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Abstract A recent development in penalized probit modelling using a hierarchical

Bayesian approach has led to a sparse binomial (two-class) probit classifier that can be

trained via an EM algorithm. A key advantage of the formulation is that no tuning of

hyperparameters relating to the penalty is needed thus simplifying the model selection

process. The resulting model demonstrates excellent classification performance and a

high degree of sparsity when used as a kernel machine. It is, however, restricted to the

binary classification problem and can only be used in the multinomial situation via

a one-against-all or one-against-many strategy. To overcome this, we apply the idea

to the multinomial probit model. This leads to a direct multi-classification approach
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and is shown to give a sparse solution with accuracy and sparsity comparable with

the current state-of-the-art. Comparative numerical benchmark examples are used to

demonstrate the method.

Keywords Multi-classification · Sparseness · Multinomial probit · Hierarchical

Bayesian

1 Introduction

The majority of machine learning methods for classifying objects into pre-determined

groups consider only two-class or binary problems but many tasks involve more than

two classes – so called multinomial problems. Multi-class classification methods are

important in both the theory and practice of pattern recognition and present a sig-

nificantly harder task than binary classification with all other things being equal [1].

The extension of existing methods for binary classification to multi-class problems is

therefore of substantial and continuing interest, e.g. [1–3,37,27,6,4].

The multinomial probit (MNP) model plays an important rôle in the social, econo-

metric and biological sciences for the analysis of multi-category response. It provides

a greater degree of flexibility in modelling discrete choices (categories) over the com-

monly adopted multinomial logit (MNL) model. Indeed, when considered from the

perspective of an underlying latent variable model, the specification for the two ap-

proaches differs only in the assumed form of error distribution (multivariate Normal

and i.i.d. Gumbel, respectively) and their associated link functions. Specifically, MNP

relaxes the so-called IIA (independence of irrelevant alternatives) constraint implicit in

MNL by admitting a general covariance structure for the errors. In addition, it easily

admits individual-specific choice and covariate sets, which is perhaps why it is pre-
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ferred in modelling social phenomena, and can be readily extended to factor analysis

problems as well. The price for the added flexibility is in the loss of the easily-computed

closed-form for the likelihood function of the MNL model. Our reason for choosing the

probit form here is quite different from these putative benefits, but is, instead, one

of convenience – the inherent normality of the probit approach allows us to general-

ize the hierarchical Bayes approach introduced by Figueiredo [24] to the multinomial

case. Specifically, integrals necessary to the development can be undertaken that would

otherwise be intractable. Indeed, we ultimately focus on the situation closest to MNL

where category choices are independent, i.e. an identity error covariance structure.

The MNP generalizes the early work of Thurstone [8] for binary choice. Bock and

Jones [9] apply the MNP model to the three-class case. The MNP model formula-

tion from utility maximization theory is described in [10]. Domencich and McFadden

[11] first apply this model to the transportation analysis of Hausman and Wise [12].

Maximum likelihood estimates (MLE) and a method of simulated moments (MSM)

[13] have been developed to evaluate the likelihood function. For C-class problems,

these two approaches require the evaluation of (C−1)-dimensional Gaussian integrals:

the conditional probabilities corresponding to each class. However, closed-form choice

probabilities for the MNP model are not available and, in practice, numerical integra-

tion based on quadrature can feasibly estimate the general multivariate integral only

when the dimension is low. While “low” has traditionally meant five or fewer [14],

recent advances have extended this limit so that, for instance, the scheme devised by

Genz [15] can comfortably handle up to 20 dimensions1. More recently, Miwa and col-

1 This method, adopted in recent versions of the Matlab Statistics Toolbox for dimensions

above four, makes use of a degree of Monte-Carlo simulation and so might be considered a

hybrid approach.
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leagues [16] have proposed a recursive scheme which is slower than Genz’s but has the

advantage of being entirely deterministic. This limitation ultimately suggests resort to

simulation methods. Monte Carlo simulation methods are employed to approximate

high dimensional integrals of choice probabilities [17,18]. However, simulators need

to possess particular characteristics, such as continuity and differentiability, so that

simulation methods are still computationally costly because of the intensive process-

ing required by some. McCulloch and Rossi [19] give a Bayesian analysis of the MNP

model, also see [20]. Chib and Greenberg [21] provide an overall Bayesian analysis of

MNP models for correlated binary data. The Gibbs sampler and Markov chain Monte

Carlo (MCMC) are utilized to estimate the parameters of MNP models [19,22,23],

however, these algorithms can also be computationally very costly.

Figueiredo [24] points out that sparsity is desirable in supervised learning for the

following three reasons. First, sparseness leads to a structural simplification of the es-

timated function. Second, obtaining a sparse estimate corresponds to performing fea-

ture/variable selection. And third, in kernel-based methods, the generalization ability

improves with the degree of sparseness – a key idea behind the support vector machine

(SVM). Indeed, some form of complexity control is essential for the development of

kernel machines in general. Under the sparse Bayesian learning framework, the rele-

vance vector machine (RVM) [25], variational relevance vector machine (VRVM) [36],

sparse logistic regression [7] and sparse kernel Fisher discriminant algorithms [5] have

been developed to solve two-class classification problems. To achieve sparseness the

Bayesian approach introduces an appropriate prior distribution on the model parame-

ters and seeks to maximize the marginalized likelihood function. More comprehensive

descriptions of sparse Bayesian learning for both regression and classification can be

found in [25].
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Figueiredo [24] proposes a sparse Bayesian approach to learn a probit classifier

for two-class responses. The method makes use of the univariate probit model – a

generalized linear model with a normal c.d.f. as link function. It is well known [28]

that this model can be expressed as a latent variable model that closely resembles

the conventional linear regression model and thus presents a particularly convenient

form. A two-level (Gaussian plus exponential) hierarchical Bayesian approach is used

to represent the prior distribution of the model parameters but, instead of adopting an

exponential second-level prior on the hyperparameters which would lead to an overall

Laplacian prior requiring the tuning of a hyper-prior to control sparsity, Figueiredo

substitutes a Jeffreys prior which has no associated parameter and therefore removes

the need for hyper-prior tuning – potentially expensive in model estimation. Under

this revised model the calculus necessary to construct an EM algorithm (removal of the

hyperparameters via integration) can be carried out to the point at which the evaluation

of the normal c.d.f. is required. This can be carried out efficiently via quadrature.

Krishnapuram et al. [26] present a classifier based on this idea to promote sparsity

jointly in the selection of both basis functions and covariates. Their method has been

successfully applied to gene expression analysis and cancer diagnosis.

Naturally, it is worth thinking about how to extend the idea to multinominal probit

models. Girolami and Rogers have developed a non-parametric approach – a Gaussian

Process (GP) based method – to build sparse, variational multi-class GP classifiers [27].

The Gibbs sampler and variational Bayes approximation are employed to represent the

joint posterior distribution via an ensemble of factored posteriors. In contrast, to the

best of our knowledge, the method presented below provides the first deterministic

algorithm for estimating a sparse multinomial probit (SMNP) model. In a natural

generalization, Figueiredo’s hierarchical approach with a Jeffreys hyper-prior is again
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adopted to encourage sparsity amongst the parameters and the outcome is an EM

algorithm that can be computed for a reasonable number of classes.

The structure of the remainder of this paper is as follows. The next section describes

the sparse binary probit (SBP) algorithm presented by Figueiredo [24] to motivate

what follows. The third section introduces the proposed generalization of this to the

multinomial case and the specific algorithmic steps are also provided. Section 4 presents

comparative results from several experiments using benchmark data.

2 Sparse Binary Probit Model

The development of the Sparse Binary Probit (SBP) model is now sketched out to

provide a framework for the multinomial extension. Consider an underlying latent

variable model, z = h(x)β+w with p(w) = φ(w|0, 1) – the standard, univariate normal

distribution. h(x) = (h1(x), ..., hM (x))T is an M -dimensional vector of basis functions

and β a corresponding vector of model parameters. Class membership is determined

based on whether or not the value of the (unmeasured) latent variable exceeds zero,

i.e. assign to the class labelled 1 if z ≥ 0 else assign to the class labelled zero. This is

expressed thus:

P (y = 1|x) = P (hT (x)β + wi ≥ 0) = Φ(hT (x)β) (1)

where Φ(a) =
R a
−∞ φ(t)dt is the (univariate) probit function.

Given a training set of input-target pairs D={(x1, y1), ..., (xN , yN )}, where xi

denotes a D-dimensional input vector and yi, its corresponding one-dimensional binary-

valued target vector, we define H as the N ×M design matrix with M , the number of

fixed basis functions, thus

H = [h(x1), ..., h(xN )]T , (2)
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The underlying latent variable model is now given by:

z = Hβ + w (3)

and the likelihood function for z can be written:

p(z|β) = φ(z|Hβ, IN ) (4)

By placing a prior distribution on β, an EM algorithm can then be derived to find a

maximum a posteriori (MAP) estimate of β by treating z as missing data. To promote

sparseness each βi is given a zero-mean Gaussian prior with its own variance τi,

p(βi|τi) = φ(βi|0, τi) (5)

The importance of the hierarchical decomposition is that it allows the EM algorithm

to estimate β by considering τ=[τ1, ..., τM ]T as missing data in addition to the latent

variables, z. At this stage, adopting an exponential distribution for the variance, τi,

would be equivalent to placing Laplacian priors on the βi but instead Figueiredo places

a non-informative Jeffreys hyper-prior p(τi)∝ 1
τi

on the variances, τi. This is equally

tractable in the analysis but has the distinct advantage of having no associated, ar-

bitrary parameter, thereby avoiding the need for cross-validation or other methods of

selection [24].

Using equations (4) and (5) and the definition of the Jeffreys prior, the complete

log posterior for β with “missing” vectors τ and z can be written thus:

log p(β|y, τ , z) ∝ log p(β, y, τ , z)

∝ log p(z|β)p(β|τ )p(τ )p(y|z) (6)

∝ −βT HT Hβ + 2βT HT z − βT Υ (τ )β
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where Υ(τ )≡diag(τ−1
1 , ..., τ−1

M ) is a diagonal matrix containing the inverse variances

of the βi’s.

For the expectation step (E-step) in the EM algorithm, the expected values of both

Υ and z must be calculated at each computation step, indexed by t, by the following

equations:

V(t) = E
h
Υ(τ )|β̂(t), y

i

= diag
n

E
h
τ−1
1 |β̂(t), y

i
, ..., E

h
τ−1
M |β̂(t), y

io
(7)

= diag
n
|β̂1,(t)|

−2, ..., |β̂M,(t)|
−2
o

si,(t) ≡ E
h
zi|β̂(t), y

i

=

8>><
>>:

hT (xi)β̂(t) +
φ(hT (xi)β̂(t)|0,1)

Φ(hT (xi)β̂(t))
if yi = 1;

hT (xi)β̂(t) −
φ(hT (xi)β̂(t)|0,1)

1−Φ(hT (xi)β̂(t))
if yi = 0.

(8)

where the caret indicates the estimated value. These expectations are derived analyt-

ically from the integrations employing the model assumptions and noting that z is

conditionally normally distributed with mean hT (x)β̂(t) left-truncated at zero if y=1

and right-truncated at zero if y=0.

Now V(t) and s(t), can be taken into the complete log-posterior equation (6) to

replace Υ and z. Maximizing this log-posterior with respect to β leads to the maxi-

mization step (M-step)

β̂(t+1) = (V(t) + HT H)−1HT s(t) (9)

Since some components of β are expected to become zero when sparseness is

achieved, the corresponding elements of the matrix, V(t), in equation (7) will become

undefined. To overcome this, equation (9) can be rewritten as:

β̂(t+1) = U(t)(I + U(t)H
T HU(t))

−1U(t)H
T s(t), (10)
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by defining a new diagonal matrix U(t) = diag(|β̂1,(t)|, ..., |β̂M,(t)|) thus avoiding po-

tential divides-by-zero.

In practice, this EM algorithm produces a sequence of estimates of β̂(t) until a

predefined stopping condition is satisfied. The E-step relates to equations (7) to (9),

and the M-step is processed by (10).

3 Sparse Multinomial Probit (SMNP) model

3.1 Proposed MNP model

The extension of the above to the multinomial case follows the same procedure but

now there exist C categories, leading to C-dimensional latent variable model

z̃T = hT (x)B̃ + w̃T (11)

where z̃ is a C × 1 latent response vector, B̃ is an M × C parameter matrix and

p(w̃) = φC(w̃|0, Σ̃) – the C-dimensional zero mean normal density with covariance

matrix Σ̃.

The MNP classification rule for the ith observation is expressed as:

ỹij = 1 if z̃ij ≥ 0, and z̃ij = max(z̃i), j = 1, ..., (C−1) (12)

ỹiC = 1 if z̃ij < 0 for all j = 1, ..., C.

leading to the associated probability of selecting category i given by:

P
�
hT (x)b̃i + w̃i > hT (x)b̃j + w̃j

�
j 6= i (13)

where b̃k denotes the kth column of the matrix, B̃. This is equivalently expressed as:

P
�
w̃i − w̃j > hT (x)(b̃j − b̃i)

�
j 6= i (14)
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Clearly, only the differences in the utilities ascribed to the latent variables are

important, i.e. that choices are made only with respect to a (usually arbitrary) baseline

situation. This is implicit in the binary model, where the class labelled zero takes on

the baseline rôle.

Since the difference of normally distributed variables is itself normally distributed,

the C-class problem can therefore be expressed in terms of (C−1) latent alternatives,

z=
h
z1, ..., z(C−1)

iT
, thus:

zT = hT (x)B + wT (15)

where B is the M × (C − 1) parameter matrix and p(w) = φ(C−1)(w|0, Σ). We need

not be concerned with the relationship between B and B̃ and between Σ and Σ̃ because

(i) owing to reasons of identifiability of the latent error covariance (see, e.g. [29]) it is

not possible to reconstruct Σ̃ from an estimate of Σ and, as a predictive tool, there is

no reason to do so anyway, and (ii) we shall ultimately focus on the case where Σ is

taken to be the (C−1)-dimensional identity matrix. However, at this stage we continue

with a general analysis and specialize later.

Once again, given a training set of N input-target pairs where the targets are now

binary-valued vectors, y=
h
y1, ..., y(C−1)

i
and yij = 1 indicates that the jth class is to

be preferred over the baseline, the latent variable model can be set up analogously to

equation 3:

Z = HB + W (16)

where Z = [z1, ..., zN ]T . The associated probability of selecting the jth class in prefer-

ence to the baseline class is now P
�
wj > hT (x)bj

�
.
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We are now in a position to re-write the model in a more convenient form for the

subsequent analysis. To do this, apply the vec 2 operation to equation (16), define

z = vec (Z), β = vec (B), w = vec (W) giving:

z =
�
I(C−1) ⊗H

�
β + w (17)

, Hβ + w (18)

where ⊗ denotes the Kronecker product, dim(z) = dim(w) = (C − 1)N × 1 and

dim(H) = (C− 1)N × (C− 1)M and the new design matrix, H =

�
H1, H2, . . . , HN

�
.

The ith design matrix, Hi is given by Hi = IC−1 ⊗ hT
i .

3.2 An EM Algorithm for SMNP

As in the binary case, see Subsection 2, a hierarchical structure is again used, placing

independent Gaussian priors on the βi and Jeffreys’ hyper-priors on their associated

variances, leading to an identical situation (notwithstanding the increase in dimension-

ality of β from M to (C − 1)M with the attendant advantages of being parameter

free yet analytically tractable. The related part of the derivation of the EM Algo-

rithm remains, therefore, unchanged. To motivate the development, consider first the

introduction of a Laplacian prior on β

p(β|α) =

M(C−1)Y
i=1

α

2
exp {−α |βi|} =

�α

2

�M(C−1)
exp

�
−α ‖β‖1

	
(19)

where the hyper-parameter, α, defines its precision. A particularly convenient way

to structure the prior distribution is through its decomposition into several conditional

levels by repeated application of Bayes’ theorem and can improve the robustness of

2 vec is the operation that stacks the columns of a matrix one upon the other from left to

right.
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resulting Bayes estimators [30]. Adopting a two-level hierarchy [24], the first-level dis-

tribution is chosen to be a zero-mean Gaussian prior, p(βi|τi)=φ(βi|0, τi), for each βi,

each having its own variance (inverse precision), τi. For the second stage, an exponential

distribution is used as a hyper-prior for the variances, τi

p(τi|γ) =
γ

2
exp

n
−γ

2
τi

o
, for τi ≥ 0. (20)

Taking the product of these distributions and integrating with respect to τi gives

p(βi|γ) =

Z ∞

0
p(βi|τi)p(τi|γ)dτi =

√
γ

2
exp

n
−γ

2
|βi|
o

. (21)

demonstrating that the Laplacian prior on β is equivalent to this two-level hierarchical

Bayes model [24]. However this introduces an arbitrary parameter into the problem,

γ, which controls the trade-off between the degree of sparseness in β. To remove this,

Figueiredo [24] uses the noninformative Jeffreys prior

p(τ) ∝ 1

τ
(22)

to remove the dependence on γ. The Jeffreys prior replaces the exponential hyper-prior

in (20) and so removes the need to conduct a search for a good value of its parameter.

As before, τ = [τ1, ..., τ(C−1)M ]T is treated as missing data alongside z. The EM

Algorithm generates a sequence of estimates β̂(t) and Σ̂(t) at different iteration times,

t, by applying the expectation (E) and maximization (M) steps, sequentially. For the

M-step, let the function, Q, express the expected log posterior,

Q(β, Σ|β̂(t), Σ̂(t)) =

Z
log p(β, Σ|y, τ , z)p(z|y, β̂(t), Σ̂(t), τ̂(t))dz. (23)
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The maximization step (M-step) then updates the parameter estimates according

to

(β̂(t+1), Σ̂(t+1)) = arg max
β,Σ

Q(β, Σ|β̂(t), Σ̂(t)). (24)

This provides a maximum a posteriori (MAP) estimate of β, i.e. it finds a local

maximum of the log-posterior function given by

log p(β, Σ|y, τ , z) ∝ log p(z|β, Σ)p(β|τ )

∝ − log det(Σ)− (z −Hβ)T Σ(z −Hβ)− βT Υ(τ )β, (25)

where Υ(τ )=diag
�
τ−1
1 , ..., τ(C−1)M

�
is a diagonal matrix with the inverse variances

related to β. In (25), because the influence of the prior on the estimate of the variances

is very small for large N , p(Σ) is set to a constant that can be ignored in the log-

posterior function [24]. Thus it should then be easier to compute the MAP estimate

of model parameters, β and Σ. Clearly we have to execute the M-step to gain the

update relationships for the two parameters Σ and β in (25) by respectively maximizing

Q(β, Σ|β̂(t), Σ̂(t)) with respect to Σ and β. The two update equations are given by

Σ̂(t+1) =
1

N

NX
i=1

E

��
zi(t) −Hiβ̂(t)

��
zi(t) −Hiβ̂(t)

�T
�

(26)

and

β̂(t+1) =

 
V(t) +

NX
i=1

HT
i Σ̂−1

(t+1)Hi

!−1 NX
i=1

HT
i Σ̂−1

(t+1)si(t), (27)

where si(t) and V(t) are the expected values of the corresponding latent vector, zi(t),

and the hyper-parameter matrix, Υ(τ), which can be estimated from observations and

the tth results for β and Σ. V(t) is given by

V(t) = E(Υ(τ)|y, Σ̂(t), β̂(t))

= diag{E(τ−1
1 |y, Σ̂(t), β̂(t)), ..., E(τ−1

(C−1)M |y, Σ̂(t), β̂(t))}. (28)
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Noting, as before, replacing the subscript M with (C−1)M , that p(τi|y, β̂(t), Σ̂(t), z(t)) ∝

p(β̂i(t)|τi)p(τi), where p(β̂i(t)|τi)=φ(β̂i(t)|0, τi) and p(τi) is the Jeffreys hyper-prior, 1
τi

.

The expected value of τ−1
i in (28), given y, β̂(t), and Σ̂, is expressed as

E
�
τ−1
i |y, β̂(t), Σ̂(t)

�
=

+∞R
0

1
τi

p(βi(t)|τi)p(τi)dτi

+∞R
0

p(βi(t)|τi)p(τi)dτi

=
1���βi(t)

���2 (29)

so that

V(t) = diag(
���β̂1(t)

���−2
, ...,

���β̂(C−1)M(t)

���−2
). (30)

c.f. equation (7).

In addition, we also need the expected value of zi, which should take two situations

into account according to class label. First, when j=1, ..., (C − 1) where, for the ith

sample, the choice yij=1 would be made if zij>0 and zij= max
m
{zim}, m=1, ..., (C−1),

sim = E
�
zim|y, β̂(t), Σ̂(t)

�
=

R
Ωzi

zimφ(C−1)(zi|Hiβ̂(t), Σ̂(t))dziR
Ωzi

φ(C−1)(zi|Hiβ̂(t), Σ̂(t))dzi

=

8>>>>>>>>><
>>>>>>>>>:

∞R

0
zij

zijR

−∞
...

zijR

−∞
φ(C−1)(zi|Hiβ̂(t),Σ̂(t))dzi

∞R

0

zijR

−∞
...

zijR

−∞
φ(C−1)(zi|Hiβ̂(t),Σ̂(t))dzi

, if m = j

∞R

0

zijR

−∞
...

zijR

−∞
zimφ(C−1)(zi|Hiβ̂(t),Σ̂(t))dzi

∞R

0

zijR

−∞
...

zijR

−∞
φ(C−1)(zi|Hiβ̂(t),Σ̂(t))dzi

, if m 6= j

(31)

When j = C, i.e. the ith sample belongs to the baseline class, C, so yiC = 1, zim < 0

and the expected value of zim is given by

sim = E
�
zim|y, β̂(t), Σ̂(t)

�
=

0R
−∞

0R
−∞

...
0R

−∞
zimφ(C−1)(zi|Hiβ̂(t), Σ̂(t))dzi

0R
−∞

0R
−∞

...
0R

−∞
φ(C−1)(zi|Hiβ̂(t), Σ̂(t))dzi

(32)
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The SMNP algorithm is described by the general forms given in equations (26)

to (32). The E-step uses equations (30), (31) and (32) to produce the expected values

of τ and z and the M-step uses equations (26) and (27) to update the estimates of Σ

and β.

There are two main difficulties in realizing the above steps. For a full covariance

matrix, Σ, in the MNP model there are
C×(C−1)

2 parameters to be estimated. However,

it is clear from equation (14) that only the relative values of the latent variables are

important in assigning class membership, therefore an arbitrary change of scale leaves

the model unaffected and the values of the elements of σij are not unique. In the binary

case, this problem of “ indentifiability” is dealt with by adopting unit variance. In the

multinomial case, numerous authors have proposed solutions such as, arbitrarily setting

e.g. σ11 = 1, imposing a “correlation” structure, i.e. σii = 1, σij ≤ 1 i 6= j or simply

estimating Σ directly and re-scaling [31]. To avoid the problem we adopt an identity

covariance structure. This removes the need to estimate Σ at all, but the price of doing

this is a reversion to the IIA constraint inherent in e.g. the MNL model. We regard

the benefit of facilitating a simple sparse algorithm for objective pattern classification

tasks as more than compensating for the inability fully to model more subjective, choice

problems. Nonetheless, it would be interesting to pursue this question in future work.

The resulting algorithm is therefore appropriate for the kind of classification tasks

usually addressed by the MNL model but has the advantage of a simple approach to

sparsity – we do not regard this as overly restrictive. Other work, e.g. [32] and [33]

have used this assumption and have made successful applications in practice.

The second difficulty is that there is no closed form available for calculating the

integrals required in equations (31) and (32) to acquire the expectations of zi. As

discussed earlier, low dimensional (up to 20) numerical methods are available but with
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the obvious exponential increase in computational burden – undesirable in an iterative

method. A second advantage of choosing the identity covariance structure is that the

multi-dimensional Gaussian integrals now decouple into products of one-dimensional

integrals for which efficient quadratures do exist, permitting the solution to the SMNP

problem with a reasonable amount of computing resource.

Here we express the jth row vector of the ith design matrix Hi in (3.1) as hij . Ac-

cordingly, the E-step becomes a closed form for z that when j=1, ..., (C−1), m=1, ..., (C−

1)

sim(t) = E(zim|y, β̂(t))

=

8>><
>>:

hijβ̂(t) +
φ(hij β̂(t)|0,1)

Φ(hij β̂(t))
, if m = j;

himβ̂(t) −
φ(sij−himβ̂(t)|0,1)

Φ(sij−himβ̂(t))
, if m 6= j;

(33)

and when j=C, m = 1, ..., (C − 1)

sim(t) = himβ̂(t) −
N(himβ̂(t)|0, 1)

1− Φ(himβ̂(t))
, (34)

The estimate of τ is the same as in equation (29) since it is independent of Σ so the

expected value of Υ(τ) is still V. The M-step now only needs to update the parameter

vector β thus:

β̂(t+1) =
�
HT H + V(t)

�−1
HT s(t) (35)

and again, to avoid any divides-by-zero in computation, define:

U(t) = diag
����β̂i(t)

���� i = 1, 2, ..., (C − 1)M (36)

and re-write equation (35) as

β̂(t+1) = U(t)

�
U(t)H

T HU(t) + I
�−1

U(t)H
T s(t), (37)

In summary, we give the detailed SMNP learning algorithm as follows:
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Step 1: Compute the design matrix H for the training data, D. Set the initial value

for the β.

Step 2: Calculate a current estimate for β̂(t) according to equation (37).

Step 3: (E-step) Calculate the diagonal matrix U(t) from equation (36) and the ex-

pected value of latent vector s(t) from equations (33) and (34) according to the

current estimate, β̂(t).

Step 4: (M-step) Update β̂(t) to β̂(t+1) using equation (37).

Step 5: Check for convergence through, e.g. δ=
‖β̂(t+1)−β̂(t)‖

‖β̂(t)‖
. If δ�1 then stop; oth-

erwise set t=t+1 and return to the Step 2.

4 Numerical Examples

Until a standard protocol is agreed for training/testing methodology and the reporting

of results in machine learning classification experiments, the conduct of comparative

studies presents a problem. The need to compare any new method with as large a cohort

as possible of alternative techniques means that it is frequently impossible to make

like-for-like comparisons in terms of say, number of cross-validatory folds for hyper-

parameter selection, number of random data splits, etc. An alternative is to match

methodology as closely as possible but this is not always possible because authors

report a greater or lesser degree of detail. Another possibility is to replicate all other

techniques with a common methodology. While this might be considered ideal, the

potential for error, e.g. in coding, and the loss of objectivity – the author would be in

charge of the competing methods – makes this less than satisfactory, notwithstanding

the amount of additional work involved. Here we have sought a reasonably wide-ranging

comparison with currently best performing techniques using results published in the
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open literature by the originating authors. This inevitably introduces some of the

problems mentioned above and weakens any conclusions that might be drawn about

which method is definitively best. By examining the methodologies of the current

best performers, we find substantial variation in experimental method, with 10 of the

experiments using five or 10-fold cross validation3 and eight using five or 20 replications.

We believe that current best practice dictates both cross-validation and replication of

some kind, so have chosen 5-fold cross-validation, with 20 replications, as a reasonable

compromise. This involves making 20 replications4, each with a different, arbitrary

split into training and testing sets providing a measure of spread. We have used five-

fold cross validation to optimize hyper-parameters using the training sets only and then

trained a final classifier using all the training data and the “optimal” hyper-parameters.

This is then tested on its corresponding testing sample. All real-valued covariates are

standardized and the MAP decision is taken. In each of our experiments, the SMNP

algorithm is used as a kernel-based classifier, i.e. the design matrix, H corresponds to a

kernel Gram matrix whose elements, hij , are given by k(x, xi) = exp{−‖x−xi‖2
2δ2 } and

which is augmented by a unit column to represent any offset. δ represents the kernel

width (hyper) parameter. The subject of kernel machines has been widely explored

in the literature and so no details are given here – the reader is instead directed to

e.g. [34]. The 14 datasets used in the comparison are taken from the UCI Machine

Learning Repository [35] and details are given in table 1.

Before conducting the study, the SMNP code was tested against the SBP model

of [24] using the settings and data published therein. The results obtained were iden-

tical, demonstrating that the multinomial code specializes to the binary situation and

3 Three more require no cross-validation owing to their Bayesian framework.

4 Except in the case of Thyroid 2, for reasons of runtime, owing to its large size.
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Table 1 Details of datasets used in comparative experiments available from the UCI Machine

Learning Repository [35]

Dataset No. Samples No. Classes No. Covariates

Iris 150 3 4

Wine 178 3 13

Glass 214 6 9

Thyroid 1 215 3 5

Dermatology 358 6 34

Balance 625 3 4

Vehicle 846 4 18

Vowel 990 11 11

Contraceptive 1473 3 9

Car Evaluation 1728 4 6

Image Segment 2310 7 18

Letters 2323 3 16

Waveform 5000 3 21

Thyroid 2 7200 3 21

provides a degree of confidence in the new code. We then applied SMNP to the 14

datasets and have compared these with the best, to the best of our knowledge, re-

ported results in the literature to date. The results are shown in table 2.

We consider that, where there is an overlap between the intervals defined by mean ±

standard error, such entries should be taken to be indistinguishable. Where no interval

information is provided, we assume zero standard error for the deficient quantity. This

generally militates against the proposed method in a “which method is best?” sense.

However, the purpose here is simply to demonstrate that SMNP is a valid contender

among current state-of-the-art techniques. Note also that the methods, REFNE [39],
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Table 2 Mean error rates (MER (%)) ± standard error, and number of retained support

vectors (NSV) ± standard error on a sample of 14 Datasets from the UCI Machine Learning

Repository [35]. Best performing results are shown in bold face type, while equal performance

is identified with italic typeface.

Dataset SMNP Published Best

MER (%) NSV Method MER (%) NSV

Iris 1.33± 0.61 7.67± 2.05 SMLR(l1) [38] 0.67 50.37

Wine 1.15 ± 0.48 5.96 ± 1.17 sMKDA [4] 0.22 ± 0.31 9.55 ± 3.05

Glass 30.31 ± 1.91 16.24 ± 2.01 SMLR(l1) [38] 23.36 93.37

Thyroid 1 2.77±0.87 6.00±1.14 sMKDA [4] 2.79±0.33 8.95 ± 1.87

Dermatology 1.64± 0.41 13±3.09 sMKDA [4] 1.51±0.15 18.30± 4.52

Balance 6.72± 0.26 14.67± 2.14 REFNE [39] 6.72 N/A

Vehicle 14.7± 1.72 17.57±2.58 SVM [40] 12.53 45

Vowel 3.08±0.55 25.53±4.91 sMKDA [4] 2.59± 0.43 23.91± 0.99

Contraceptive 29.93±0.20 21.5± 2.22 GS [41] 30.21 N/A

Car Evaluation 7.91± 0.64 15.8± 2.1075 BAN [42] 5.96±0.44 N/A

Image Segment 7.72±1.14 21.37±3.61 VBGP [27] 7.8±1.5 N/A

Letters 1.78±0.93 15±2.72 VBGP [27] 1.8±0.8 N/A

Waveform 15.73±0.83 12.37±3.64 VBGP [27] 15.6±0.7 N/A

Thyroid 2 2.04 115 sMKDA [4] 3.28 111

BAN [42] and VBGP [27] are not by their nature “sparse”, hence the concept is not

applicable (N/A).

In summary, examination of table 2 shows that SMNP equals or betters (mar-

ginally) the classification accuracies of current best performers on these datasets in

nine of the 14 cases. Differences are small in four of the remaining five, especially if

a realistic standard error were to be taken into account for the non-replicated experi-

ments. SMNP is, however, substantially worse in the “Glass” experiment, for reasons
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we are unable to explain but that may be related to the severe imbalance in class priors

in this sample. Focussing now on the level of sparsity achieved, first it is important

to be clear that here “sparsity” is related to the number of data samples that must

be retained to construct the trained classifier, i.e. a complete row of the matrix, B,

must be eliminated. This differs from many authors’ usage which counts the number

of zero entries in B (of course the two quantities are identical in the binary situation).

We do not consider this latter to be useful since it may be that good sparsity can be

achieved under that definition while still requiring all data to be retained in the final

classifier. Examination of table 2 shows that SMNP equals or betters the performance

of other leading classifiers in seven of the eight eligible comparisons. The only failure

takes place in the non-replicated experiment, “Thyroid 2” and here the difference is

small given that the numbers represent only approximately 3% of the training sample.

5 Discussion and Conclusion

In this paper a classification method for the multi-class problem is described based

on the SBP method of Figueiredo [24]. We extend the main idea of SBP to the MNP

model aiming to solve multi-classification by considering all classes at once and not by

combining a number of binary classifiers. A hierarchical prior structure making use of

Jeffreys’ non-informative hyper-prior is used to introduce sparseness and eliminate the

need to adjust or estimate the hyper-parameter associated with the prior. The SMNP

parameters are estimated via an EM algorithm. For convenience of implementation,

a specialization of the SMNP model is constructed based on an identity covariance

structure for the underlying latent variable model. We do not consider this restrictive

for conventional use as a classifier – it provides a close approximation to the widely used
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multinomial logistic model. This reduces the need to perform multivariate Gaussian

integrals and hence facilitates the solution of sizeable problems.

Several benchmark data sets are used to test the proposed method and they broadly

indicate performance competitive with other state-of-the-art multi-class classifiers and

reflect Figueiredo’s findings for the binary model: that good classification accuracy is

achieved whilst simultaneously providing excellent levels of sparsity. This makes the

method particularly suited to its use, as here, as a kernel machine. Work to be con-

sidered for the future is the relaxation of the identity covariance condition to increase

generality and the use of the technique for covariate selection.
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