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Abstract The curse of dimensionality hinders the ef-
fectiveness of density estimation in high dimensional

spaces. Many techniques have been proposed in the past

to discover embedded, locally-linear manifolds of lower
dimensionality, including the mixture of Principal Com-

ponent Analyzers, the mixture of Probabilistic Princi-

pal Component Analyzers and the mixture of Factor
Analyzers. In this paper, we propose a novel mixture

model for reducing dimensionality based on a linear

transformation which is not restricted to be orthogonal

nor aligned along the principal directions. For exper-
imental validation, we have used the proposed model

for classification of five “hard” data sets and compared

its accuracy with that of other popular classifiers. The
performance of the proposed method has outperformed

that of the mixture of Probabilistic Principal Compo-

nent Analyzers on four out of the five compared data
sets with improvements ranging from 0.5% to 3.2%.

Moreover, on all data sets, the accuracy achieved by

the proposed method outperformed that of the Gaus-

sian mixture model with improvements ranging from
0.2% to 3.4%.
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maximum-likelihood · mixture models · linear trans-

formations · object classification.
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1 Introduction

Recognition of visual objects into classes of interest is
a long-explored area of computer vision and pattern

recognition. Despite the enormous progress made to

date, recognition accuracy is still unsatisfactory on cer-
tain “hard” data sets. One of the main causes of such

an elusive accuracy lies in the high dimensionality of

the feature sets used to represent the objects. Typical
feature sets consist of several, heterogeneous features

including intensity and gradient values, appearance his-

tograms, number and position of edge segments, cor-

ners, scale-invariant features; and many others. Con-
versely, the number of pre-classified samples available

for training the classifiers is typically limited, often in

the order of tens or hundreds (manual segmentation
and annotation are tedious and time consuming). It is

such a combination of high feature space dimensional-

ity and scarcity of training data that positions many
recognition problems under the “curse of dimensional-

ity” [1]. In order to mollify the curse, classification is of-

ten preceded by a dimensionality reduction step where

the original features are selected or combined into a sig-
nificantly smaller set. Possibly the most widely known

technique, Principal Component Analysis (PCA) oper-

ates an orthogonal projection of the original data onto
a space of lower dimensionality. This lower-dimensional

space is spanned by the principal eigenvectors of the

sample covariance typically learned over an unlabelled
training set. Linear Discriminant Analysis (LDA), in-

stead, is a discriminative technique using labelled train-

ing data to exploit the notion of between-class variance

explicitly. Probabilistic PCA (PPCA) makes a signifi-
cant step forward from standard PCA by providing a

precise probabilistic model for the transformation [2, 3].

The model, showing partial analogies with that of Fac-
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tor Analysis (FA) [4, 5], posits the existence of a latent

linear space and the presence of a noise component on
the sample values. The explicit probabilistic model of

PPCA enables the measurement of probabilistic dis-

tances between data and classes and the use of Bayesian
classification. Non-linear techniques for dimensionality

reduction have also been proposed such as Kernel PCA

(KPCA) [6] and Incremental KPCA (IKPCA) [7]. An
appealing alternative to discovering non-linear mani-

folds in high-dimensional spaces is the use of mixture

of locally-linear models. This idea has motivated the ex-

tension of the methods above to mixture models such
as mixture of PCA [8], mixture of PPCA [9], mixture

of FA [10]. A mixture of t-distribution subspaces was

also proposed to increase robustness to outliers [11].
For all these mixture models, training is performed by

Expectation-Maximization algorithms [12].

In this paper, we present a novel mixture model for

dimensionality reduction inspired by an analogy with
sensor fusion. Each component in the mixture consists

of a linear transformation projecting the original data

onto a subspace and a Gaussian distribution fitted on
the projected data. For this reason and for immediacy,

we have named the proposed method MLiT - mixture of

Gaussians under Linear Transformations. Parameters
of all the transformations and Gaussian distributions

are learned by a specific Expectation-Maximization al-

gorithm. Regularization of the maximum-likelihood so-

lution is proposed in two alternative ways: a) by im-
posing a constraint on the transformation’s parame-

ters; b) by normalizing the transformation’s parame-

ters after each maximization step. Our method mostly
resembles a mixture of PCA, with the main differences

that our transformation is not restricted by orthogo-

nality and that the densities in the projected spaces are
learned jointly with the transformations in a maximum-

likelihood setting. In this paper, the proposed tech-

nique is used to learn class-conditional likelihoods for

maximum-likelihood classification of five “hard” data
sets from the UCI repository and the authors’ own.

The rest of the paper is organized as follows. Sec-

tion 2 describes the main related techniques with their
strengths and limitations. Section 3 presents the pro-

posed method (MLiT), its regularization by a constraint

and by normalization, and the initialization procedure.

Section 4 describes the experiments conducted to evalu-
ate MLiT over multiple data sets, comparing the results

with state-of-the-art classifiers. Section 5 concludes the

paper.

2 Related work

In this section, we contrast the proposed method with

the main related techniques (PCA, PPCA and FA) in

order to more clearly illustrate its rationale. From the

comparison, it emerges that none of these techniques
can be regarded as superior to the others irrespectively

of the problem under consideration and therefore ex-

perimental validation will be addressed in the following
sections.

PCA maps a y sample from a high-, P -dimensional

space to a point x = WT (y − ȳ) in a D-dimensional

space, with D typically << P . From x, an approxima-
tion of y is then obtained as ỹ = Wx+ȳ, with the recon-

struction error defined as e = ỹ−y. The D-dimensional

space can be conveniently represented embedded in the

original, P -dimensional space, showing theD directions
that are retained and the (P −D) that are discarded.

The parameters of PCA are the P x D transformation

matrix, W , and offset ȳ. Both parameters are learned
based on a given set of training data, Y = {yi}i=1..N :

W is given by the D “largest eigenvectors” (the eigen-

vectors of the largest eigenvalues) of their sample co-
variance and ȳ by their sample mean. This choice for

W has the effect of minimizing the total squared recon-

struction error over the training set. Correspondingly, it

maximizes the sample covariance in x-space, hoping to
retain information useful for later classification. There-

fore, the training set is composed of unlabelled data

from all classes.

PCA can also be used on class-labelled data to ap-
proximate density estimation and maximum-likelihood

classification. In this case, a separate PCA model (W ,

µ) is learned from data of each class. At classification
time, a sample is classified as belonging to the class

whose model provides the least squared reconstruction

error. Either way, PCA models cannot be learned with

maximum likelihood or other, fuller Bayesian methods
due to their incomplete probabilistic formulation.

Factor Analysis and Probabilistic PCA amend the

limitations of PCA by proposing a full probabilistic

model that can be trained with maximum likelihood.
Both posit the existence of a latent, low-dimensional

space where a point, x, is in correspondence with a y

sample in the original space. The relationship between
samples and latent points is given by:

y = Wx+ µ+ ǫ (1)

where W is a P x D matrix describing a linear
transformation and ǫ is an additive noise component.

Both x and ǫ are treated as random variables and as-

sumed normally distributed, with p(x) = N (x|0, I) and
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p(ǫ) = N (ǫ|0, Ψ), and independent. It follows immedi-

ately that p(y) = N (y|µ,C), with C = WWT + Ψ . In
Factor Analysis, Ψ in (1) is assumed to be diagonal.

Probabilistic PCA further restricts p(ǫ) to be spheri-

cal i.e. Ψ = σ2I [2]. This restriction on the noise co-
variance is needed to uniquely separate the covariance

attributed to the noise from that of the data [13]. In

other terms, we could say that PPCA models the data
along the retained directions through a full Gaussian

model, whereas it models them along the discarded di-

rections only through a Gaussian model with spherical

covariance matrix. Figure 1(b) shows an example of a
component of a PPCA mixture.

It may be interesting to note that in PPCA the
maximum-likelihood solution for W is, like in PCA,

based on the largest eigenvectors. This equates to align-

ing the model along the directions of maximal disper-

sion: given that p(y) is Gaussian, this solution may ap-
pear counterintuitive as it seems to confer low likeli-

hood to the model. However, one must take into account

that the maximum-likelihood solution for σ2 is given
by the average of the discarded eigenvalues: choosing

to discard larger eigenvalues would cause a larger over-

all covariance for p(y), and worse likelihood. Therefore,
within PPCA, it is the assumptions on the noise that

determine the retained and the discarded subspaces.

For FA, no closed-form solution is available and the de-

termination of the retained and discarded subspaces de-
pends on the initialization of iterative solvers. A phys-

ical interpretation of FA is therefore more elusive.

It is relatively straightforward to combine multiple

individual models into a mixture model [8]. The ratio-

nale for this is to obtain multiple, locally-linear mod-

els which can well approximate a nonlinear manifold.
When mixtures of M component distributions are con-

sidered, class-labelled PCA, PPCA and FA naturally

extend by adding the mixing parameters, αl, l = 1..M ,
and fitting the other parameters individually for each

component [9, 10]. Given that closed-form solutions for

the direct maximization of the likelihood are either im-
possible or simply less practical, Expectation-Maximiza-

tion (EM) algorithms are commonly used for maximum-

likelihood estimation of these parameters.

The above review of PCA, PPCA and FA highlights

the assumptions in their respective models. There are,

obviously, limitations deriving from such assumptions:
for instance, the Gaussian assumption in the high di-

mensional space made by PPCA and FA makes the esti-

mates sensitive to outliers. In addition, models based on

minimum reconstruction error and orthogonal transfor-
mations such as PCA may not necessarily lead to high

classification accuracy. The rationale of our model is

therefore to relax some of these assumptions and look
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Fig. 1 An illustration of a component in three different mixture

models. The original two-dimensional data is in blue and the
transformed data is in green.

to experimental accuracy as the criterion for model val-
idation.

3 Approach and Methodology

In this section, we describe MLiT, a method for gener-

ating a mixture distribution in a dimensionally reduced

space that can be useful for density modelling and clas-

sification. We first describe the model in the next sub-
section. We then present the Expectation-Maximization

algorithm devised to learn the model from a set of

samples with maximum likelihood in Subsection 3.2.
In Subsections 3.3.1 and 3.3.2, we present two regular-

ized solutions based on constrained optimization and on

normalization, respectively. Finally, in Subsection 3.4,
we discuss the initialization procedure.

3.1 Mixture of Gaussians under linear transformations
(MLiT)

Let us consider a multivariate random variable, y, in

a high, P -dimensional space. We define the lower, D-

dimensional space through a compressive linear model

x = Ωy (2)

where Ω is a D× P real matrix, with D <= P and

typically D << P . We also posit a density function,

p(x), in x-space and consider

f(y) = p(Ωy) = p(x); (3)

f(y) is not a proper density in y-space: rather, a
probability function that repeats the probability den-

sity p(x) for all y points satisfying x = Ωy. As such,

f(y) expresses the probability of the combination of

two distributions: a distribution modelled by p(x) in
the D-dimensional subspace spanned by the rows of

Ω (the retained dimensions); and a uniform distribu-

tion along the (P −D)-dimensional subspace satisfying
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equation x = Ωy for any given x (the discarded dimen-

sions). For instance, if p(x) is Gaussian, f(y) has the
shape of a Gaussian “ridge” i.e. a D-dimensional Gaus-

sian function which repeats itself along the direction

of x = Ωy in y-space. When referring to its distribu-
tional properties hereafter, we will refer to this distribu-

tion as Gaussian-uniform. We derive the motivation for

this model from an analogy with sensor measurements,
where x can be seen as a view of y made available by

a sensor. If the representation power of x is adequate,

it will permit to successfully study properties of y e.g.

classify measurements in classes of interest.
In general, exploiting an array of M sensors can

offer a richer representation of y than a single sensor.

By calling f(y|l) the probability function for the l-th
sensor in the array, l = 1..M , it holds that:

f(y|l) = p(Ωly|l) (4)

where we have assumed that each sensor has its own

independent view of y, expressed by Ωl [14].
Let us now assume that we have a way to estimate a

discrete distribution, p(l), stating the quality of the l-th

sensor at explaining the y sample. From Bayes theorem,

we obtain:

f(y, l) = f(y|l)p(l) = p(Ωly|l)p(l) (5)

By marginalizing over l, we obtain the probability

function f(y) for the sensor array case:

f(y) =

M
∑

l=1

f(y, l) =

M
∑

l=1

f(y|l)p(l) =
M
∑

l=1

p(Ωly|l)p(l)

(6)

which closely recalls the general density of a mixture
distribution. However, probabilities are computed in

subspaces spanned by linear transformations and such

transformations differ for each component. For simplic-

ity of treatment, we further assume that the individual
sensor densities are Gaussian, and note αl = p(l), ob-

taining:

f(y) =
M
∑

l=1

αlN (Ωly|µl, Σl) (7)

where the N (Ωly|µl, Σl) terms are the densities in

the subspaces; means µl, and covariance matrices Σl

are the parameters of each Gaussian component in the

l-th subspace for l = 1..M ; weights αl are the mixing

coefficients.

When the parameters are estimated with maximum

likelihood, Ωl will have to take values such that the
Gaussian model for the l-th component, µl and Σl,

would maximize the likelihood i.e. small values for Σl

would be privileged. This is equivalent to creating a
maximally invariant view for the class by choosing a

corresponding linear transformation of the original space.

The Gaussian-uniform distribution retains the dimen-
sions of minimum variance as an “invariant” for the

class and models them in terms of location, scale and

directions by a full Gaussian model. Conversely, it re-

nounces to model the data in the subspace spanned by
the discarded dimensions since its high (P -D) dimen-

sionality yield extremely low data density. However, the

scale of Ωl in the Gaussian-uniform distribution needs
to be constrained to prevent the obvious yet degenerate

solution Ωl = 0. We further note that this model makes

no attempt at positioning the subspaces over clusters
of data in y-space or minimizing reconstruction errors.

As such, the number of views is not in correspondence

with the number of clusters in the sample set. Rather,

each view is justified by a good likelihood fit i.e. pro-
viding high within-class invariance. Figure 1(c) shows

an example of f(y) for a view.

3.2 An Expectation-Maximization algorithm for MLiT

Given the above, our aim is to derive the Ωl matrix

for each component of the mixture together with the

other parameters in a maximum-likelihood framework.
To this aim, we consider a set of i.i.d. observations,

Y = {yi}i=1..N , in the high dimensional space. Our

goal is then that of finding values for parameters of (7)

maximizing likelihood

L(θ) = p(Y |θ) =
N
∏

i=1

f(yi) =
N
∏

i=1

(
M
∑

l=1

αlN (Ωlyi|µl, Σl))

(8)

where θ = {Ωl, αl, µl, Σl} and l = 1..M . As usual in
similar cases, rather than attempting maximization of

(8) directly, we adopt an EM approach. This requires

positing the existence of a set of discrete, M -valued la-
tent variables, Z = {zi}i=1..N , whose minimum require-

ment is that the expression of joint probability function

f(yi, Z) be simpler than f(yi) itself. The target for max-
imization is the expected value of the complete-data

log-likelihood,

Q(θ, θg) =
∑

Y

[ln(p(Y,Z|θ)p(Z|Y, θg)] (9)
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where θ and θg represent the new and old parame-

ters, respectively. In (9), Z represents a single realiza-
tion of the entire set of the latent variables and the sum-

mation extends over all its possible MN values. Note

that EM does not require p(Y,Z|θ) to be a normalized
density and this suits our case.

We here assume that p(zi = l|yi, θ
g) expresses the

probability that the l-th view be the best at explaining
the yi sample. An expression for the two terms in (9),

ln(p(Y,Z|θ)) and p(Z|Y, θg), is derived in Appendix A,

leading to

Q(θ, θg) =

M
∑

l=1

N
∑

i=1

ln(αl)p(zi = l|yi, θ
g) +

+

M
∑

l=1

N
∑

i=1

ln(N (Ωlyi|µl, Σl))p(zi = l|yi, θ
g)(10)

where p(zi = l|yi, θ
g), or p(l|yi, θ

g) for brevity, is the
responsibility of the l-th component for the yi sample

[13]. Responsibilities are given by

p(l|yi, θ
g) =

f(yi, l|θ
g)

f(yi|θg)
=

α
g
l N (Ωlyi|µ

g
l , Σ

g
l )

∑M
k=1 α

g
kN (Ωkyi|µ

g
k, Σ

g
k)

(11)

The next step is the maximization of (10) to which
we proceed by computing the set of the first-order par-

tial derivatives and equating them to zero. This op-

eration requires an analysis of the interdependencies
between parameters. Like in any other mixture, each

partial derivative in αl depends only on αl itself and

can be resolved independently of the other parameters.
This leads to the following re-estimation formula

αl =
1

N

N
∑

i=1

p(l|yi, θ
g) (12)

The next parameter which we aim to solve for is µl.
By equating its first-order partial derivative to zero and

with further manipulation, we obtain

µl =

∑N
i=1 Ωlyip(l|yi, θ

g)
∑N

i=1 p(l|yi, θ
g)

(13)

Given that Ωl does not depend on i, it also holds

that

µl = Ωl

∑N
i=1 yip(l|yi, θg)
∑N

i=1 p(l|yi, θ
g)

= Ωlµyl (14)

where with µyl we have noted the responsibility-

weighted sample mean in y-space.
Equation (13) shows that µl depends on Ωl; there-

fore, the zeros of their derivatives should be determined

jointly to guarantee a maximum. However, to avoid
the complexity of the joint optimization, we decided

to update these two parameters with a co-ordinate as-

cent approach where, in the current EM iteration, Ωl

is optimized based on the value of µg
l from the previ-

ous iteration and µl is optimized based on the value

so determined for Ωl. While this does not guarantee

a maximum, it guarantees that Q(θ, θg) monotonically
increases along the iterations as in Generalized EM [15].

Solving for Σl in an analogous way leads to the fol-

lowing expression:

Σl =
ΣN

i=1(Ωlyi − µl)(Ωlyi − µl)
T p(l|yi, θ

g)
∑N

i=1 p(l|yi, θ
g)

= ΩlΣylΩ
T
l (15)

where with Σyl we have noted the responsibility-

weighted sample covariance in y-space. Following the
same rationale as for (13), we determine the value for

Σl in (15) based on the values determined for Ωl and

µl in the current iteration.

The maximization of Q(θ, θg) in Ωl is formally a
weighted, multivariate linear regression problem, with

the responsibilities (11) as the weights. A closed-form

solution exists for this problem [13]. However, in this
section we propose a column-wise maximization since

this will later permit us to efficiently impose the re-

quired regularization terms. We therefore break Ωl into
its P column vectors, (wj)l, j = 1..P , ignore the first

term as it does not depend on Ωl, and re-write the sec-

ond term, Q2(θ, θ
g), as

Q2(θ, θ
g) =

M
∑

l=1

N
∑

i=1

ln(N (Ωlyi|µl, Σl))p(l|yi, θ
g) =

=

M
∑

l=1

N
∑

i=1

(

((−
1

2
ln(|Σl|)−

−
1

2
((w1)lyi1...+ (wj)lyij ...+ (wP )lyiP − µl)

T

× Σ−1
l ((w1)lyi1...+ (wj)lyij ...+ (wP )lyiP −

− µl))p(l|yi, θ
g)
)

(16)

where the yij , j = 1..P, are the scalar elements of

sample yi. Our approach consists of differentiating (16)
with respect to each (wj)l while keeping the other columns

constant, and equating to zero to obtain the solution

for the column. This approach guarantees an increase
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in (16) along the lines, again, of Generalized EM. For

simplicity of notation, henceforth, we omit the l index
and the parentheses when referring to the column vec-

tors.

Thus, in order to obtain the solution for wj we dif-

ferentiate (16) and obtain

∂(Q2(θ, θ
g))

∂wj
=

N
∑

i=1

(

Σ
−1g
l (wg

1yi1...+ wjyij ...

+ w
g
P yiP − µ

g
l )yijp(l|yi, θ

g)) =

= Σ
−1g
l

N
∑

i=1

((wg
1yi1...+ wjyij ...

+ w
g
P yiP − µ

g
l )yijp(l|yi, θ

g)
)

=

= 0.

(17)

where the external sum is ignored since all its terms,

but one, are null after the differentiation.

We note that (17) is of the form Ab = 0, with A

equal to Σ
−1g
l and b, the remaining terms. Given that

A is a full rank matrix, the only solution is for b to

be equal to 0. This gives us the following simplified
equation:

∂(Q2(θ, θ
g))

∂wj
=

N
∑

i=1

((wg
1yi1 + ...+ wjyij + ...+ w

g
P yiP −

− µ
g
l )yijp(l|yi, θ

g)) =

= 0. (18)

Therefore, wj can be eventually obtained as

wj =

∑N
i=1(−w

g
1yi1...− w

g
P yiP + µ

g
l )yijp(l|yi, θ

g)
∑N

i=1 y
2
ijp(l|yi, θ

g)
(19)

Equation (19) gives the desired re-estimation for-

mula for wj ; analogously, we derive the re-estimation

formulas for the other column vectors of Ωl. During an
EM iteration, the computation of the value for wj uses

the values determined so far for wk, 0 ≤ k < j, and

values from the previous iteration w
g
k for j < k ≤ P ,

the columns yet to update.

From a computational complexity perspective, it is
generally advantageous to compute values xli = Ωlyi,

i = 1..N , explicitly and use them in place of Ωlyi for

both training and evaluation. This makes the compu-

tation only linear in the higher dimension, P , rather
than quadratic. For instance, evaluation of (7) attracts

O(MPD) complexity, which is equivalent to that of

MPPCA [2, 9].

3.3 Regularization

The proposed model (7) aims to optimize the transfor-

mation matrix, Ωl, jointly with the fitting of a mix-
ture density in the sub-spaces, thus departing from the

orthonormal restriction of PCA projections. Its major

drawback is that, in the absence of alternative con-
straints, it permits a closed-form solution where Ωl is

equal to zero: an identically null Ωl transforms any

y sample to the origin of the sub-space, leading to a
null covariance therein and artificially infinite likeli-

hood. The same phenomenon occurs for the iterative

solution presented in this section: as iterations pro-

ceed, Ωl tends to zero since Σl does correspondingly
(as shown by (15)). However, the proposed solution al-

lows us to introduce constraints preventing the norm of

Ωl from becoming smaller than a given value. This can
be achieved by an equality constraint imposing a spe-

cific norm, or “scale”, for Ωl. Moreover, it is important

that the scale of the Ωl transformations be the same
across components and across classes for likelihoods to

be comparable. We present a constrained and a normal-

ized solutions in the following subsections.

3.3.1 Constrained solution

Regularization of maximum-likelihood solutions can be

achieved by using priors adequate for the type of reg-
ularization required. This converts the point estimate

objective of maximum likelihood (8) into a maximum a

posteriori:

θ∗ = argmax
θ

(p(Y |θ)p(θ)) (20)

Common examples are the limitation in the param-

eters’ size achieved by L2-norm priors and the enforce-

ment of sparse solutions typical of L1-norm priors [13].
Rather, our goal is to strictly impose the same norm on

all the Ωl transformations in our models (7); we express

this constraint as g(Ωl) = ‖Ωl‖ − s = 0, where s is the
chosen value for the norm. Imposing this constraint is

equivalent to using prior

p(Ωl) =

{

1 g(Ωl) = 0

0 otherwise
(21)

This prior retains the shape of the likelihood in cer-

tain regions of the parameter space and is therefore sim-

ple to impose. Further, it guarantees that the norm of
all transformations be the same across components and

classes. The full derivation of the constrained solution

is presented in Appendix B.
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3.3.2 Normalized solution

In this subsection, we present a simpler, alternative ap-

proach to the regularization of the solution of (17) that

normalizes the transformation matrix, Ωl, after each M

step (MLiT (N)). Normalization is achieved by dividing

Ωl by its norm

Ωl =
Ωl

norm(Ωl)
(22)

A number of matrix norms can be used in (22) such
as L-2 (the maximum singular value of Ω), L-1, L-

infinity, Frobenius and others, or even entrywise norms

such as that we used in (34). However, from our exper-
iments, we noticed that the Frobenius norm provided

the highest and most stable results. Therefore, in the

following, we report results based on this norm

A major difference between the constrained and the
normalized solution is as follows: in the former, the M

step is only allowed to find parameters satisfying the

constraint. In the latter, theM step searches for param-
eter values in an unconstrained manner, and then nor-

malizes the solution found. The expectation-maximiza-

tion steps become therefore expectation-maximization-
normalization steps. A second major difference derives

from the column-wise update of the constrained solu-

tion, that restricts the constraint to apply to one col-

umn at a time as in (35), rather than on the entire
matrix (34). This prevents the evolving solution from

exploring variable proportions between the columns’

norms. It is therefore evident that the normalized solu-
tion is allowed to explore the parameter space more

broadly, and possibly produce a more effective final

value. Its obvious disadvantage is that the normalized
parameters might or might not produce higher likeli-

hood than at the previous iteration. For this reason,

we monitor the evolution of the likelihood along the

iterations and elicit ad-hoc criteria for convergence.

3.4 Initialization and Convergence

In this subsection, we discuss the initialization strat-
egy for the MLiT EM algorithm. In EM, the parame-

ter values traversed along the iterations and the likeli-

hood value achieved at convergence may strongly de-
pend on the parameters’ initial values. Different ap-

proaches have been proposed for dealing with this is-

sue, including: initialization by clustering; running mul-

tiple starts and choosing the solution that provides the
highest log-likelihood; split-and-merge operations; and

others [16]. For our approach, we choose to apply a

deterministic initialization to ensure repeatable results

at each run. Namely, we decided to initialize the pro-

jection matrix, Ω, by the orthonormal transformation
provided by PCA, selecting either the largest or the

smallest eigenvectors (i.e. the eigenvectors associated

with the largest and smallest eigenvalues, respectively).
Projecting the data by the largest eigenvectors trans-

forms them into a space where their variance is maxi-

mized and, under the hypothesis that their distribution
be Gaussian, the likelihood is minimum amongst all or-

thonormal projections [17]. Conversely, projecting them

with the smallest eigenvectors transforms them into a

space where their variance is minimized and likelihood
is maximum. Initializing with the largest eigenvectors

forces EM to explore a large region of the parameter

space before convergence. In contrast, initializing with
the minimum eigenvectors is likely to start EM near a

local maximum of the likelihood and typically permits

a faster convergence. In our experiments, we noticed
that there is no certain initialization method that al-

ways provide the best classification accuracy. Thus, we

experiment with both methods and choose that provid-

ing greater accuracy over a cross-validation test.
As the data per class are projected to each of the

components, the initial parameters of the EM algorithm

are chosen as follows:

– The initial mean µl and covariance matrix Σl of

each component are computed as the sample mean

and sample covariance of the projected data.

– The initial priors αl for l = 1..M , are chosen to be
equal across all the components.

In Tables 1 and 2, we present a summary of the

MLiT learning algorithm and its initialization proce-
dure respectively.

4 Experiments and analysis

The empirical evaluation of a classifier’s accuracy re-
quires extensive testing over multiple data sets and a

comparative analysis with existing, state-of-the-art clas-

sifiers. To this aim, in this section we present details on
the data sets used and experiments conducted.

4.1 Data sets

We evaluate the proposed method on five data sets,

four of which are selected from the UCI Machine Learn-

ing Repository [18], and are widely used by the pat-

tern recognition community for evaluating learning al-
gorithms. These four data sets are the Vehicle data set,

Wisconsin Diagnostic Breast Cancer data set (WDBC),

Wisconsin Prognostic Breast Cancer (WPBC) data set,
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Table 1 Summary of MLiT main algorithm.

Main Algorithm. It is executed for each c class sepa-

rately, where c = 1..C

[Ωl, θl]l=1..M=MLiT(Method, Y,D,M, S)

Input:

- Method: ′CONS′ for Constrained and ′NORM ′ for Normal-
ized
- Y = {yn}n=1..N : set of N samples, with dim(Y ) = PxN
- D: number of reduced dimensions
- M : number of components
- S: scale of the transformation

Output:

- Ωl: final transformation matrix for the l-th reduced space,
l = 1, ...M , dim(Ωl) = DxP

- θl = {αl, µl, σl}: final parameters of the Gaussian for the l-th
reduced space
Local variables:

- Xl = {xln}n=1..N : transformed data in the l-th reduced
space, with dim(Xl) = DxN

1. [Xl, Ωl, θl]l=1..M=INITIALIZE(Method, Y,D,M, S)

2. IF Method =′CONS′ THEN

- Column counter for Ωl: j = 1;
END IF

3. Do EM until convergence, maximum iterations or

stop condition

4. E-step:

p(l|yi, θ) =
αlN(xli|µl,Σl)∑M

k=1
αkN(xki|µk,Σk)

5. M-step:

IF Method =′CONS′ THEN

- wnew
j : Lagrangian equation for single column update

imposing 2D linear constraints

- Among the 2D possible constraints on wj , select the first
such that norm(wj) = S/P

- IF none THEN stop END IF

- Increase column counter for updating the next column:
j = j + 1

- IF j=P+1 THEN j=1 END IF

ELSE-IF Method =′NORM ′ THEN

- Ωnew
l : {wnew

j = f(wnew
1 , ..., wnew

j−1 , wj+1, ..., wP )}

,j = 1, .., P

- Normalize Ωl =
Ωl

norm(Ωl)
S

END IF

- Compute new transformed data: Xnew
l = Ωnew

l Y

- Compute new values for αnew
l , µnew

l , Σnew
l

- IF convergence or maximum number of iterations THEN

stop END IF
- Increase number of iterations counter

6. Repeat from 3.

and Optical Handwritten Digits data set (OpticDigit).
The last data set, named Public Premises Video Surveil-

lance data set (PPVS), was collected by the authors

themselves.

The Vehicle data set involves classification of a given

silhouette as one of four types of vehicles, namely, “bus”,

“Opel”, “Saab” and “van”. The vehicle silhouettes are
described by various shape measurements. The ratio-

nale for choosing this data set is that it is the most

similar in the UCI repository to our own data set and

can offer a comparative insight into the method’s per-
formance. The WDBC and WPBC data sets contain

various shape features from images of fine needle aspi-

rates (FNA) of breast mass for diagnosis and progno-

Table 2 Summary of MLiT initialization phase.

Initialization Algorithm:

[Xl, Ωl, θl]l=1..M=INITIALIZE(Method, Y,D,M, S)

Input:

- Method, Y , D, M and S as in MLiT

Output:

- Xl = {xln}n=1..N : initial transformed data in the l-th reduced
space, with dim(Xl) = DxN
- Ωl: initial transformation matrix for the l-th reduced space,

l = 1, ...M , dim(Ωl) = DxP
- θl = {αl, µl, Σl}: initial parameters of the Gaussian for the

l-th reduced space

1. Calculate U = Eig(COV (Y )), where U are the eigenvectors

2. Initialize Ωl using consecutive largest or smallest eigenvectors
of U

3. Express Ωl as P , Dx1 column vectors with index j →
→ Ωl = {(wj)l}, j = 1..P

4. IF Method =′CONS′ THEN

- Normalize each column vector as

(wj)l =
(wj)l

norm((wj)l)
S
P

ELSE-IF Method =′NORM ′ THEN

- Normalize the whole matrix as Ωl =
Ωl

norm(Ωl)
S

END IF

5. Compute initial transformed data: Xl = ΩlY

6. Compute initial values for θl = {µl, Σl, αl}:

- αl = 1
M

- µl = 1
N

∑N
n=1 xln

- Σl = 1
N−1

∑N
n=1(xln − µl)(xln − µl)

T

sis of breast cancer. The OpticDigit data set is based
on rescaled bitmaps of handwritten digits: the origi-

nal 32x32 black and white bitmaps are divided into

non-overlapping blocks of 4x4 pixels and the number
of ‘on’ pixels counted in each block, resulting in a 64-

dimensional feature vector of homogeneous features. The

Public Premises Video Surveillance data set (PPVS) is
based on video footage provided by an industrial part-

ner. It involves classification of an object in a video

surveillance environment into one of four classes: “trol-

leys”, “bags”, “single persons”, and “groups of people”.
The images of these objects have been clipped from

video footage acquired at a number of airports and

train stations world-wide. The feature set consists of
statistics of various local features such as line segments,

circles, corners, and global shape descriptors such as

fitted ellipses and bounding boxes. This feature set is
described in detail in [19].

As we can conclude from the previous paragraphs

and the data displayed in Table 3, there are major dif-

ferences between these five data sets in terms of:

– nature of data and application context,

– number of instances available,
– number of features extracted,

– types of features used for representation, and

– number of classes.

Therefore, the chosen data sets offer a suitable basis

for comparative analysis.
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Table 3 Comparative summary of the data sets used.

Data set # Features # Instances # Classes

Vehicle 18 846 4

OpticDigit 64 5620 10

WDBC 30 569 2

WPBC 33 198 2

PPVS 44 600 4

4.2 Experiments

In this subsection, we present classification results for
the proposed method on the five aforedescribed data

sets. We compare the performance of our approach with

that of mixture of PPCA (MPPCA) and Gaussian mix-
ture model (GMM). Experiments with these classifiers

were carried out in MATLAB by setting all tunable pa-

rameters in the most genuine way to achieve the highest

performance. We summarize below the main parame-
ters, and in Table 4, we report the values that achieved

the best accuracy results. The parameters are as fol-

lows:

– GMM: There is one main parameter, the number of
the GMM components (M ).

– MPPCA: There are two main parameters, the num-

ber of reduced dimensions (D), and the number of

mixture components (M ).

For MLiT, the initial parameters for the mixture
distribution and transformation matrices for each class

are as follows:

– The number of the mixture components (M) and

reduced dimensions (D) were manually selected as

reported in Table 4.
– The initial transformation matrices for each class,

Ω[0], were computed by using either the smallest or

the largest consecutive eigenvectors of the covari-
ance matrix of the original data. For example, in

the case of largest eigenvectors, two components per

class (M = 2), and a reduced space of three dimen-

sions (D = 3), we select the three first eigenvectors

for Ω
[0]
1 and the eigenvectors between the third and

the fifth for Ω
[0]
2 .

– Transformed data: X
[0]
l = Ω

[0]
l Y , l = 1..M .

– Covariance type in the reduced space: full.

– Means, µ
[0]
l , and covariances, Σ

[0]
l , l = 1..M : com-

puted as the sample means and sample covariances

of the transformed data.

– Equal priors for all components, α
[0]
l = 1

M , l = 1..M .

A covariance matrix can become singular wherever

a component maps one sample only, causing artificially

infinite likelihood. With our method, the covariance

matrix may also become singular if Ω takes a rank that
is less than D. To prevent this singularity from occur-

ring, we simply add a small value of 0.01 to the elements

on the principal diagonal of all covariance matrices.

As stopping criteria, for MLiT (C) the EM algo-
rithm continues to iterate until either there are no more

solutions satisfying the imposed constraints (36) and

(37), or EM converges. We set the convergence thresh-
old on the difference between two consecutive values of

the log-likelihood to 0.01. Convergence of MLiT (C) is

ensured as the constrained solution guarantees mono-
tonic increase of the likelihood. However, for MLiT (N)

the normalization step does not guarantee such a mono-

tonic increase in the likelihood; hence, we elicit an ad-

hoc criteria for stopping by running the EM algorithm
for 50 iterations and choosing that delivering the maxi-

mum accuracy by cross-validation. For MPPCA, we ob-

served that the accuracy stabilized after 200 iterations.
For GMM, instead, accuracy stabilization was empiri-

cally achieved after 50 iterations.

Classifiers were all trained in a supervised manner.

Once an f(y|c) probability function is learned from
samples of each c class, c = 1..C, maximum likelihood

classification is simply given by

c∗ = argmax
c

(f(y|c)) (23)

For validation, we have chosen 5-fold cross-validation
since it offers a good trade off between the large bias of

the hold-out method and the large variance of the leave-

one-out method [20, 21]. This implies randomly parti-
tioning the data set into five disjoint subsets, training

the classifier with four and using the last for testing.

Classification accuracy is averaged over five runs by us-
ing, in turn, each fold for testing. We express classifi-

cation accuracy simply as the percentage of correctly

classified instances with respect to their total number:

accuracy =
number of correctly classified samples

total number of samples

(24)

It is important to note that, in the following, we

report the classification results in terms of two statis-

tical measures: average accuracy over the various runs,
and standard deviation. However, we chose the average

accuracy as the main measure for comparing the differ-

ent classifiers; nevertheless, the standard deviation is

an important measure for the precision of the classifi-
cation accuracy, and it can be considered together with

the accuracy for a better estimate of the classification

performance.
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Table 4 Results for 5-fold CV in terms of accuracy (%), on five data sets and across different classifiers, with the highest indicated in
boldface font. For each dataset, the first row presents the main parameters’ values for different classifiers, and the second row shows
the achieved accuracy (%).

Classifier MLiT (C) MLiT (N) MPPCA GMM

Parameters D M D M D M M

Dataset

Vehicle 14 2 14 2 10 2 2

(%) 80.6 ±2.1 85.6 ±1.9 83.6 ±1.3 82.8 ±1.9

OpticDigit 19 5 29 2 16 1 2

(%) 96.0 ±0.5 98.4 ±0.3 98.6 ±0.4 96.9 ±0.3

WDBC 7 4 18 1 20 2 2

(%) 95.4 ±1.5 96.1 ±1.7 94.7 ±1.7 95.9 ±1.8

WPBC 6 2 4 4 15 4 4

(%) 76.9 ±0.0 77.4 ±1.1 76.9 ±0.0 75.9 ±1.4

PPVS 15 2 33 1 25 2 2

(%) 72.8 ±4.9 76.7 ±2.4 73.5 ±4.0 73.3 ±2.1

Table 4 reports the best results of 5-fold cross-val-

idation on the various data sets and across the com-

pared classifiers. We note that in this table, for MLiT,
all results are obtained with largest eigenvectors initial-

ization except the cases of MLiT (N) on Vehicle and

WPBC data sets.

It is clear from this table that, in all cases, MLiT (N)

outperformed MLiT (C). This can be explained by the
greater freedom that MLiT (N) enjoys in searching the

parameter space during training. Hence, it has higher

chance of finding better values.

We can also note from Table 4 that the performance

of MLiT outperformed that of MPPCA on four out of
the five compared data sets with improvements rang-

ing from 0.5% to 3.2%, proving the strength of MLiT

against a state-of-the-art classifier (MPPCA slightly

outperformed MLiT by 0.2% only on the OpticDigit
data set). Moreover, we can note that, in all cases, the

performance of MLiT outperformed that of GMM with

improvements ranging from 0.2% to 3.4%. This illus-
trates the ability of MLiT in overcoming the curse of

dimensionality and providing better performance in the

reduced space. MPPCA has also provided better clas-
sification results than GMM on majority of the data

sets.

Overall, the experiments on the five data sets pre-

sented in this section showed that MLiT generally re-

ported higher experimental accuracy over both com-
pared classifiers. Interpretation of accuracy results in

high dimensional spaces is not immediate: we lean to

attribute these improvements to the Gaussian-uniform

distribution property of focussing on invariant features.
This permits the building of compact models that have

proved discriminative when used with the Bayes in-

version rule, while it introduces elements of robust-

ness since outliers are ousted to the discarded dimen-

sions during training as much as possible. The non-

orthogonality of the transformation adds further de-
grees of freedom to the model.

5 Conclusions

In this paper, we have presented a novel method for

linear dimensionality reduction within mixture distri-

butions. The model that we have proposed for the class-

conditional likelihood is a mixture of Gaussian distri-
butions under linear transformations (7). This model

equates to a uniform distribution along the discarded

dimensions and a full Gaussian model along the re-
tained dimensions. It is important to contrast this model

properly to the several existing methods for linear di-

mensionality reduction in mixture models such as mix-
tures of PCA, PPCA, FA and t-distributions. The main

point of difference is that the linear transformation is

not restricted to be orthogonal or related to eigenvec-

tors. Further, the linear model adopted, x = Ωy, does
not assume additive noise models and makes x observ-

able. On the ground of that, we can evaluate density

N (Ωy|µ,Σ) = N (x|µ,Σ) directly in x -space. How-
ever, the non-orthogonality of the transformation make

the scale of the compressed x -spaces become arbitrary.

Therefore, we have proposed two regularized solutions
that impose a common scale to all the transformations

based on constrained optimization (MLiT (C)) and nor-

malization (MLiT (N)). However, from the experimen-

tal results, we noticed that MLiT (N) delivers higher
classification results compared to MLiT (C). As we pre-

sented earlier, this is explained by the fact that MLiT

(N) enjoys more freedom in exploring the parameter
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space during training, possibly finding better solutions

compared to MLiT (C).

The experimental performance of MLiT has proved
to outperform that of MPPCA and GMM in almost all

cases with improvements ranging from 0.2% to 3.4%

compared to the runner-up. The only case where MLiT

did not deliver the best accuracy is on the OpticDigit
data set where MPPCA slightly outperformed MLiT by

0.2%.

In addition to visual object classification, the pro-

posed method permits general application for density

modeling and classification of other continuous numer-
ical data requiring dimensionality reduction. Moreover,

its re-estimation formulas can be easily extended to suit

boosting and other weighted maximum likelihood tar-
gets and adapt to a variety of pattern recognition frame-

works.

A The expected complete-data log likelihood

for MLiT

In this appendix, we show the derivation of the two main terms
in (9),

Q(θ, θg) =
∑

Y

[

ln(p(Y, Z|θ))p(Z|Y, θg)
]

(25)

namely, the complete data log-likelihood, ln(p(Y, Z|θ), and
the posterior for the latent variables, p(Z|Y, θg). Whereas we re-
port this derivation herewith for completeness, it could be easily

derived from the equivalent derivation for conventional Gaussian

mixtures.

We begin with the derivation of an expression for ln(p(Y, Z|θ).
We first apply Bayes theorem

ln(p(Y, Z|θ) = ln(p(Y |Z, θ)p(Z|θ)). (26)

Given the following assumptions: a) the mutual independence
of the yi observations b) the dependence of yi only on its own
latent variable, zi and c) the mutual independence of the zi, we

have

ln(p(Y |Z, θ)p(Z|θ)) = ln
(

N
∏

i=1

(p(yi|Z, θ))p(Z|θ)
)

= ln
(

N
∏

i=1

(p(yi|zi = l, θ))p(Z|θ)
)

= ln
(

N
∏

i=1

(p(yi|zi = l, θ))
N
∏

i=1

p(zi = l|θ)
)

= ln
(

N
∏

i=1

[(p(yi|zi = l, θ))p(zi = l|θ)]
)

=

N
∑

i=1

ln
[

(p(yi|zi = l, θ))p(zi = l|θ)
]

(27)

The argument of the logarithm can be written as

p(yi|zi = l, θ)p(zi = l|θ) = N (Ωly|µl, Σl)αl. (28)

Therefore, we have the final equivalence

ln(p(Y, Z|θ)) =
N
∑

i=1

ln
[

αlN (Ωlyi|µl, Σl)
]

. (29)

The next term needed is posterior p(Z|Y, θg). Under the as-
sumptions above, the probability of any entire assignment, Z,

conditioned on the observations is

p(Z|Y, θg) =
N
∏

i=1

p(zi = l|yi, θ
g). (30)

Let us then apply Bayes theorem, again, to p(zi = l|yi, θg)

p(zi = l|yi, θ
g) =

p(zi = l|θg)p(yi|zi = l, θg)

p(yi|θg)
(31)

In the above, we have three terms in the right member. In
the numerator, there are the terms that we have computed for
(28). The denominator is the marginal probability of y over all
the components. Therefore, the above equation becomes

p(zi = l|yi, θ
g) =

αg

l
N (Ωlyi|µ

g

l
, Σg

l
)

∑M
k=1 α

g

l
N (Ωlyi|µ

g

l
, Σg

l
)

(32)

justifying our formula for the responsibilities. We can now
replace both terms (29), (30) in Q(θ, θg) to obtain

Q(θ, θg) =
∑

Y

[(

N
∑

i=1

ln[αlN (Ωlyi|µl, Σl)]
)(

N
∏

i=1

p(zi = l|yi, θ
g)
)]

(33)

The following simple steps leading to (10) can be repeated
from [22].

B A constrained Expectation-Maximization

algorithm for MLiT

In this appendix, we present the regularized solution based on
this constrained optimization (MLiT (C)). Again, we update one
column vector, wj , at a time while keeping the others still. As

a constraint on Ωl, g(Ωl) = 0, we choose an entrywise L1-norm
constraint, g(Ωl) = ‖Ωl‖L1 − s = 0; constant s is the chosen
value for the norm, or scale:

g(Ωl) =

D
∑

i=1

P
∑

k=1

|wik| − s = 0 (34)

where dim(Ωl) = DxP . However, as we update only one wj

column at a time, we need to impose this constraint in a column-
wise manner. Therefore, we turn (34) into the stronger constraint
g(wj)

g(wj) =

D
∑

i=1

|wij | − (c = s/P ) = 0 (35)
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A solution for (17) under constraint (35) may be obtained
by using a constrained optimization solver such as CML [23].
However, we prefer to provide an inline solution for reasons of
speed and independency. Constraint (35) can be represented in
an expanded notation as

g(wj) = ±w1j ± w2j ± ...± wDj − c = 0 (36)

under condition

|w1j | , |w2j | , ...,
∣

∣wDj

∣

∣ ≤ c. (37)

Eq. (36) shows the 2D different combinations of signs that
the constraint can take, leading to 2D different linear constraints

that do not use absolute values. Whereas the number of such con-
straints is significant, it is tolerable for typical values of D. In con-
trast, alternative approaches for computing equality-constrained
solutions impose constraints on the rows of Ω [24]. The number

of constraints so required is in the order of 2P , exponential in the
high dimension, P , and therefore unmanageable. This is the ulti-
mate justification for our choice of a column-wise solution for the
maximization of Q(θ, θg) in Ωl. Our constrained approach first
solves (17) under each of the (36) linear constraints. If solutions
are found, they are then tested post-hoc for satisfaction of (37).

For examplification, let us consider one of the (36) constraints

g(wj) = w1j + w2j ...+ wDj − c = 0 (38)

Then, consider the Lagrangian equation

h(wj) = f(wj) + λg(wj)

= f(wj) + λ
(

D
∑

i=1

wij − c
)

(39)

where f(wj) is Q(θ, θg) (10) (or (16) likewise), λ is the La-

grange multiplier, and g(wj) is the constraint. Eq. (39) can be
written as

h(wj) =
N
∑

i=1

(

(−
1

2
ln(|Σl|)−

−
1

2
(w1yi1 + ...+ wjyij + ...+ wpyip − µl)

T

× Σ−1
l

(w1yi1 + ...+ wjyij + ...+ wpyip − µl))

× p(l|yi, θ
g)
)

+ λ
(

D
∑

i=1

wij − c
)

(40)

where the external sum is ignored since all its terms, but one,
are null after the differentiation.

The derivative of (40) in wj is

∂(h(wj))

∂wj

=
N
∑

i=1

(

Σ−1g
l

(wg
1yi1 + ...+ wjyij + ...+ wg

pyip

− µg

l
)yijp(l|yi, θ

g)
)

+ λ1 =

= 0

(41)

where 1 stands for aD×1 vector of all ones. By pre-multiplying
(41) by Σg

l
, we obtain:

∂(h(wj))

∂wj

=
N
∑

i=1

(

(wg
1yi1 + ...+ wjyij + ...+ wg

pyip − µg

l
)

× yijp(l|yi, θ
g) + λΣg

l
1
)

=

= 0

(42)

By setting r = ΣN
i=1y

2
ijp(l|yi, θ

g), and collectively naming b

all terms in
[

wg

k

]

k=1..P,k 6=j
, we obtain

Rl
∂(h(wj))

∂wj

= rwj + b+ λΣg

l
1

= 0 (43)

The solution for wj can then be written as

wj =
−b− λΣg

l
1

r
(44)

Let us now call snm the D×D elements of Σg

l
in row-column

notation and make (44) explicit in its D rows











w1j =
−b1−λ(s11+...+s1D)

r

...

wDj =
−bD−λ(sD1+...+sDD)

r

We are eventually in a position to impose the g(wj) constraint
by adding up all left and right members of (45). On the left, we
obtain c, a known value. On the right, a linear function of λ.
Therefore, λ can be solved for immediately as

λ =
−(cr + b1 + ...+ bD)

(s11 + ...+ sDD)
(45)

With λ thus computed, its value is replaced in (44) to obtain
the desired, constrained solution for wj . For each of the other
remaining constraints, λ is also calculated and the corresponding

constrained solutions of wj are obtained. We note that, in order
for the EM algorithm to continue iterating, at least one constraint
solution for wj satisfying (36) and (37) is needed. We also note

that there is no specific relevance for the choice of s: changing
scale would lead to scaled densities for all components and classes
and equivalent classification outcomes; possible differences can
be imputed to numerical resolution. In the experiments, we have
tried different values of s in a logarithmic scale and chosen that
corresponding to the highest classification accuracy.
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