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Abstract We introduce a novel evolution-based seg-

mentation algorithm which uses the heat flow analogy to

gain practical advantage. The proposed algorithm consists

of two parts. In the first part, we represent a particular heat

conduction problem in the image domain to roughly seg-

ment the region of interest. Then we use geometric heat

flow to complete the segmentation, by smoothing extracted

boundaries and removing noise inside the prior segmented

region. The proposed algorithm is compared with active

contour models and is tested on synthetic and medical

images. Experimental results indicate that our approach

works well in noisy conditions without pre-processing. It

can detect multiple objects simultaneously. It is also

computationally more efficient and easier to control and

implement in comparison with active contour models.

Keywords Feature extraction � Shape extraction �
Segmentation � Heat flow

1 Originality and contribution

In this paper, we introduce a novel evolution-based image

segmentation algorithm based on the heat flow analogy.

Our model is new and different because of the evolution

technique and organization of segmentation. The evolution

is achieved with the heat conduction equations to

gain practical advantages. Our model is also organized

effectively to improve the segmentation. The proposed

algorithm has two parts. In the first part, we represent a

particular heat conduction problem in the image domain to

roughly segment the region of interest. Then, in the second

part, geometric heat flow is used to complete the seg-

mentation, by smoothing extracted boundaries and

removing noise inside the prior segmented region. Our

algorithm is compared with popular active contour models

and is tested on synthetic and medical images. Experi-

mental results indicate that our approach works well in

noisy conditions. It is also computationally more efficient

and easier to control and implement in comparison with

active contour models.

2 Introduction

There are two main types of shape extraction method that

evolve to the target solution: active contours and region

growing techniques. We first review these techniques with

special consideration of their advantages and practical

limitations. We then describe techniques which are based

on the use of the heat flow analogy, including the proposed

model and its advantages as a segmentation technique.

2.1 Related works

2.1.1 Active contours

Active contours (snakes) are curves that evolve to recover

object shapes. Active contours can be classified as Para-

metric Active Contours (PAC) and Geometric Active

Contours (GAC) according to their representation. These

models mainly differ in their ability to handle multiple

object detection, computational efficiency and complexity

of implementation.
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A PAC is a parametric curve which is represented

explicitly. There are internal and external forces acting on

curve. The internal forces control the smoothness and

rigidity of the curve with respect to selected parameters.

The external force is image dependent and attracts the

curve to the object boundary. The first PAC model was

introduced by Kass et al. [1]. In this, segmentation is

achieved by using gradient vectors of an edge map as an

external force. Problems associated with this model are

initialization and poor convergence to concave regions.

Initialization and convergence to concave region problems

were largely solved with the development of a new external

force models such as Gradient Vector Flow (GVF) [2] and

Vector Field Convolution [3]. However, PAC models can

have difficulty with simultaneous detection of multiple

objects, since they cannot handle the topological changes

such as merging or splitting of the moving curve, because

of the explicit representation. To solve this problem, GAC

models have been introduced, where the curve is repre-

sented implicitly in a level set function (the zero set).

GAC use the level set method [4] for curve evolution. A

level set is a real-valued function of the two-dimensional

space variables. The contour is represented implicitly in a

level set function, which is the zero set. Caselles et al. [5]

and Malladi et al. [6] proposed the first GAC model, which

uses gradient-based information for segmentation. In this

model, the curve evolves in the direction normal with its

curvature and balloon force-dependent speed, and stops

depending on the gradient information obtained from the

image. The curvature-dependent speed has the effect of

smoothing the curve, while the balloon force accelerates

the motion. The gradient-based GAC can detect multiple

objects simultaneously but it has other important problems,

which are boundary leakage, noise sensitivity, computa-

tional inefficiency and complexity of implementation.

Some formulations, [7–9], have been introduced to solve

problems with boundary leakage and noise sensitivity by

improving gradient-based information. However, they can

just increase the tolerance, since gradient-based informa-

tion is always limited by noise. Several numerical schemes

have been proposed to improve the computational effi-

ciency of the level set method, including narrow band [10],

fast marching [11] and additive operator splitting [12].

Despite substantial improvements in efficiency, they can be

difficult to implement.

Chen and Vese [13] introduced a new GAC model

without using edge information. Their model is a particular

case of the Mumford-Shah functional [14] and uses

regional statistics for segmentation. Their approach espe-

cially works well for bimodal images. It is good at handling

initialization, noise and boundary leakage but still suffers

from computational complexity and difficulty in imple-

mentation, because of the level set method. In addition, this

model does not work well for the images with intensity

inhomogeneity, which often occurs in real images.

There are different models that have been introduced to

segment images with intensity inhomogeneities [15–19]. Li

et al. [17, 18] proposed an algorithm based on minimiza-

tion of region-scalable fitting (RSF) energy to overcome

intensity inhomogeneity in images. RSF-based active

contour uses the local intensity information (weighted

averages of the intensities), which is provided by a

Gaussian kernel, for curve evolution and segmentation.

However, the local intensity information is sensitive to

strong noise and does not provide enough information for

accurate segmentation. In addition, RSF-based active

contour is implemented with level set method that is dif-

ficult and time consuming. Recently, Zhang et al. [19]

introduced another energy functional, which is called local

image fitting (LIF) energy, to extract the local image

information. They proposed LIF-based active contour to

overcome intensity inhomogeneity in the images. Their

analysis and results show that their method is computa-

tionally more efficient then RSF-based active contour,

while performing similar segmentation results.

Different types of image forces can be combined with

PAC or GAC (level set) models to overcome limitations

and improve segmentation. In [20], the Mumford-Shah

functional [14] based region force was adapted by PAC to

handle noise and initialization problems. Paragios and

Deriche [21] unified boundary- and region-based forces

and implemented using GAC to improve segmentation and

solve initialization and noise problems. Xie and Mirmehdi

[22] proposed a magnetic force based on magnetostatic

theory using GAC to handle problems with initialization

and convergence to concave regions.

Recently, a new class of deformable model that is called

Metamorphs [23] has also been proposed. They combine

the best features of PAC and GAC and introduce a novel

modelling strategies that unify the representation and

deformation schemes for shape and intensity. Metamorphs

model can also solve the merging problem of PAC.

2.1.2 Region growing

Region growing is a procedure that groups pixels or sub-

regions into larger regions based on predefined similarity

criteria for region growth. The basic approach starts with a

seed point and merges neighbouring pixels that have pre-

defined properties similar to the seed, such as intensity [24]

or texture [25]. Region growing was also combined with

edge information for segmentation [26–28]. Although

region growing techniques can detect multiple objects

simultaneously and can be more efficient than active con-

tour models, the main problem is selection of the similarity

criteria. They also have to use connectivity information to
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define the neighbouring pixels in each step of growth. In

addition, they may achieve region segmentation with

irregular boundaries and holes in the presence of high

noise, since they omit smoothing.

2.2 Heat flow in image processing and computer vision

The heat flow analogy has been deployed in various ways in

image processing and computer vision. It has been used for

image smoothing and enhancement; region-based image

segmentation; thinning; active contours and motion analy-

sis. Anisotropic diffusion, which was introduced to com-

puter vision by Perona and Malik [29], is the state-of-art

image enhancement technique. In [30], the anti-geometric

heat flow model was introduced for the segmentation of

regions. Here, anti-geometric heat flow is represented as

diffusion through the normal direction of edges. In [31], a

new thinning algorithm was introduced based on time-

reversed isotropic heat flow. A geometric active contour

[5, 6] is based on a curve moving in normal direction

with its curvature-dependent speed, which is also called

level set method [4]. The curve movement in the level set

approach is achieved with geometric heat flow [32]. In

motion analysis, Makrogiannis and Bourbakis [33] pro-

posed a spatio-temporal anisotropic heat diffusion for

motion activity measurement. In [34] and [35], the algo-

rithm combines anisotropic and isotropic heat flow to obtain

moving edges.

In this paper, we introduce a novel evolution-based

segmentation algorithm based on the heat flow analogy.

Our model is new and different because of the evolution

technique and organization of segmentation. The evolution

is achieved with the heat conduction equations to gain

practical advantages. Our model is also organized effec-

tively to improve the segmentation. The proposed algo-

rithm consists of two parts. In the first part, we represent a

particular heat conduction problem in the image domain to

roughly segment objects of interest. In this problem, we

consider a two-dimensional conductive solid body that has

uniform conductivity within an isotropic medium. Initial

and boundary conditions are given, respectively, by

T(x, t = 0) = 0 and T(x, t) = 0, where T represents the

temperature at position x = (x, y) and time t. The given

conditions mean that the temperature is initially zero inside

the body and the boundary condition is ‘‘Dirichlet’’ that has

specified temperature, zero, at the boundary layer for all

time. If we initialize a continuous heat source (a positive

constant) at any point inside the body, there will be heat

diffusion to the other points from the source position as

time passes and this will cause temperature increase within

the body, except at the boundary layer. This concept is

represented in the image domain by using a control func-

tion in the heat conduction equation. The control function

is obtained from the region’s statistics of the source loca-

tion, since we propose to segment the source located

region. However, in noisy conditions, we can observe

irregular boundaries and holes inside the segmented region.

These problems are solved in the second part of the algo-

rithm, which is geometric heat flow. In this part, the seg-

mented image is first converted to binary form and then

geometric heat flow is applied to reduce curvature in the

boundary, as well as to remove holes inside the segmented

region. After a specified number of iterations, the resultant

image is thresholded and the final segmentation is obtained.

Experimental results indicate that the proposed algorithm

works well in noisy conditions without pre-processing. It

can detect multiple objects simultaneously, if a heat source

is located at the background. It is also computationally

more efficient and easier to control and implement in

comparison with active contour models. As such, by using

physics-based analogies, we can control the segmentation

process so as to achieve a result which offers improved

segmentation, by a better fit to the image data.

The preliminary version and the summary of this work

were presented in [36] and [37], respectively. In this paper,

we extend the evaluations and explanations of the proposed

algorithm. We have more comprehensive performance and

time evaluations for our model and for other models. We

also compare our model with one of the latest methods [18]

in the active contours context. In addition, we show and

discuss how the different regional statistic parameters and

the different iteration number for geometric heat flow

effect the segmentation in our algorithm.

The rest of the paper is organized as follows: Sect. 2

explains the basic concepts of heat flow. Section 3 repre-

sents the proposed heat conduction problem in the image

domain. Section 4 discusses the geometric heat flow.

Section 5 concerns evaluation and experimental results and

finally Sect. 6 is conclusions. A List of acronyms is also

given below in Table 1.

Table 1 List of acronyms

ACWE Active contours without edges

CF Control function

GAC Geometric active contours

GHF Geometric heat flow

GVF Gradient vector flow

GVFS Gradient vector flow snake

PAC Parametric active contours

RSF Region-scalable fitting

RSAC Region-scalable active contour

SSE Sum of squared error

TF Temperature front
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3 Basic concepts of heat flow

Conduction, convection and radiation are three different

modes of heat flow. Here, we chose to investigate use of a

conduction model, which we found to operate well.

Conduction is the flow of heat energy from high- to low-

temperature regions due to the presence of a thermal gra-

dient in a body [38]. The change of temperature over time

at each point of material is described using the general heat

conduction or diffusion equation,

oT=ot ¼ aDT þ Q ¼ a o2T
�
ox2 þ o2T

�
oy2

� �
þ Q ð1Þ

where qT/ qt is the rate of change of temperature, D rep-

resents the spatial Laplace operator for the temperature T, a
is called thermal diffusivity of the material and a larger

values of a indicate faster heat diffusion through the

material. Q is the source term that applies internal heating.

It can be uniformly or non-uniformly distributed over

material body. The solution of this equation provides the

temperature distribution over the material body, and it

depends on time, distance, heat source, properties of

material, as well as specified initial and boundary

conditions.

Initial conditions specify the temperature distribution in

a body, as a function of space coordinates, at the origin of

the time coordinate (t = 0). Initial conditions are repre-

sented as follows:

T x; t ¼ 0ð Þ ¼ F xð Þ ð2Þ

where, x = (x, y) is the space vector for the two-dimen-

sional case and F(x) is the function that specifies the initial

temperature inside the body.

Boundary conditions specify the temperature or the heat

flow at the boundaries of the body. There are three general

types of boundary conditions: Dirichlet, Neuman and

Robin. Here, we explain the Dirichlet and Neuman con-

ditions, which are used in our algorithm. In the Dirichlet

condition, temperature is specified along the boundary

layer. It can be a function of space and time, or constant.

The Dirichlet condition is represented as follows:

T x; tð Þ ¼ U x; tð Þ ð3Þ

where U(x, t) is the function that specifies the temperature

at the boundary layer.

In the Neuman condition, the normal derivative of

temperature, heat flow, is prescribed at the boundary sur-

face, and it can be a function of space and time, or constant.

The Neuman condition is given in the form.

oT x; tð Þ
on

¼ U x; tð Þ ð4Þ

where, U(x, t) is the function that specifies the normal

derivative of temperature, qT(x, t)/qn, at the boundary

layer. Many heat conduction problems do not have ana-

lytical solutions. These problems usually involve geomet-

rical shapes that are mathematically unsuited to

representing initial and boundary conditions. However,

numerical techniques exist, such as finite differences

and finite elements, which are able to handle almost all

problems with any complex shapes. The numerical meth-

ods yield numerical values for temperatures at selected

discrete points within the body and only at discrete time

intervals.

The numerical heat conduction problem can be inves-

tigated in the image domain, since the image is formed by a

set of points, as well as since the image is convenient for

the finite difference technique. Each object in image can

represent bodies and each pixel in object can represent

points within the body.

4 Proposed heat conduction problem

and representation in image domain

Consider a two-dimensional conductive solid body that has

uniform conductivity and is an isotropic medium. Initial

and boundary conditions, respectively, are given by

T(x, t = 0) = 0 and T(x, t) = 0, where T represents the

temperature at position x = (x, y) and time t. The given

conditions mean that the temperature is initially zero inside

the body and the boundary condition is Dirichlet that has a

specified temperature (zero) at the boundaries. If we ini-

tialize a continuous heat source, which is a positive con-

stant, at a point inside the body, there will be heat diffusion

to the other points from the source position. As a result of

this, all the points inside the body will have temperature

values exceeding zero, except the boundary points. This is

then an ideal approach for object segmentation in computer

images. Let us investigate the proposed problem on a

square object that is inside the grey-level image(G), as

shown in Fig. 1a. Assume that all the temperature values of

the objects and the background are stored in another image,

which is represented by I, and the initial condition of whole

image is zero, I(x, t = 0) = 0. This assumption means that

all objects have temperature initially zero inside, as well as

at the boundaries. When we initialize a heat source at any

pixel inside the square object, as shown in Fig. 1a, there

will be heat diffusion to the other pixels from the source

position, which will cause temperature to increase. How-

ever the temperature at the boundary layer must be kept at

zero all the time to obtain the Dirichlet condition, where

the boundary layer is defined at the external side of an

object as shown in Fig. 1b. To achieve this, we use a

control function in the heat conduction equation as given

below:
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oI x; tð Þ
ot

¼ CF x; tð Þ aDI x; tð Þð Þ þQ xð Þ ð5Þ

where I(x, t) represents an image pixel value in terms of

temperature at each point and time, a is the thermal dif-

fusivity and 0 B a B 0.25 for the numerical scheme to be

stable in two-dimensional system [38], D is Laplace

operator for the spatial variables, Q(x) is the source term

and CF(x, t) is the control function. The control function is

obtained from the region statistics of source location on a

given grey-level image.

The proposed region statistics model is similar to the one

used by Chen and Vese [13]. In this model, the image is

divided into two regions, interior and exterior, separated by a

contour and the model minimizes the sum of the squares of the

differences between the intensity values and the mean of the

intensity values inside and outside of the surface of desired

object. In our model, the contour is represented by a Tem-

perature Front (TF), where the TF is the boundary of the region

that has temperature values exceeding zero. In [13], the active

contour model is initialization invariant and attempts to seg-

ment whole image, which is a global minimizer. On the other

hand, our model attempts to segment the region containing the

source, which is a local minimizer.

The control function, CF(x, t), is formulated as follows:

rin x; tð Þ ¼ kin GðxÞ � linj j2 ð6Þ

rout x; tð Þ ¼ kout G xð Þ � loutj j2 ð7Þ

where, G(x) is the given grey-level image, rin(x, t) is the

weighted square of the difference between the intensity

value and the mean, lin, of the intensity values inside the

TF, at each point and time. rout(x, t) is the weighted square

of the difference between the intensity value and the mean,

lout, of the intensity values outside the TF, at each point

and time. kin [ 0 and kout [ 0 are fixed parameters

(constants) for regional statistics inside and outside the

TF, respectively. Then, the following logical decision is

applied at each position and at each time interval

CF x; tð Þ ¼ 1; rin x; tð Þ� rout x; tð Þ
0; otherwise

�
: ð8Þ

Therefore, the control function allows heat diffusion

inside the object of interest and achieves the proposed

Dirichlet condition on the boundary layer by keeping the

temperature value at zero. However, it is better to start this

process after a short diffusion time by assuming

CF(x, t) = 1 at all points. This increases the effective

area of initialization and thereby better handling of noisy

images. In addition, the heat source must be initialized onto

a smooth surface of the object, since the source localization

to the edge pixel will give the wrong region statistic for our

purpose. Figure 1c and d, respectively, show the evolution

and the final position of the TF. However, there is no need

to continue diffusion, after the TF reaches its final position.

For this reason, the position of the TF is controlled at each

specified time interval and when there is no movement,

diffusion is terminated. Here, we also note that the regional

statistics parameters will be represented with their ratio

kin/kout in our experiments, and in this experiment (Fig. 1)

kin/kout = 1.

One difficulty arises when the region containing the

source intersects the image boundary. This problem can be

solved by assuming that image is surrounded by a bound-

ary layer, at its periphery, which has temperature value

zero for all time (Dirichlet). Figure 2 shows the evolution

and the final position of the TF, which has a source location

within the background. The result, in Fig. 2, also shows

that multiple object detection can be achieved and the heat

can diffuse through the narrow regions within the spiral

object. As such, heat has been used to detect the back-

ground and therefore boundaries of objects.

It is also required to consider the control function when

the given image is bimodal. In this case, the control

function attempts to segment the whole image while the TF

segments the source located region. This is because the

control function assigns unity to the pixels that are similar

to the inside of the TF and assigns zero to the pixels that

are dissimilar.

All the results so far have been on synthetic images

without added noise. If we simulate this algorithm on noisy

medical images, such as a magnetic resonance image of the

left ventricle of a human heart shown in Fig. 3a with the

heat source location, we observe some drawbacks in seg-

mentation. The drawbacks are irregular boundaries and

holes inside the segmented region, as shown in Fig. 3b,

where the kin/kout = 1 in this experiment. These problems

Fig. 1 Heat conduction modelling in image domain of size 150 9 150. a Source position at t = 0. b Boundary layer illustration. c TF at t = 30

(iterations). d Final TF at t = 69
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are solved by using the heat flow analogy again as

described in the next section.

5 Geometric heat flow

Geometric heat flow (GHF) is a kind of anisotropic diffu-

sion and is widely used for image denoising and

enhancement [32]. It diffuses along the boundaries of

image features, but not across them. It derives its name

from the fact that, under this flow, the feature boundaries of

the image evolve in the normal direction in proportion to

their curvature. Thus GHF decreases the curvature of

shapes while removing noise. GHF equation is obtained

with the following considerations:

Edge directions are related to the tangents of the feature

boundaries of an image B. Let g denote the direction

normal to the feature boundary through a given point (the

gradient direction), and let s denote the tangent direction.

These directions can be written in terms of the first

derivatives of the image, Bx and By, as

g ¼
Bx;By

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y

q ; s ¼
�By;Bx

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y

q ; ð9Þ

Since g and s constitute orthogonal directions, the

rotationally invariant Laplacian operator can be expressed

as the sum of the second-order spatial derivatives, Bgg and

Bss, in these directions and the linear heat conduction

equation can be written without using the source term,

Fig. 2 TF is moving on

background in the image of size

150 9 150, and kin/kout = 1

Fig. 3 A magnetic resonance image of the left ventricle of a human

heart and illustration of Geometric heat flow (GHF) for the purpose of

obtaining smooth boundaries and removing holes inside the prior

segmented regions. GHF is applied both to the binary form of the

Temperature Front (TF) segmentation, B(x), and to the control

function CF(x). The size of the image is 177 9 178, kin/kout = 1 and

ts = 50. a Source position. b Final position of the TF at t = 59.

c Binary form of the segmentation by TF, B(x). d Binary form of the

final segmentation, S(x), after GHF. e Final shape after GHF. f Final

form of the control function, CF(x). g Control function, CF(x), after

GHF. h Final shape after GHF
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oB

ot
¼ aDB ¼ a Bgg þ Bss

� �
ð10Þ

Omitting the normal diffusion, while keeping the

tangential diffusion yields the GHF equation as

oB

ot
¼ aBss ¼ a

BxxB2
y � 2BxyBxBy þ ByyB2

x

� �

B2
x þ B2

y

� � : ð11Þ

The equation above can also be written as follows to

show that feature boundaries of the image evolve in the

direction normal in proportion to their curvature j:

oB

ot
¼ aBss ¼ a

BxxB2
y � 2BxyBxBy þ ByyB2

x

� �

B2
x þ B2

y

� �3=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
x þ B2

y

� �r

¼ j rBj j: ð12Þ

In our model, GHF is used to decrease the curvature for

the purpose of obtaining smooth boundaries and removing

holes that appear because of noise. This is achieved as

follows. First, a segmented region is converted to a binary

form as given below and also shown in Fig. 3c,

F xð Þ ¼ 1; I xð Þ[ 0

0; I xð Þ ¼ 0

�
ð13Þ

where I(x) is the temperature distribution after terminating

diffusion and F(x) is the binary form of the segmented

image that assigns unity to the region of interest. This

binary form represents initial condition for GHF,

B(x, t = 0) = F(x). The boundaries of the image are

insulated with homogeneous Neuman condition, dB/dn

= 0, which means there is no heat flow in, or out, from the

boundaries. The GHF problem is defined below,

oB

ot
¼ a

BxxB2
y � 2BxyBxBy þ ByyB2

x

� �

B2
x þ B2

y

� �

B x; t ¼ 0ð Þ ¼ F xð Þ; initial condition

oB x; tð Þ
on

¼ 0; boundary condition

ð14Þ

GHF is applied to the B(x) until the specified time

(number of iterations) and finally the resulting image is

thresholded to obtain the final segmentation. The process is

formulated below:

S xð Þ ¼ 1; GHF B xð Þ; tsð Þ� 0:5
0; GHF B xð Þ; tsð Þ\0:5

�
ð15Þ

where, ts is the number of iterations and S(x) is the binary

form of the final segmentation, which assigns unity to the

region of interest. The final segmentation is shown in

Fig. 3d and e, where ts = 50 for this illustration. The

selection of ts depends on the user and it is determined due

to the noise level of the image. However, as ts increases,

extracted shape evolves to a circle, then to a point and then

it is lost. For this reason, we should avoid using large

values for ts.

Since the illustrated human heart image seems bimodal,

we can also consider the final form of the control function

as shown in Fig. 3f. To smooth boundaries and remove

holes, we simply continue with Equation 14 and observe

the result in Fig. 3g and h.

6 Evaluation and experimental results

In evaluation, our model is denoted by TF ? GHF, since

the TF roughly segments the region of interest and then the

GHF is used to complete the segmentation. Similarly,

the segmentation by the control function (CF) followed by

the GHF is denoted by CF ? GHF. In this section, we first

present the evaluation of TF ? GHF on segmentation and

then the evaluation for the computational efficiency of our

algorithm, finishing with some illustrative examples on

medical images. Note that in this section we are using

many acronyms, so for convenience a list of abbreviations

is given at the beginning of this paper.

Segmentation by TF ? GHF is compared with the

active contour without edges (ACWE) [13], region-

scalable fitting active contour (RSAC) [18] and gradient

vector flow snake (GVFS) [2]. The evaluation is done on a

star-shaped object with varying normal distributed noise

Nd(l, r2), as shown at the top row in Fig. 5. The sum of

squared error (SSE) is employed to quantify the perfor-

mance of each algorithm.

SSE ¼
XM

x¼1

XN

y¼1

Sx;y �Ox;y

� �2 ð16Þ

where, S is the binary segmented image and O is the actual

(ground truth) binary segmented image of size M 9 N. The

quantity of noise is considered in terms of standard devi-

ation r with zero mean.

ACWE is a region-based GAC model that is imple-

mented by a level set function [13]. It applies global

minimization to segment bimodal images as a whole.

However, in this evaluation, we choose the biggest seg-

mented region, since we are concerned with the star-shaped

object segmentation. Otherwise, it will cause very high

errors in noisy conditions because of the noise outside the

star object. To evaluate ACWE, we use a Matlab imple-

mentation given in [39], and we note that this is a non-

optimal Matlab framework. In this evaluation, the selected
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parameter values for ACWE are kin = kout = 1 (parame-

ters for regional statistics), vA = 0 (the area parameter),

hA = 1 (the step space), Dt = 0.1 (the time space), e = 1

(the parameter for the Heaviside and Dirac delta functions)

and lA = 0.01 9 2552(the length parameter).

RSAC is a region-based GAC model which is imple-

mented with level set method [18]. The proposed region-

based model uses intensity information in local regions as a

controllable scale. A Gaussian kernel is used to compute

local intensity information. In this evaluation, we choose

the biggest segmented region, since we are concerned with

the star-shaped object segmentation. Otherwise, it will

cause very high errors in noisy conditions because of the

noise outside the star object. To evaluate RSAC, we use a

Matlab implementation given in [40], and we note that this

is a non-optimal Matlab framework. In this evaluation, the

selected parameter values for RSAC are kin = kout = 1

(parameters for regional statistics), sigma = 8 (scale

parameter in Gaussian kernel), r = 1 (coefficient of the

level set regularization term), Dt = 0.1 (the time space),

e = 1 (the parameter in the definition of smoothed Dirac

function) and lR = 0.01 9 2552(the length parameter).

GVFS is a gradient-based PAC model that uses GVF as

an external force [2]. To evaluate GVFS, we use Matlab

implementation given in [41], and this is also a non-opti-

mal Matlab framework. In this evaluation, the selected

parameter values for GVFS are aG = 0.25 (smoothness

parameter of the contour), bG = 0 (rigidity parameter of

the contour), cG = 0.6 (external energy parameter of the

contour), and lG = 0.2 (in diffusion of gradient vectors),

Dt = 1 (the time interval). In addition, we use 80 iterations

to diffuse gradient vectors.

In our algorithm, we use an explicit scheme of finite

differences in the first and the second parts. We use Matlab

for the implementation as well. In this evaluation, the

selected parameter values for TF ? GHF are a = 0.25

(thermal diffusivity), kin/kout = 1 (ratio of the parameters

for regional statistics), Q = 5 (the energy generated from

the source position per unit time interval), Dt = 1 (the time

interval), Dx = Dy = 1 (the spatial intervals), ts = 10

(specified time for GHF). In addition, we start to use

regional statistics after t = 10 to increase the number of

samples inside the TF and in each ten iterations we control

the movement of TF to determine the termination of the

first part.

In the evaluations for TF ? GHF, the contours and the

heat source are initialized inside the star objects. Figure 4

shows the performance of TF ? GHF, ACWE, RSAC and

GVFS for the segmentation of the star object. The graphs

are obtained over five applications of each algorithm,

where the rectangle represents standard deviation from the

mean value and error bar represents minimum and maxi-

mum values at each data point. In each application, the

obtained graphs are smoothed by applying local averaging

to the data points in six nearest neighbourhoods. The star

object has branches, which narrow until they are one pixel

wide. Half of the star object has different intensity, to

create weak edges inside the object.

It is observed that TF ? GHF and ACWE perform

much better than GVFS at all noise levels. The reason for

this is that TF ? GHF and ACWE use region-based algo-

rithms; on the other hand GVFS uses a gradient-based

algorithm, which is very sensitive to the noisy conditions.

RSAC performs better than GVFS until r ffi 65 since

RSAC is also using regional information (statistics of local

regions). After r ffi 65, RSAC performs worse than GVFS,

because RSAC relies on the information obtained from the

statistics of local regions that is sensitive to higher noise

levels. RSAC performs very poorly at higher noise levels.

TF ? GHF, ACWE and RSAC can handle topological

changes, which GVFS cannot. It is also observed that

GVFS cannot flow into the narrow regions of the star

object. TF ? GHF, ACWE and RSAC can flow into the

narrow regions. RSAC performs similar to ACWE until r
ffi 30 and then performs better than ACWE between r ffi 30

and r ffi 48. After r ffi 48, RSAC segments worse than

ACWE since RSAC is sensitive to higher noise levels.

RSAC and ACWE perform slightly better than TF ? GHF

until r % 30. This appears to be due to the smoothing

operation in TF ? GHF. GHF attempts to smooth the

original shape and cause errors in TF ? GHF, when there

is no noise or low noise in the image, since ts is fixed in the

evaluation. After r ffi 30, TF ? GHF has better perfor-

mance than RSAC since TF ? GHF uses information

extracted from whole regions inside and outside the TF. On
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Fig. 4 Performance of TF ? GHF, ACWE, RSAC and GVFS on the

star-shaped object. The graphs show the rectangle representing

standard deviation from the mean value and error bar representing

minimum and maximum values of the SSE
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the other hand, RSAC uses information extracted from

local regions inside and outside the contour. From r ffi 30

to r ffi 80, TF ? GHF segments better than ACWE. The

main reason is the smoothing operation in TF ? GHF.

TF ? GHF applies smoothing after rough segmentation

without any relation to the regional statistic constraints,

while ACWE uses smoothness constraint with regional

statistic constraints during the segmentation. After r ffi 80,

it is seen that ACWE shows better performance than

TF ? GHF, because ACWE segments many regions out-

side the star region in the presence of high noise and then

some of the segmented noise remains connected to the

original region when we select the biggest region.

The SSE of RSAC has significant variations after r ffi
50, and the variations are high in comparison with the other

algorithms. The SSE of GVFS starts to vary after r ffi 5,

and the variations are high between r ffi 10 and r ffi 45 in

comparison with the other algorithms in this interval. For

ACWE, we observe variation in the SSE after r ffi 25, and

the variations look similar at all the remaining noise levels.

The variations of SSE of ACWE are less than other algo-

rithms at high noise levels. For TF ? GHF, the SSE varies

slightly between r ffi 40 and r ffi 60. After r ffi 65, we can

observe significant variations in the SSE. Figure 5 shows

some of the results for TF ? GHF (second row), ACWE

(third row), RSAC (fourth row) and GVFS (fifth row).

Results also show the effectiveness and the computa-

tional efficiency of our algorithm in comparison with the

GVFS and ACWE. The following evaluation results are

obtained by using MATLAB 7.0 on a Pentium IV com-

puter, which runs Windows XP operating system with

3.2 GHz CPU and 3 GB RAM.

First we investigate how the SSE of TF ? GHF, of

ACWE, of RSAC and of GVFS changes, on the original

(no noise) and on the noisy star object, as iteration

number increases (as the contour evolves). We initialize

contours at the centre of the star object and arrange their

sizes to have SSE ffi 8,000 at the beginning. Figure 6

shows SSE of TF ? GHF, of ACWE, of RSAC and of

GVFS with respect to increasing iteration numbers on the

original star object, shown in Fig. 5a. Table 2 also shows

the number of iterations required to stabilize SSE,

remaining SSE after stabilization and CPU time required

for stabilization for each algorithm on the original star

object. The final segmentation by each algorithm can be

seen in Fig. 5a as well. We observe that GVFS stabilizes

at iteration ffi 170 with SSE ffi 1,000 and CPU

time = 57.63 s. For further iterations GFVS remains at

that SSE, because it cannot move through the narrow

regions and cannot achieve complete segmentation.

RSAC stabilizes at iteration % 121 with SSE = 2 and

CPU time = 1.33 min. ACWE achieves complete seg-

mentation at iteration ffi 890 with SSE = 0 and CPU

time = 5.92 min. Finally, TF ? GHF achieves segmen-

tation at iteration ffi 180 with SSE ffi 93 and CPU

time = 7.17 s. When the number of iteration is about 180,

the SSE of TF ? GHF suddenly increases and remains

some error. The reason is the smoothing operation in

TF ? GHF. GHF is applied, at the end of first part in our

algorithm, with fixed iteration number (10 iterations) and

causes errors when there is no noise on the object. It is

also observed that TF ? GHF achieves segmentation

with the lowest CPU time. Although GVFS segments a

smaller region, it requires CPU time more than

TF ? GHF. It must be noted that GVFS also needs 80

iterations to diffuse gradient vectors of the image, which

is the image-dependent force it uses, before contour

evolution. There is an also big difference in CPU times of

ACWE and TF ? GHF. ACWE is computationally

expensive since it uses the level set method for curve

evolution. TF ? GHF also performs segmentation faster

than RSAC, since it is also implemented with level set

method and since the computation of the RSF energy is

time consuming in this model. RSAC performs faster than

ACWE, one of the reasons RSAC avoids expensive

re-initialization (regularization) process during the evo-

lution. In RSAC, the regularity of level set function is

intrinsically preserved by the level set regularization

term.

Figure 7 shows SSE of TF ? GHF, of ACWE, of

RSAC and of GVFS with respect to increasing iteration

numbers on the noisy star object, shown in Fig. 5b, which

is corrupted by Gaussian noise of r = 40. Table 3 also

shows the number of iterations required to stabilize,

remaining SSE after stabilization and CPU time required

for each algorithm on the noisy star object. The final

segmentation by each algorithm can be seen in Fig. 5b as

well. It is observed that as the iteration number increases,

GVFS stabilizes at iteration ffi18 with SSE ffi 6,950 and

CPU time 10.57 s. It achieves poor segmentation because

of the limitation of the gradient-based information to the

noise. RSAC completes segmentation at iteration ffi 454

with SSE ffi 255 and CPU time 5.32 min. ACWE achieves

segmentation at iteration ffi 1,100 with SSE ffi 570 and

CPU time = 7.29 min. Finally, TF ? GHF achieves

segmentation at iteration ffi 180 with SSE ffi 188 and

CPU time = 7.26 s. In TF ? GHF, we observe sudden

decrease in SSE before stabilizing. This is because we

apply a fixed number of iterations of GHF (10 iterations)

to remove noise and smooth shape at the end of our

algorithm. It is observed that TF ? GHF achieves seg-

mentation with minimum SSE and again with the lowest

CPU time. Although GVFS has poor performance because

of noise and segments small region, TF ? GHF has slightly

smaller CPU time than GVFS. TF ? GHF performs much

faster than ACWE and RSAC. TF ? GHF also has the
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lowest SSE in this evaluation, which means TF ? GHF

performs better than other algorithms in this segmentation.

It is important to note that rest of the experiments, in this

paper, are conducted by same computer and using Matlab

7.0, as described before, except the RAM is 1 GB.

Figure 8 shows the segmentation of pulmonary arterial

branches in the chest image by TF ? GHF, GVFS, RSAC

and ACWE. The initial contour for GVFS, RSAC and

ACWE, and the source position for TF ? GHF are shown

in Fig. 8a. Figure 8b shows the segmentation by

TF ? GHF in the given image with black contour; how-

ever, the segmented arterial branches are not visible with

this illustration and the segmentation is also shown with the

binary form in Fig. 8c. Figure 8d and e show segmentation

by GVFS, respectively, with the result superimposed as the

black contour in the image and the binary form. Figure 8f,

g shows segmentation by ACWE, respectively, with black

contour superimposed and the binary form. Figure 8h, i

Original 

TF+GHF 
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GVFS 

(a) 0=σ         (b) 40=σ       (c) 60=σ            (d) 80=σ       (e) 100=σ

Fig. 5 Results for TF ? GHF (second row), ACWE (third row), RSAC (fourth row) and GVFS (fifth row) with respect to increasing Gaussian

noise in the image of size 256 9 256
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shows segmentation by RSAC with black contour super-

imposed and in the binary form, respectively. It is observed

that TF ? GHF segments the desired arterial branches

better than GVFS. By this result, TF ? GHF can easily

handle topological changes and flow into the arterial

branches with CPU = 7.85 s. However, GVFS cannot

handle topological changes and cannot flow into the arterial

branches. Although GVFS segments a smaller region than

TF ? GHF, the CPU = 9.23 s, which is more than for

TF ? GHF. If we look at segmentation by ACWE, we see

that ACWE attempts to segment whole image. Here we

focus on segmentation of desired region, which is pul-

monary arterial branches, and compare with the

TF ? GHF. TF ? GHF and ACWE have similar seg-

mentation results on the desired region. However, ACWE

achieves this segmentation in 24.75 min, while

TF ? GHF achieves in 7.85 s. This big difference in CPU

time appears because of the computational complexity of

ACWE that is implemented with level sets. RSAC also

attempts to segment whole image instead of desired

region. If we focus on segmentation of the desired region,

we can observe inaccurate segmentation. RSAC segments

a darker region that remains connected to the desired

region. RSAC achieves this segmentation in 7.09 min,

while TF ? GHF achieves in 7.85 s. The CPU times of

the algorithms for the pulmonary arterial branches are

also shown in Table 4.

Figure 9 shows the segmentation of a bimodal human

lung image by TF ? GHF, CF ? GHF and ACWE, where

the initial contour for ACWE and the source position for

TF ? GHF are shown in Fig. 9a. Figure 9b and c,

respectively, show the segmentation by TF ? GHF and

CF ? GHF with white contour in the image. Figure 9d

shows the segmentation by ACWE and Fig. 9e shows the

segmentation by RSAC. It is observed that TF ? GHF and

CF ? GHF achieve segmentation with CPU = 1.96 s,

ACWE achieves with CPU = 15.92 min and RSAC

achieves with 11.85 s. The CPU times of our algorithm,

ACWE and RSAC for the human lung image are also

shown in Table 5. It is also observed that CF ? GHF can

extract feature boundaries better than ACWE and RSAC.

We also discuss how the different regional statistic

parameters (kin/kout) and the different iteration number for

GHF (ts) effect the segmentation.

Figure 10 shows the segmentation of the human lung

image by TF ? GHF and CF ? GHF with respect to the

increasing kin/kout, while keeping ts = 15. The heat source

is located at the same position shown in Fig. 9(a) and

kin/kout = 1 in that experiment. In this experiment, the

selected values for kin/kout = 0.5, 2, 4, 6 and the segmen-

tation results by TF ? GHF and CF ? GHF are given in

Fig. 10a–d, respectively. It is observed that as kin/kout

increases from 0.5 to 6, the selectivity for segmentation

increases.

Finally, Fig. 11 shows the segmentation of the human

lung image by TF ? GHF and CF ? GHF with respect to

the increasing ts, while keeping kin/kout = 1. The heat

source is located at the same position shown in Fig. 9a and

ts = 15 in that experiment. In this experiment, the selected

values for ts = 5, 10, 20, 25 and the segmentation results

Table 2 Number of iterations required to stabilize, remaining SSE

after stabilization and CPU time required to stabilize for TF ? GHF,

ACWE, RSAC and GVFS on the original star object

Original star object (no noise)

Algorithm Num. of iteration

to stabilize

Remaining

SSE

CPU

Time

TF ? GHF 180 93 7.17 s

ACWE 890 0 5.92 min

RSAC 121 2 1.33 min

GVFS 170 1,000 57.63 s
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Fig. 7 SSE for TF ? GHF, ACWE, RSAC and GVFS with respect to

increasing iteration numbers from the initial positions to the final

segmentations on the noisy star object

Table 3 Number of iterations required to stabilize, remaining SSE

after stabilization and CPU time required to stabilize for TF ? GHF,

ACWE, RSAC and GVFS on the noisy star object

Noisy star object (r = 40)

Algorithm Num. of iteration

to stabilize

Remaining

SSE

CPU

Time

TF ? GHF 180 188 7.26 s

ACWE 1,100 570 7.29 min

RSAC 454 255 5.32 min

GVFS 18 6,950 10.57 s
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by TF ? GHF and CF ? GHF are shown in Fig. 11a–d,

respectively. It is observed that as ts increases, we obtain

smoother segmentation, as well as remove noise and

smaller regions.

7 Conclusions

We have presented a novel segmentation algorithm based

on using the heat flow analogy. In the first part of the

algorithm, we roughly extract the desired feature bound-

aries by representing a chosen heat conduction analysis in

the image domain. The representation in image domain is

achieved by using a control function (CF) in the heat

conduction equation. This formulation also provides

advantage when the given image is bimodal, since CF

attempts to segment whole image in this case. In the second

part, we use geometric heat flow (GHF) to tune the cur-

vature of the extracted feature boundaries and remove

possible noise that arises from the first part of the seg-

mentation. Evaluation results indicate that Temperature

Front (TF) ? GHF has better performance than gradient

Fig. 8 Segmentation of pulmonary arterial branches in the chest

image of size 259 9 250 by TF ? GHF, GVFS, ACWE and RSAC.

a Initial contour and the source position. b Segmentation by

TF ? GHF is shown by the black contour on the image. All the

parameters are same as in evaluation except ts = 5. (CPU = 7.85 s).

c Segmentation by TF ? GHF is in binary form. d Segmentation by

GVFS is shown with black contour on the image. All the parameters

are same as in evaluation except the iteration to diffuse gradient

vectors is 70. (CPU = 9.23 s). e Segmentation by GVFS is in binary

form. f Segmentation by ACWE is shown with black contour on the

image. All the parameters are same as in evaluation except the length

parameter l = 0.08 9 2552. (CPU = 24.75 min). g Segmentation by

ACWE is in binary form. h Segmentation by RSAC is shown with

black contour on the image. (CPU = 7.09 min). i Segmentation by

RSAC is in binary form

Table 4 The CPU times of the algorithms for the pulmonary arterial

branches in the chest image

Pulmonary Image

Algorithm CPU time

TF ? GHF 7.85 s

GVFS 9.23 s

ACWE 24.75 min

RSAC 7.09 min
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vector flow snake (GVFS), region-scalable fitting active

contour (RSAC) and active contour without edges (ACWE)

with respect to increasing Gaussian noise. For the bimodal

images, CF ? GHF has better performance than ACWE

and RSAC. These improvements are achieved by effective

organization of our algorithm; TF ? GHF segments better

than GVFS because of using region-based information

instead of gradient-based, which is sensitive to noise.

TF ? GHF and CF ? GHF segment better than ACWE

because of the smoothing operation of shape. TF ? GHF

and CF ? GHF apply smoothing after rough segmentation

without any relation to the regional statistic constraints,

while ACWE uses smoothness constraint with regional

statistic constraints during the segmentation. TF ? GHF

and CF ? GHF segment better than RSAC, since the

TF ? GHF uses intensity information in whole regions

(inside and outside the TF) while RSAC uses intensity

information in local regions (inside and outside the con-

tour). In addition, TF ? GHF and CF ? GHF are com-

putationally more efficient and effective than GVFS,

RSAC and ACWE based on the simulation results. Espe-

cially, there are significant differences between our model

and level set based models (ACWE and RSAC) in com-

putational efficiency. The main reason is the complexity of

the level set method. As such, the heat analogy can be

deployed with success for shape extraction in images.

Fig. 9 Segmentation of human lung image of size 123 9 118 by

TF ? GHF, CF ? GHF and ACWE. a Initial contour and the source

position. b Segmentation by TF ? GHF is shown with white contour

on the image. All the parameters are same as in evaluation except

ts = 15 (CPU = 1.96 s). c Segmentation by CF ? GHF. ts = 15.

(CPU = 1.96 s). d Segmentation by ACWE. All the parameters are

same as in evaluation except the length parameter l = 0.08 9 2552.

(CPU = 15.92 min). e Segmentation by RSAC. All the parameters

are same as in evaluation except the length parameter

l = 0.001 9 2552 and sigma = 9. (CPU = 11.85 s)

Table 5 The CPU times of the algorithms for the human lung image

Human lung image

Algorithm CPU time

TF ? GHF and CF ? GHF 1.96 s

ACWE 15.92 min

RSAC 11.85 s

TF+GHF 

CF+GHF 

(a) (b) (c) (d)

Fig. 10 Segmentation of human lung image by TF ? GHF and CF ? GHF with respect to the increasing kin/kout (ratio of regional statistics

parameters). a kin/kout = 0.5, b kin/kout = 2, c kin/kout = 4, d kin/kout = 6
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