Skip to main content
Log in

A system for 3D texture-based probabilistic object recognition and its applications

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This article presents a system for texture-based probabilistic classification and localisation of three-dimensional objects in two-dimensional digital images and discusses selected applications. In contrast to shape-based approaches, our texture-based method does not rely on object features extracted using image segmentation techniques. Rather, the objects are described by local feature vectors computed directly from image pixel values using the wavelet transform. Both gray level and colour images can be processed. In the training phase, object features are statistically modelled as normal density functions. In the recognition phase, the system classifies and localises objects in scenes with real heterogeneous backgrounds. Feature vectors are calculated and a maximisation algorithm compares the learned density functions with the extracted feature vectors and yields the classes and poses of objects found in the scene. Experiments carried out on a real dataset of over 40,000 images demonstrate the robustness of the system in terms of classification and localisation accuracy. Finally, two important real application scenarios are discussed, namely recognising museum exhibits from visitors’ own photographs and classification of metallography images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. i.e., Further decomposition of the signal with the wavelet transform is not possible.

  2. The difference between the mean grey level in the darkest and in the brightest image.

  3. Semantic- and content-based multimedia exploitation for European benefit. http://www.sculpteurweb.org.

  4. Cultural Heritage Information Personalisation. http://www.chip-project.org.

References

  1. Amit Y, Geman D, Fan X (2004) A coarse-to-fine strategy for multi-class shape detection. IEEE Trans Pattern Anal Mach Intell 26(12):1606–1621

    Article  Google Scholar 

  2. Aroyo L, Wang Y, Brussee R, Gorgels P, Rutledge L, Stash N (2007) Personalized museum experience: the Rijksmuseum use case. In: Proceedings of museums and the Web. San Francisco, USA

  3. Bentoutou Y, Taleb N, Chikr El Mezouar M, Taleb M, Jetto L (2002) An invariant approach for image registration in digital subtraction angiography. Pattern Recognit 35(12):2853–2865

    Article  MATH  Google Scholar 

  4. Chen H, Shimshoni I, Meer P (2004) Model based object recognition by robust information fusion. In: 17th international conference on pattern recognition. Cambridge, UK

  5. Cho S-J, Kim JH (2004) Bayesian network modeling of strokes and their relationships for on-line handwriting recognition. Pattern Recognit 37(2):253–264

    Article  MATH  Google Scholar 

  6. Fründ J, Gausemeier J, Matysczok C, Radkowski R (2004) Using augmented reality technology to support the automobile development. In: Shen W, Lin Z, Barthès J-PA, Li T (eds) 8th international conference on computer supported cooperative work in design. Springer, Xiamen, pp 289–298

  7. Gausemeier J, Grafe M, Matysczok C, Radkowski R, Krebs J, Oelschlaeger H (2005) Eine mobile augmented reality versuchsplattform zur untersuchung und evaluation von fahrzeugergonomien. In: Schulze T, Horton G, Preim B, Schlechtweg S (eds) Simulation und Visualisierung. SCS Publishing House e.V., Magdeburg, pp 185–194

  8. Goodall S, Lewis PH, Matrinez K, Sinclair PAS, Giorgini F, Addis MJ, Boniface MJ, Lahanier C, Stevenson J (2004) Sculpteur: multimedia retrieval for museums. In: Third international conference on image and video retrieval (CIVR 2004). Dublin, Ireland, pp 638–646

  9. Gross R, Matthews I, Baker S (2004) Appearance-based face recognition and light-fields. IEEE Trans Pattern Anal Mach Intell 26(4):449–465

    Article  Google Scholar 

  10. Grzegorzek M, Niemann H (2005) Statistical object recognition including color modeling. In: Kamel M, Campilho A (eds) 2nd international conference on image analysis and recognition. Lecture Notes in Computer Science, vol 3656. Toronto, Canada, Springer, Berlin, pp 481–489

  11. Grzegorzek M, Reinhold M, Niemann H (2005) Feature extraction with wavelet transformation for statistical object recognition. In: Kurzynski M, Puchala E, Wozniak M, Zolnierek A (eds) 4th international conference on computer recognition systems. Rydzyna, Poland, Springer, Berlin, pp 161–168

  12. Heigl B (2004) Plenoptic scene modeling from uncalibrated image sequences. Ibidem-Verlag, Stuttgart

    Google Scholar 

  13. Heutte L, Nosary A, Paquet T (2004) A multiple agent architecture for handwritten text recognition. Pattern Recognit 37(4):665–674

    Article  Google Scholar 

  14. Hornegger J (1996) Statistische Modellierung, Klassifikation und Lokalisation von Objekten. Shaker Verlag, Aachen

    Google Scholar 

  15. Jin Y, Geman S (2006) Context and hierarchy in a probabilistic image model. In : IEEE conference on computer vision and pattern recognition. New York, USA, pp 2145–2152

  16. Kerr J, Compton P (2003) Toward generic model-based object recognition by knowledge acquisition and machine learning. In: Proceedings of the eighteenth international joint conference on artificial intelligence. Acapulco, Mexico, pp 9–15

  17. Kumar A (2003) Neural network based detection of local textile defects. Pattern Recognit 36(7):1631–1644

    Article  Google Scholar 

  18. Latecki LJ, Lakaemper R, Wolter D (2005) Optimal partial shape similarity. Image Vis Comput J 23:227–236

    Article  Google Scholar 

  19. Leibe B, Schiele B (2003) Analyzing contour and appearance based methods for object categorization. In: IEEE conference on computer vision and pattern recognition. Madison, USA

  20. Li CH, Yuen PC (2002) Tongue image matching using color content. Pattern Recognit 35(2):407–419

    Article  MATH  Google Scholar 

  21. Liu TY, Tan TH, Chu YL (2006) The ubiquitous museum learning environment: concept, design, implementation, and a case study. In: Sixth international conference on advanced learning technologies. Kerkrade, The Netherlands, pp 989–991

  22. Lowe DG (1999) Object recognition from local scale-invariant fearures. In: Seventh international conference on computer vision (ICCV). Corfu, Greece, pp 1150–1157

  23. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  24. Mahamud S, Hebert M (2003) The optimal distance measure for object detection. In: IEEE conference on computer vision and pattern recognition. Madison, USA

  25. Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  MATH  Google Scholar 

  26. Murase H, Nayar SK (1995) Visual learning and recognition of 3-D objects from appearance. Int J Comput Vis 14(1):5–24

    Article  Google Scholar 

  27. Nene S, Nayar S, Murase H (1996) Columbia object image library (coil-100). Technical Report CUCS-006-96, Department for Computer Science, Columbia University

  28. Nene S, Nayar S, Murase H (1996) Columbia object image library (coil-20). Technical Report CUCS-005-96, Department for Computer Science, Columbia University

  29. Ngan HYT, Pang GKH, Yung SP, Ng MK (2005) Wavelet based methods on patterned fabric defect detection. Pattern Recognit 38(4):559–576

    Article  Google Scholar 

  30. Park CH, Park H (2005) Fingerprint classification using fast fourier transform and nonlinear discriminant analysis. Pattern Recognit 38(4):495–503

    Article  MATH  Google Scholar 

  31. Pontil M, Verri A (1998) Support vector machines for 3D object recognition. IEEE Trans Pattern Anal Mach Intell 20(6):637–646

    Article  Google Scholar 

  32. Pösl J (1999) Erscheinungsbasierte, statistische Objekterkennung. Shaker Verlag, Aachen

    Google Scholar 

  33. Praks P, Grzegorzek M, Moravec R, Valek L, Izquierdo E (2007) Wavelet and eigen-space feature extraction for classification of metallography images. In: Jaakkola H, Kiyoki Y, Tokuda T (eds) European–Japanese conference on information modeling and knowledge bases. Juvenes Print-TTY, Tampere, Pori, Finland, pp 193–202

  34. Reinhold M (2004) Robuste, probabilistische, erscheinungsbasierte Objekterkennung. Logos Verlag, Berlin

    Google Scholar 

  35. Rue H, Held L (2005) Gaussian Markov random fields: theory and applications. Chapman & Hall, London

    Book  MATH  Google Scholar 

  36. Schiele B, Crowley JL (2000) Recognition without correspondence using multidimensional receptive field histograms. Int J Comput Vis 36(1):31–50

    Article  Google Scholar 

  37. Schneiderman H, Kanade T (2004) Object detection using the statistics of parts. Int J Comput Vis 56(3):151–177

    Article  Google Scholar 

  38. Terzopoulos D, Yuencheng L, Vasilescu M (2004) Model-based and image-based methods for facial image synthesis, analysis and recognition. In: Automatic face and gesture recognition 2004. Seoul, Korea, pp 3–8

  39. Torralba A, Murphy KP, Freeman WT (2007) Sharing visual features for multiclass and multiview object detection. IEEE Trans Pattern Anal Mach Intell 29(5):854–869

    Article  Google Scholar 

  40. Webb AR (2002) Statistical pattern recognition. Wiley, Chichester

    Book  MATH  Google Scholar 

  41. You B, Hwangbo M, Lee S, Oh S, Kwon Y, Lim S (2003) Development of a home service robot issac. In: Intelligent robots and systems 2003, Las Vegas, USA, pp 2630–2635

  42. Zhang Q, Yan H (2004) Fingerprint classification based on extraction and analysis of singularities and pseudo ridges. Pattern Recognit 37(11):2233–2243

    Article  Google Scholar 

  43. Zobel M, Denzler J, Heigl B, Nöth E, Paulus D, Schmidt J, Stemmer G (2003) Mobsy: integration of vision and dialogue in service robots. Mach Vis Appl 14(1):26–34

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission under the contract FP6-26978-X-MEDIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Grzegorzek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzegorzek, M. A system for 3D texture-based probabilistic object recognition and its applications. Pattern Anal Applic 13, 333–348 (2010). https://doi.org/10.1007/s10044-009-0163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-009-0163-0

Keywords

Navigation