

of N that does not depend upon r, the number of iterations required by the multiresolution 

algorithm. Furthermore, if 0q and 0 <>+ qp , the multiresolution algorithm brings a 

complexity reduction of order
q

N
−

. 

As an example, for 1 and 2 -qp == , we get the upper bound: 
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Since this upper bound is independent from K and r, we show that the time complexity of 

the multiresolution approach is O(N). This lower bound is minimized for 21 /=ρ , i.e. when 

at each step the number of segments is halved. 

It is not straightforward to generalize this result for non polynomial complexities. 

Nevertheless if the complexity of A  is in O(f(N)), where f is independent from K, (e.g. 

f(N)=NLog(N)) one cannot expect to reduce this complexity using multiresolution. 

 

2.2. Effectiveness considerations  

There are two sources of error increasing in multiresolution approximation in comparison 

with polygonal approximation obtained in a single step:  

1.  In multiresolution approximation, vertices for the next level of resolution should 

be selected among the vertices available at the current level of resolution. This 

constraint does not exist for single step approximation. 

2. The non-optimality of algorithm used to solve min-ε polygonal approximation 

produces error propagation inside multiresolution approximation. 

We cannot reduce inaccuracies related to the first source of errors, but if we use near-to-

optimal algorithm to solve min-ε problems between successive levels of resolution, one can 

expect to approach also near-to-optimal solutions for multiresolution approximation.  

2.3 Conditions for optimizing the (Efficiency.Effectiveness) product 

The condition to maximize the efficiency gain is to select an algorithm A  that solves 

min-ε problems in one step with a complexity )KO(N=T qp where 0 and 0 <q>q+p : In 

that case, the complexity gain is 
q

N
−

. 

The condition to maximize the effectiveness or accuracy of the multiresolution algorithm 

is to select the optimal algorithm A  that solves optimally the min-ε problem.  
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As we know, the optimal algorithm (or the so-called FSDP : “Full Search Dynamic 

programming”) is the one proposed by (Perez and Vidal, 1994): it solves the min-ε problem 

with a complexity in )( 2
NKO ⋅  (p=2 and q=1). Unfortunately, the condition 0<q  is not 

satisfied since q=1. In the other hand, the near-to-optimal solution developed by 

(Kolesnikov and Fränti, 2003), the so-called “Reduced Search Dynamic Programming” 

(RSDP)  has a complexity in )()/( 122 −= KNOKNO  (p=2 and q=-1) as far as no 

reference solution is used: with this restriction, RSDP satisfies the conditions of a 

complexity gain for the multiresolution solution. If RSDP is selected as the algorithm A  

then the complexity of the multiresolution is in O(N) as stated by equation (3), whatever the 

decimation factor ρ is. Comparatively, the OSA multiresolution approache gives the coarsest 

approximation having K segments in /K)O(N
2

 if RSDP is selected to process the first 

step (OSA-RSDP). We experimentally verify this claim in the next section. Note that if a 

reference solution is used to bootstrap RSDP, an extra complexity cost is added. The 

referred methods and associated complexities are summarized in Table 1. 

 Bottom-up  Top-down Other 

Single-step SPLIT, N)O(K ⋅  MERGE, (N))O(N Log⋅  FSDP )NO(K 2⋅  

RSDP )O(N /K2
 

Multi-step OSA-RSDP, )O(N /K2
 MR-RSDP, O(N)   

TAB. 1 – Typology of methods for polygonal curve approximation and associated 

complexities. 

 

3. Experimentations and discussion 

To evaluate the quality of suboptimal algorithms, Rosin (1997) introduced a measure 

known as fidelity (F). It measures how good (or how bad) a given suboptimal approximation 

is in respect to the optimal approximation in terms of the approximation error: 
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E

E
F min.100= , where Emin is the approximation error of the optimal solution, and E is the 

approximation error of the given suboptimal solution. In practice, we will identify Emin to the 

error (the Euclidian distance between the original time series and the polygonal 

approximation) obtained using the ‘Full Search’ dynamic programming (FSDP) solution, 

namely the algorithm of Perez and Vidal (Perez and Vidal,1994).  

The MR algorithm we evaluate uses a simplified version of the RSDP algorithm for 

which the reduced search space is determined by a fixed size corridor β (Sakoe and Chiba, 

1978, Kolesnikov and Fränti, 2003, Marteau and Ménier, 2006) without using a reference 

solution.  This version of the RSDP is known to have a complexity in K)/O(N 2  (Horng, 

2002; Kolesnikov and Fränti, 2003). This ensures that the MR algorithm has a complexity of 

O(N) as shown in the previous section.   

The evaluation consists essentially in measuring the average fidelity and average 

processing time for various parameter settings (i.e. N, K, β, ρ) of the MR algorithm 

comparatively to other solutions (SPLIT, MERGE, FSDP). We have tested the MR algorithm 

on a dataset composed with ten 2D coastal maps extracted from the Western Europe data 

(FIG.1) available at the National Geophysical Data Center (NGDC, 2006).  

**** FIG. 1 around here **** 

 

FIG.2 shows the evolution of the average F measure as a function of K evaluated for the 

crudest approximation map given by MR (with β=4 and ρ= 1/2), Merge_L2 (MERGE), 

RSDP (with β=4) and Douglas Peucker (SPLIT).  

**** FIG. 2  around here **** 
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FIG.3 is a scatter plot that allows evaluating simultaneously the SPLIT, MERGE and MR 

methods along the average F and average Processing Time axes. Clearly, MR shows to be a 

compromise between processing speed and fidelity.   

  **** FIG. 3  around here **** 

 

FIG.4 is a scatter plot that gives the average F measure against the average processing 

time for the MR method when the decimation parameter ρ takes value into  {1/8, 1/4, 1/2, 

3/4, 7/8}. As theoretically expected, the processing time for MR is the lowest when ρ=1/2. 

Furthermore, the lower ρ, the better is F. The location of the RSDP, FSDP, SPLIT and 

MERGE methods are also provided.  

 

  **** FIG. 4  around here **** 

 

 

FIG.5 compares the average processing time of the tested algorithms: i) the optimal 

solution (FSDP), ii) the “Reduced Search” dynamic procedure with fixed size corridor 

solution (RSDP), iii) the multiresolution algorithm (MR), iv) the Douglas-Peucker algorithm 

(SPLIT) and v) the Merge_L2 (MERGE) algorithm. The average processing time is 

measured in micro-seconds spent while N increases and K remains unchanged (K=10) on a 

Pentium 4 processor running Linux. The scale used in FIG. 5 is logarithmic, so that all 

curves are almost linear with different slopes. The figure shows that the Douglas-Peucker  

processing time curve has almost the same slope than the MR processing time curve. As the 

Douglas-Peucker (SPLIT) algorithm is known to be N)O(K ⋅ , these two algorithms have 

linear processing time if K is maintained constant even though MR is more expensive, since 

the MR curve is above the SPLIT curve. FSDP and RSDP curves have the highest slopes, 

and as such exhibits a polynomial processing time as expected (FSDP complexity is in 

)NO(K 2⋅ and RSDP with fixed size corridor is in K)/O(N 2 . The MERGE processing time 
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curve has a slope in between FSDP and SPLIT curves as expected since MERGE complexity 

is known to be in (N))O(N Log⋅ . 

**** FIG.5 around here **** 

4. Conclusion 

We have explored multiresolution (MR) applied to the problem of simplifying a discrete 

curve using nested polygonal approximations. It consists in iteratively applying a 

simplification algorithm to get the successive nested approximations, from the finest (the 

original curve) to the coarsest. We have shown both theoretically and practically that, when 

the simplification is based on a Reduced Search Dynamic Programming (RSDP) algorithm, 

MR has a linear time complexity O(N), whatever the chosen number of resolution levels. 

This solution is suboptimal but maintains partial optimality between each resolution levels. 

It offers good approximating solutions when real time and storage space are issues, namely 

each time the optimal solution cannot be calculated due to the size of N. For all tests we 

have performed, the quality of the resulting approximation is significantly better than the 

quality of well known heuristic approaches (the Douglas-Peucker splitting approach or the 

merge approach that have respectively a complexity in N)O(K ⋅  and (N))O(N Log⋅ : the 

gain on the quality measure F varies from 30% to 50 % according to the tuning of 

parameters. As the tests suggest, MR associated to RSDP provides the best polygonal 

approximating algorithm having complexity in O(N) . The experimental results give some 

highlights for the choice of the parameters, i.e. ρ and β, that could be tuned according to the 

task. Furthermore, the multiresolution aspect of the method allows managing simultaneously 

various resolution levels, a functionality that could be very useful to speed up time series 

information retrieval tasks.  
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FIG. 1 –Western Europe map from which the testing dataset containing 10 disjoint 2D time series has been 

constructed. 
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FIG. 2 – Average of the fidelity measure (F) as a function of K evaluated for the crudest approximation map 

given by the MR with β=4 and ρ=.5( MR, diamond, red), Merge_L2 (MERGE, square, green) , Douglas 

Peucker (SPLIT, triangle, blue) and RSDP with fixed size corridor and β=4 (RSDP, right-left triangle, grey).  

For all methods, N is constant equal to 4096. 
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crudest approximation map given by the MR with β=4 and ρ=.5( MR, diamond, red), Merge_L2 (MERGE, 

square, green) and Douglas Peucker (SPLIT, triangle, blue). Each curve is labelled with a K value. For all 

methods, N is constant equal to 4096. 
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FIG. 4 – Average of the fidelity measure (F) as a function of the average processing time evaluated for the 

crudest approximation map given by the MR ( MR, diamond, red), for K=32, β=4 and ρ in {1/8, 1/4, 1/2, 3/4, 

7/8}. Merge_L2 (MERGE, square, green), Douglas Peucker (SPLIT, triangle, blue), “Full Search” (FSDP, up-

down triangle, black) and RSDP  “Reduced Search” (FSDP, left-right triangle, grey) evaluated for K=32 and 

N=4096. 
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FIG. 5 –Comparison of processing time (expressed in micro seconds) on a logarithmic scale when N varies for 

Douglas-Peucker algorithm (SPLIT, triangle, blue), Multi Resolution algorithm (MR, diamond, red), Merge_L2 

(MERGE, square, green) and “Full Search” dynamic programming procedure (FSDP, up-down triangles, 

black) and “Reduced Search” dynamic programming procedure  with fixed size corridor and alpha=4 (RSDP, 

right-left triangle, grey). Here K = 10 for all methods, and ρ=.5, β=4 for MR and RSDP. 


