Skip to main content
Log in

Feature extraction using orthogonal discriminant local tangent space alignment

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

A novel algorithm called orthogonal discriminant local tangent space alignment (O-DLTSA) is proposed for supervised feature extraction. Derived from local tangent space alignment (LTSA), O-DLTSA not only inherits the advantages of LTSA which uses local tangent space as a representation of the local geometry so as to preserve the local structure, but also makes full use of class information and orthogonal subspace to improve discriminant power. The experimental results of applying O-DLTSA to standard face databases demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://cvc.yale.edu/projects/yalefaces/yalefaces.html.

  2. http://www.cam-orl.co.uk/facedatabase.html.

References

  1. Donoho DL (2000) High-dimensional data analysis: the curses and blessings of dimensionality. In: Proceedings of the AMS mathematical challenges of the 21st century

  2. Jolliffe IT (1989) Principal component analysis. Springer, Berlin

    Google Scholar 

  3. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  4. Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17(1):157–165

    Article  Google Scholar 

  5. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York

    MATH  Google Scholar 

  6. Belhumeour PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  7. Tenenbaum J, de Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323

    Article  Google Scholar 

  8. de Silva V, Tenenbaum J (2003) Global versus local methods in nonlinear dimensionality reduction. Adv Neural Inf Process Syst 15:705–712

    Google Scholar 

  9. Law MH, Jain AK (2006) Incremental nonlinear dimensionality reduction by manifold learning. IEEE Trans Pattern Anal Mach Intell 28(3):377–391

    Article  Google Scholar 

  10. Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  11. Saul LK, Roweis ST (2003) Think globally, fit locally: unsupervised learning of low dimensional manifold. J Mach Learn Res 4:119–155

    MathSciNet  Google Scholar 

  12. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  13. Donoho D, Grimes C (2003) Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci 100(10):5591–5596

    Article  MathSciNet  MATH  Google Scholar 

  14. Weinberger K, Saul L (2004) Unsupervised learning of image manifolds by semidefinite programming. In: Proceedings of the IEEE international conference on computer vision and pattern recognition, vol 2, pp 988–995

  15. Brand M (2003) Charting a manifold. Adv Neural Inf Process Syst 15:961–968

    Google Scholar 

  16. Zhang Z, Zha H (2005) Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J Sci Comput 26(1):313–338

    Article  MathSciNet  Google Scholar 

  17. Coifman RR, Lafon S (2006) Diffusion maps. Appl Comput Harmon Anal 21:5–30

    Article  MathSciNet  MATH  Google Scholar 

  18. Lafon S, Lee AB (2006) Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning and data set parameterization. IEEE Trans Pattern Anal Mach Intell 28(9):1393–1403

    Article  Google Scholar 

  19. Lin T, Zha HB (2008) Riemannian manifold learning. IEEE Trans Pattern Anal Mach Intell 30(5):796–809

    Article  Google Scholar 

  20. Lin T, Zha H, Lee S (2006) Riemannian manifold learning for nonlinear dimensionality reduction. In: Ninth European conference on computer vision, pp 44–55

  21. Xiang SM, Nie FP, Zhang CS (2009) Nonlinear dimensionality reduction with local spline embedding. IEEE Trans Knowl Data Eng 21(9):1285–1298

    Article  Google Scholar 

  22. Xiang SM, Nie FP, Zhang CS, Zhang CX (2006) Spline embedding for nonlinear dimensionality reduction. In: 17th European conference on machine learning (ECML ’06), pp 825–832

  23. Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S (2007) Graph embedding and extension: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  24. Cai D, He X, Zhou K, Han J, Bao H (2007) Locality sensitive discriminant analysis. In: 20th International joint conference on artificial intelligence, pp 708–713

  25. Chen HT, Chang HW, Liu TL (2005) Local discriminant embedding and its variants. In: IEEE conference on computer vision and pattern recognition, pp 846–853

  26. Zhang TH, Yang J, Zhao DL, Ge XL (2007) Linear local tangent space alignment and application to face recognition. Neurocomputing 70:1547–1553

    Article  Google Scholar 

  27. Li HY, Teng L, Chen WB, Shen IF (2005) Supervised learning on local tangent space. Lect Notes Comput Sci 3496:546–551

    Article  Google Scholar 

  28. He X, Yan S, Hu Y, Niyogi P, Zhang HJ (2005) Face recognition using Laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  29. Duchene J, Leclercq S (1988) An optimal transformation for discriminant and principal component analysis. IEEE Trans Pattern Anal Mach Intell 10(6):978–983

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the grants of the National Science Foundation of China, Nos. 60705007, 60805021, 60975005, 60873012, 60905023 and 60872113, and the Knowledge Innovation Program of the Chinese Academy of Sciences. The authors would like to thank all the guest editors and anonymous reviewers for their constructive advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Gui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, YK., Xu, YM., Yang, JA. et al. Feature extraction using orthogonal discriminant local tangent space alignment. Pattern Anal Applic 15, 249–259 (2012). https://doi.org/10.1007/s10044-011-0231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-011-0231-0

Keywords

Navigation