Skip to main content
Log in

A survey of graph edit distance

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Inexact graph matching has been one of the significant research foci in the area of pattern analysis. As an important way to measure the similarity between pairwise graphs error-tolerantly, graph edit distance (GED) is the base of inexact graph matching. The research advance of GED is surveyed in order to provide a review of the existing literatures and offer some insights into the studies of GED. Since graphs may be attributed or non-attributed and the definition of costs for edit operations is various, the existing GED algorithms are categorized according to these two factors and described in detail. After these algorithms are analyzed and their limitations are identified, several promising directions for further research are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Umeyama S (1988) An eigendecomposition approach to weighted graph matching problems. IEEE Trans Pattern Anal Mach Intell 10(5):695–703

    Article  MATH  Google Scholar 

  2. Bunke H (2000) Recent developments in graph matching. In: Proceedings of IEEE international conference on pattern recognition, Barcelona, pp 117–124

  3. Caelli T, Kosinov S (2004) An eigenspace projection clustering method for inexact graph matching. IEEE Trans Pattern Anal Mach Intell 26(4):515–519

    Article  Google Scholar 

  4. Cross ADJ, Wilson RC, Hancock ER (1997) Inexact graph matching using genetic search. Pattern Recognit 30(7):953–970

    Article  Google Scholar 

  5. Wagner RA, Fischer MJ (1974) The string-to-string correction problem. J ACM 21(1):168–173

    Article  MATH  MathSciNet  Google Scholar 

  6. Pavlidis JRT (1994) A shape analysis model with applications to a character recognition system. IEEE Trans Pattern Anal Mach Intell 16(4):393–404

    Article  Google Scholar 

  7. Wang Y-K, Fan K-C, Horng J-T (1997) Genetic-based search for error-correcting graph isomorphism. IEEE Trans Syst Man Cybern B Cybern 27(4):588–597

    Article  Google Scholar 

  8. Sebastian TB, Klien P, Kimia BB (2004) Recognition of shapes by editing their shock graphs. IEEE Trans Pattern Anal Mach Intell 26(5):550–571

    Article  Google Scholar 

  9. He L, Han CY, Wee WG (2006) Object recognition and recovery by skeleton graph matching. In: Proceedings of IEEE international conference on multimedia and expo, Toronto, pp 993–996

  10. Shearer K, Bunke H, Venkatesh S (2001) Video indexing and similarity retrieval by largest common subgraph detection using decision trees. Pattern Recognit 34(5):1075–1091

    Article  MATH  Google Scholar 

  11. Lee J (2006) A graph-based approach for modeling and indexing video data. In: Proceedings of IEEE international symposium on multimedia, San Diego, pp 348–355

  12. Tao D, Tang X (2004) Nonparametric discriminant analysis in relevance feedback for content-based image retrieval. In: Proceedings of IEEE international conference on pattern recognition, Cambridge, pp 1013–1016

  13. Tao D, Tang X, Li X et al (2006) Kernel direct biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm. IEEE Trans Multimedia 8(4):716–727

    Article  Google Scholar 

  14. Tao D, Tang X, Li X (2008) Which components are important for interactive image searching? IEEE Trans Circuits Syst Video Technol 18(1):1–11

    Article  Google Scholar 

  15. Christmas WJ, Kittler J, Petrou M (1995) Structural matching in computer vision using probabilistic relaxation. IEEE Trans Pattern Anal Mach Intell 17(8):749–764

    Article  Google Scholar 

  16. Gao X, Zhong J, Tao D et al (2008) Local face sketch synthesis learning. Neurocomputing 71(10–12):1921–1930

    Article  Google Scholar 

  17. Sanfeliu A, Fu KS (1983) A distance measure between attributed relational graphs for pattern recognition. IEEE Trans Syst Man Cybern 13(3):353–362

    MATH  Google Scholar 

  18. Messmer BT, Bunke H (1994) Efficient error-tolerant subgraph isomorphism detection. Shape Struct Pattern Recognit:231–240

  19. Messmer BT, Bunke H (1998) A new algorithm for error-tolerant subgraph isomorphism detection. IEEE Trans Pattern Anal Mach Intell 20(5):493–504

    Article  Google Scholar 

  20. Bunke H (1997) On a relation between graph edit distance and maximum common subgraph. Pattern Recognit Lett 18(8):689–694

    Article  MathSciNet  Google Scholar 

  21. Bunke H (1999) Error correcting graph matching: on the influence of the underlying cost function. IEEE Trans Pattern Anal Mach Intell 21(9):917–922

    Article  Google Scholar 

  22. Shasha D, Zhang K (1989) Simple fast algorithms for the editing distance between trees and related problems. SIAM J Comput 18(6):1245–1262

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang K (1996) A constrained edit distance between unordered labeled trees. Algorithmica 15(3):205–222

    Article  MATH  MathSciNet  Google Scholar 

  24. Myers R, Wilson RC, Hancock ER (2000) Bayesian graph edit distance. IEEE Trans Pattern Anal Mach Intell 22(6):628–635

    Article  Google Scholar 

  25. Wei J (2004) Markov edit distance. IEEE Trans Pattern Anal Mach Intell 26(3):311–321

    Article  Google Scholar 

  26. Marzal A, Vidal E (1993) Computation of normalized edit distance and applications. IEEE Trans Pattern Anal Mach Intell 15(9):926–932

    Article  Google Scholar 

  27. Myers R, Wilson RC, Hancock ER (1998) Efficient relational matching with local edit distance. In: Proceedings of IEEE international conference on pattern recognition, Brisbane, pp 1711–1714

  28. Wilson RC, Hancock ER (1997) Structural matching by discrete relaxation. IEEE Trans Pattern Anal Mach Intell 19(6):634–648

    Article  Google Scholar 

  29. Levenshtein V (1966) Binary codes capable of correcting deletions, insertions, and reversals. Sov Phys Dokl 10(8):707–710

    MathSciNet  Google Scholar 

  30. Neuhaus M, Bunke H (2004) A probabilistic approach to learning costs for graph edit distance. In: Proceedings of IEEE international conference on pattern recognition, Cambridge, pp 389–393

  31. Robles-Kelly A, Hancock ER (2005) Graph edit distance from spectral seriation. IEEE Trans Pattern Anal Mach Intell 27(3):365–378

    Article  Google Scholar 

  32. Xiao B, Gao X, Tao D et al (2008) HMM-based graph edit distance for image indexing. Int J Imag Syst Tech 18(2–3):209–218

    Article  Google Scholar 

  33. Gao X, Xiao B, Tao D et al (2008) Image categorization: graph edit distance + edge direction histogram. Pattern Recognit 47(10):3179–3191

    Article  Google Scholar 

  34. Neuhaus M, Bunke H (2005) Self-organizing maps for learning the edit costs in graph matching. IEEE Trans Syst Man Cybern B Cybern 35(3):503–514

    Article  Google Scholar 

  35. Robles-Kelly A, Hancock ER (2004) String edit distance, random walks and graph matching. Int J Pattern Recogn Artif Intell 18(3):315–327

    Article  Google Scholar 

  36. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39(1):1–38

    MATH  MathSciNet  Google Scholar 

  37. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  MATH  MathSciNet  Google Scholar 

  38. Azcarraga AP, Hsieh M-H, Pan SL et al (2005) Extracting salient dimensions for automatic SOM labeling. IEEE Trans Syst Man Cybern C Appl Rev 35(4):595–600

    Article  Google Scholar 

  39. Kohonen T (1995) Self organizing maps. Springer, New York

    Google Scholar 

  40. Bhattacharyya S, Dutta P, Maulik U (2007) Binary object extraction using bi-directional self-organizing neural network (BDSONN) architecture with fuzzy context sensitive thresholding. Pattern Anal Appl 10(4):345–360

    Article  MathSciNet  Google Scholar 

  41. Neuhaus M, Bunke H (2006) A convolution edit kernel for error-tolerant graph matching. In: Proceedings of IEEE international conference on pattern recognition, Hong Kong, pp 220–223

  42. Fernández M-L, Valiente G (2001) A graph distance metric combining maximum common subgraph and minimum common supergraph. Pattern Recognit Lett 22(6–7):753–758

    Article  MATH  Google Scholar 

  43. Justice D, Hero A (2006) A binary linear programming formulation of the graph edit distance. IEEE Trans Pattern Anal Mach Intell 28(8):1200–1214

    Article  Google Scholar 

  44. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1(2):224–227

    Article  Google Scholar 

  45. Dunn JC (1974) Well-separated clusters and optimal fuzzy partitions. J Cybern 4:95–104

    Article  MathSciNet  Google Scholar 

  46. Hubert LJ, Schultz JV (1976) Quadratic assignment as a general data analysis strategy. Br J Math Stat Psychol 29:190–241

    MATH  MathSciNet  Google Scholar 

  47. Goodman LA, Kruskal WH (1954) Measures of association for cross classification. J Am Stat Assoc 49:732–764

    Article  MATH  Google Scholar 

  48. Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1):1–27

    Article  MathSciNet  Google Scholar 

  49. Rand W (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850

    Article  Google Scholar 

  50. Jain A, Dubes R (1988) Algorithms for clustering data. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  51. Fowlkes EB, Mallows CL (1983) A method for comparing two hierarchical clusterings. J Am Stat Assoc 78:553–584

    Article  MATH  Google Scholar 

  52. Ristad E, Yianilos P (1998) Learning string edit distance. IEEE Trans Pattern Anal Mach Intell 20(5):522–532

    Article  Google Scholar 

  53. García V, Mollineda RA, Sánchez JS (2008) On the k-NN performance in a challenging scenario of imbalance and overlapping. Pattern Anal Appl 11(3–4):269–280

    Google Scholar 

  54. Neuhaus M, Bunke H (2005) Edit distance based kernel functions for attributed graph matching. In: Proceedings of 5th international workshop graph-based representations in pattern recognition, Poitiers, pp 352–361

  55. Artner TG, Flach P, Wrobel S (2003) On graph kernels: hardness results and efficient alternatives. In: Proceedings of 16th annual conference on learning theory, Washington, pp 129–143

  56. Saux BL, Bunke H (2005) Feature selection for graph-based image classifiers. In: Proceedings of 2nd Iberian conference on pattern recognition and image analysis, Estoril, pp 147–154

  57. Dunford-Shore B, Sulaman W, Feng B et al (2002) Klotho: biochemical compounds declarative database. http://www.biocheminfo.org/klotho/

  58. Yu H, Hancock ER (2006) String kernels for matching seriated graphs. In: Proceedings of IEEE international conference on pattern recognition, Hong Kong, pp 224–228

  59. Robles-Kelly A, Hancock ER (2003) Edit distance from graph spectra. In: Proceedings of IEEE international conference on computer vision, Nice, pp 234–241

  60. Qiu HJ, Hancock ER (2006) Graph matching and clustering using spectral partitions. Pattern Recognit 39(1):22–34

    Article  Google Scholar 

  61. Bille P (2005) A survey on tree edit distance and related problems. Theor Comput Sci 337(1–3):217–239

    Article  MATH  MathSciNet  Google Scholar 

  62. Torsello A, Robles-Kelly A, Hancock ER (2007) Discovering shape classes using tree edit-distance and pairwise clustering. Int J Comput Vis 72(3):259–285

    Article  Google Scholar 

  63. Torsello A, Hancock ER (2003) Computing approximate tree edit distance using relaxation labeling. Pattern Recognit Lett 24(8):1089–1097

    Article  MATH  Google Scholar 

  64. Torsello A, Hancock ER (2007) Graph embedding using tree edit-union. Pattern Recognit 40(5):1393–1405

    Article  MATH  Google Scholar 

  65. Torsello A, Hancock ER (2001) Efficiently computing weighted tree edit distance using relaxation labeling. In: Proceedings of energy minimization methods in computer vision and pattern recognition. Springer, Sophia Antipolis, pp 438–453

  66. Bunke H, Kandel A (2000) Mean and maximum common subgraph of two graphs. Pattern Recognit Lett 21(2):163–168

    Article  Google Scholar 

  67. Vision and Autonomous Systems Center’s Image Database. http://vasc.ri.cmu.edu//idb/html/motion/house/index.html

  68. INRIA-MOVI houses. http://www.inria.fr/recherche/equipes/movi.en.html

  69. Fujisawa K, Futakata Y, Kojima M et al (2008) Sdpa-m user’s manual. http://sdpa.is.titech.ac.jp/SDPA-M

  70. Columbia Object Image Library. http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php

  71. Torsello A, Robles-Kelly A, Hancock ER (2007) Discovering shape classes using tree edit-distance and pairwise clustering. Int J Comput Vis 72(3):259–285

    Article  Google Scholar 

Download references

Acknowledgments

We want to thank the helpful comments and suggestions from the anonymous reviewers. This research has been partially supported by National Science Foundation of China (60771068, 60702061, 60832005), the Open-End Fund of National Laboratory of Pattern Recognition in China and National Laboratory of Automatic Target Recognition, Shenzhen University, China, the Program for Changjiang Scholars and innovative Research Team in University of China (IRT0645).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Xiao, B., Tao, D. et al. A survey of graph edit distance. Pattern Anal Applic 13, 113–129 (2010). https://doi.org/10.1007/s10044-008-0141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-008-0141-y

Keywords

Navigation