Skip to main content
Log in

An extension to fuzzy support vector data description (FSVDD*)

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The well-known support vector data description (SVDD) is based on precise description of precise data. When we know the features of training samples precisely and we are uncertain about their class labels, the fuzzy SVDD can be used to obtain the data description. But if the features of training samples are fuzzy numbers, the fuzzy SVDD cannot be utilized. In this paper, we extend the fuzzy SVDD for the description of such training samples and then apply our proposed method, called FSVDD*, to real data. The experimental results show the ability of the proposed method in Taiwanese tea evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bigand A, Colot O (2010) Fuzzy filter based on interval-valued fuzzy sets for image filtering. Fuzzy Sets Syst 161:96–117

    Article  MathSciNet  Google Scholar 

  2. Hong D, Hwang C (2006) Fuzzy nonlinear regression model based on LS-SVM in feature space. In: Fuzzy Systems and Knowledge Discovery, pp 208–216

  3. Yang R, Wang Z, Heng P-A, Leung K-S (2007) Classification of heterogeneous fuzzy data by Choquet integral with fuzzy-valued integrand. IEEE Trans Fuzzy Syst 15:931–942

    Article  Google Scholar 

  4. Hao P-Y (2008) Fuzzy one-class support vector machines. Fuzzy Sets Syst 159:2317–2336

    Article  MATH  Google Scholar 

  5. Gambardella A, Giacinto G, Migliaccio M, Montali A (2009) One-class classification for oil spill detection. Pattern Anal Appl 13:349–366

    Article  MathSciNet  Google Scholar 

  6. Cordella L, Sansone C (2007) A multi-stage classification system for detecting intrusions in computer networks. Pattern Anal Appl 10:83–100

    Article  MathSciNet  Google Scholar 

  7. Khuwaja G, Abu-Rezq A (2004) Bimodal breast cancer classification system. Pattern Anal Appl 7:235–242

    MathSciNet  Google Scholar 

  8. Rajanna U, Erol A, Bebis G (2010) A comparative study on feature extraction for fingerprint classification and performance improvements using rank-level fusion. Pattern Anal Appl 13:263–272

    Article  MathSciNet  Google Scholar 

  9. Torkkola K (2004) Discriminative features for text document classification. Pattern Anal Appl 6:301–308

    Article  MathSciNet  Google Scholar 

  10. Song F, Liu S, Yang J (2005) A comparative study on text representation schemes in text categorization. Pattern Anal Appl 8:199–209

    Article  MathSciNet  Google Scholar 

  11. Shanthi N, Duraiswamy K (2009) A novel SVM-based handwritten Tamil character recognition system. Pattern Anal Appl 13:173–180

    Article  MathSciNet  Google Scholar 

  12. Bajla I, Holländer I, Czedik-Heiss D, Granec R (2009) Classification of image objects in Epo doping control using fuzzy decision tree. Pattern Anal Appl 12:285–300

    Article  Google Scholar 

  13. Khuwaja G (2005) Merging face and finger images for human identification. Pattern Anal Appl 8:188–198

    Article  MathSciNet  Google Scholar 

  14. Tolba AS, Abu-Rezq AN (2000) Combined classifiers for invariant face recognition. Pattern Anal Appl 3:289–302

    Article  MathSciNet  MATH  Google Scholar 

  15. Sansone C, Vento M (2000) Signature verification: increasing performance by a multi-stage system. Pattern Anal Appl 3:169–181

    Article  Google Scholar 

  16. Tax DMJ, Duin RPW (1999) Support vector domain description. Pattern Recogn Lett 20:1191–1199

    Article  Google Scholar 

  17. Tax DMJ, Duin RPW (2004) Support vector data description. Mach Learn 54:45–66

    Article  MATH  Google Scholar 

  18. Zhang Y, Chi Z-X, Li K-Q (2009) Fuzzy multi-class classifier based on support vector data description and improved PCM. Expert Syst Appl 36:8714–8718

    Article  Google Scholar 

  19. Bazara MS, Sherali HD, Shetty CM (2006) Nonlinear programming, 3rd edn. Wiley, New York

  20. Liu S-T (2009) A revisit to quadratic programming with fuzzy parameters. Chaos Solitons Fractals 41:1401–1407

    Article  MathSciNet  MATH  Google Scholar 

  21. Tian J, Ha M-H, Li J-H, Tian D-Z (1996) The fuzzy-number based key theorem of statistical learning theory. In: Machine learning and cybernetics, Dalian, China, pp 3475–3479

  22. Hathaway RJ, Bezdek JC, Pedrycz W (1996) A nonparametric model for fusing heterogeneous fuzzy data. IEEE Trans Fuzzy Syst 4:270–281

    Article  Google Scholar 

  23. Yang M-S, Ko C-H (1996) On a class of fuzzy c-numbers clustering procedures for fuzzy data. Fuzzy Sets Syst 84:49–60

    Article  MathSciNet  MATH  Google Scholar 

  24. Hung W-L, Yang M-S (2005) Fuzzy clustering on LR-type fuzzy numbers with an application in Taiwanese tea evaluation. Fuzzy Sets Syst 150:561–577

    Article  MathSciNet  MATH  Google Scholar 

  25. Hand DJ, Mannila H, Smyth P (2001) Principles of data mining. MIT Press, Cambridge

  26. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence, pp 1137–1143

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Forghani.

Appendix

Appendix

The Lagrangian dual form of the program (1) is as follows:

$$ \begin{gathered} { \max }_{\delta ,\gamma } L(R,e,\xi ,\delta ,\gamma ) \hfill \\ {\text{subject}}\;{\text{to}}\;\delta_{i} ,\gamma_{i} \ge 0,\quad i = 1, \ldots ,n, \hfill \\ \end{gathered} $$
(29)

where δ = (δ 1, …, δ n )Tγ = (γ 1, …, γ 2)T and

$$ L(R,e,\xi ,\delta ,\gamma ) = { \inf }\left\{ {R^{2} + C\sum\limits_{i = 1}^{n} {w_{i} \xi_{i} } - \sum\limits_{i = 1}^{n} {\delta_{i} (R^{2} + \xi_{i} - g(x_{i} )^{\text{T}} g(x_{i} ) + 2e^{\text{T}} g(x_{i} ) - e^{\text{T}} e)} - \sum\limits_{i = 1}^{n} {\gamma_{i} \xi_{i} } } \right\}. $$
(30)

For the optimal solution, the following conditions are satisfied

$$ {\frac{\partial L}{\partial R}} = 0 \to \sum\limits_{i = 1}^{n} {\delta_{i} = 1} , $$
(31)
$$ {\frac{\partial L}{\partial e}} = 0 \to e = \sum\limits_{i = 1}^{n} {\delta_{i} g(x_{i} )} , $$
(32)
$$ {\frac{\partial L}{\partial \xi }} = 0 \to \delta_{i} = Cw_{i} - \gamma_{i} ,\quad i = 1, \ldots ,n, $$
(33)
$$ \delta_{i} (\left\| {g(x_{i} ) - e} \right\|^{2} - R^{2} - \xi_{i} ) = 0,\quad i = 1, \ldots ,n, $$
(34)
$$ \gamma_{i} \xi_{i} = 0,\quad i = 1, \ldots ,n, $$
(35)

Using the above conditions, L(Reξδγ) is transformed to

$$ \sum\limits_{i = 1}^{n} {\delta_{i} K(x_{i} ,x_{i} )} - \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\delta_{i} \delta_{j} K(x_{i} ,x_{j} ),} } $$
(36)

where K(x i x j ) = g(x i )T g(x j ). Since δ i  ≥ 0 and from (33) we have \( 0 \le \delta_{i} \le Cw_{i} . \) So, the Lagrangian dual form of (1) can be restated as follows:

$$ \begin{gathered} { \max }_{\delta } \sum\limits_{i = 1}^{n} {\delta_{i} K(x_{i} ,x_{i} )} - \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\delta_{i} \delta_{j} K(x_{i} ,x_{j} )} } \hfill \\ {\text{subject}}\;{\text{to}}\left\{ {\begin{array}{l} {\sum\nolimits_{i = 1}^{n} {\delta_{i} = 1,} } \hfill \\ {0 \le \delta_{i} \le Cw_{i} ,\quad i = 1, \ldots ,n,} \hfill \\ \end{array} } \right. \hfill \\ \end{gathered} $$
(37)

which is a conventional quadratic program and can be solved easily. From (32), \( \left\| {g(x_{i} ) - e} \right\|^{2} = K(x_{i} ,x_{i} ) - 2\sum\nolimits_{j = 1}^{n} {\delta_{j} K(x_{i} ,x_{j} ) + \sum\nolimits_{j = 1}^{n} {\sum\nolimits_{k = 1}^{n} {\delta_{j} \delta_{k} K(x_{j} ,x_{k} )} } } \) and from (34) if \( \delta_{i} > 0, \) \( K(x_{i} ,x_{i} ) - 2\sum\nolimits_{j = 1}^{n} {\delta_{j} K(x_{i} ,x_{j} ) + \sum\nolimits_{j = 1}^{n} {\sum\nolimits_{k = 1}^{n} {\delta_{j} \delta_{k} K(x_{j} ,x_{k} ) = R^{2} + \xi_{i} .} } } \) From (33) if \( \delta_{i} < Cw_{i} ,\;\gamma_{i} > 0. \) So, from (35) we have \( \xi_{i} = 0. \) So, if \( 0 < \delta_{i} < Cw_{i} , \)

$$ R^{2} = K(x_{i} ,x_{i} ) - 2\sum\limits_{j = 1}^{n} {\delta_{j} K(x_{i} ,x_{j} )} + \sum\limits_{j = 1}^{n} {\sum\limits_{k = 1}^{n} {\delta_{j} \delta_{k} K(x_{j} ,x_{k} ).} } $$
(38)

Finally, the unknown datum x is inside the hypersphere if \( \left\| {g(x) - e} \right\|^{2} \le R^{2} \) or equivalently if

$$ K(x,x) - 2\sum\limits_{i = 1}^{n} {\delta_{i} K(x,x_{i} )} + \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\delta_{i} \delta_{j} K(x_{i} ,x_{j} ) \le R^{2} .} } $$
(39)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forghani, Y., Sadoghi Yazdi, H. & Effati, S. An extension to fuzzy support vector data description (FSVDD*). Pattern Anal Applic 15, 237–247 (2012). https://doi.org/10.1007/s10044-011-0208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-011-0208-z

Keywords

Navigation