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Abstract Bad quality spots houd be filtered ou at ealy
steps in microarray analysis to avoid nasy data. In this pa-
per we implement quality control of individual spots from
red microarray images. First of al, we consider the binary
clasgficaion problem of deteding bed quality spats. We
propcse the use of ensemble dgorithms to perform detec
tion and oltain improved acarades over previous gudies
in the literature. Next, we analyzethe untadled problem of
identifying spedfic spot defeds. One spat may have severa
faults smultaneously (or nore of them) yielding a multi-
label clasgficaion problem. We propose severa extra fea
tures in addition to those used for binary classficaion, and
we use threediff erent methods to perform the dasdficaion
task: five independent binary classfiers, the recent Convex
Multi-task Fedure Leaning (CMFL) algorithm and Convex
Multi-task Independent Leaning (CMIL). We analyze the
Hamming lossand areas under the recaver operating char-
aderistic curves (ROCs) to quantify the acarades of the
methods. We find that the three strategies achieve similar
resultsleadingto asuccessul i dentification o particular de-
feds. Also, usinga Randam forests based analysis we show
that the newly introduced feauresare highly relevant for this
performance

Keywords Microarray images - Quality control - Defeds
clasdfication - Ensemble dasdfiers - Convex Multi-task
Leaning- Pattern recogrition

1 Introduction

Spotted DNA microarrays are a high-throughpu technd-
ogy, which alows the analysis of thousands of genes g-
multaneously and study pdentia correlations among them
[32, 27, 18, 2]. In a spotted microarray image thousands

of spats represent the expresson levels of the genes un-
der study. However, these images present high variability in
their quality due to intrinsic fadors arising at the manufac
turing process such as the hybridizationand printing steps,
aswell asthe quality of thebiologicd samples[13]. The bad
quality of the images, and therefore, the spats, negatively
aff eds the gene expresson levels which are measured. |de-
aly, al the bad quelity spots shoud befiltered at ealy steps
in order to avoid wrong conclusions in the subsequent data
analysis.

Most of the existing works in the literature concentrate
on developing agorithms to efficiently locate and segment
the spotsin order to measure the expressonlevels[3, 11, 8,
14,21, 7] (also areview of existingmethodscan befoundin
Bajcsy [5]), or on performing pettern recogntion and data
mining tasks to process and analyze the drealy extraded
gene expressonlevels[22, 34, 15, 29 (therealer isreferred
to the work by Valafar [35] for a survey on this topic). In
Blekas et. al [26] and Bozinov et. al [10], for example, the
proposed segmentationalgorithmsarerobust to the presence
of artifads, but no focusis placed onspat clasdfication ac
cordingto their quality nor ontheidentification o the faults.

Microarray analysis todls such as Spoat [38], Scanalyze
[17] and Genepix Pro[1] allow a human expert to manually
flag ou bad spats. This leals to a tedious and error prone
procedure given the large number of avail able spots. These
software padkages also provide automatic flagging, but this
islimited to computing several morphdogicd and statisticd
measures which describe the spats (e.g. spot sizes, signal to
noiseratio for individual channels, correlation between bath
channels). These measuresareintended to belater combined
in some way and thresholded in order to discard bad spats.
However, these feaures are not used to find a model of bad
quality spots nor to identify the spedfic defeds.
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Only a few works [30, 25, 9] ded with the particular
problem of spats quality control by findingamodel that dis-
criminates bad from goodspats.

In the work by Ruosaai and Hollmen [3(], the authors
extrad spatial spot feauresand use them to train a Bayesian
binary classfier, which separatesthe good quality spotsfrom
the bad quality ones. The spatial feaures consist of verticd
and haizontal range, elongation, circularity, uniformity and
Euclidean distance between the spot centers and the binary
mask which is used to extrad the spats.

An automatic quality control strategy based onBayesian
networks is proposed by Hautaniemi et al. [25], where a
Gausdan 2D distribution is fitted to ead spot in order to
perform fedure extradion. Bad quality spots are separated
fromgood qulity spotsin thisbinary classficaion problem.
Even thoughthe experiments show that Bayesian networks
are an effedive toad for spat binary classfication, itis nec
essary to define first their structure, describing the relations
between the model comporents.

Bicego etal. [9] propose Suppat Vedor Machines
(SVMs) [37] to separate goodfrom bad quality spots using
the same fedures as in Hautaniemi et al. [25]. This method
showed to improve the performance, and has the advantage
that it does nat require a priori knowledge ebou the data.

In this paper we addressthe problem of spat classfica
tionfor microarray quality control. First of al, we perform
bad/good quality spats discrimination by means of ensem-
ble dgorithms and wsing the same set of fedures proposed
by Hautaniemi et al. [25] and used by Bicego et al. [9].
As dated abowe, this problem has arealy been tadkled by
these authors using several classfiers, including the recent
and paverful SVMs. However, to the best of our knowl-
edge, ensembles have not been used for this purpaseyet. We
compareour classfication performancesto those obtainedin
Hautaniemi et al. [25 and Bicego et al. [9], and show that
ensembles can improve the acarracy of the discrimination.

Ensemble methods[24] are machineleaningalgorithms
developed in the last decales, which leverage the power of
multiple learners and combine their predictionsin order to
adhieve better acarracy and more robustness than any of
the single leaners ading individually. The leaners houd
be complementary to ore ancther to take alvantage of the
method becaiseif they aways agreetherewould na be any
improvementsover usingtheindividual | eaners. Ensembles
showed to be very competitive against the best state of the
artleaningalgorithms, i.e. SYMs, achievingsimil ar or even
better performances(see eg. Balujaet al. [6], where ensem-
bles also show to be faster than SVMs, and Liu et al. [28]).

Regarding the bad/good quality classfication problem,
our goa is to implement an ensemble of binary classfiers
ableto predict the dasslabel for eat spat. We propcse two
powerful representatives of ensemble dgorithms to solve

this binary clasdficaion problem. These ae Boosting and
Randam Forests.

Boostingis an iterative dgorithm based onthe ideathat
if several “wed&” classfiers (smple dassficaion rules

that provide mis-clasdficaionerrors dightly better than chance)

are combined into an ensemble, the result will be a “strong’
clasdfier with ahighly improved performance[36, 31]. Per-
haps the most common and simplest version o boacsting
is the AdaBoost agorithm [19], also cdled Discrete Ad-
aBoost. Several variants have been proposed since Discrete
AdaBoost appeaance, including Red and Gentle AdaBoost
[20].

Randam forests[12] is an ensemble dgorithm that cre-
atesalarge set of uncorrelated trees and makesthem vote for
thefinal output. Thisvoting ower thededsion o all thetrees,
cdled “bagging’, reduces the high variability of the trees.
Random forests compares favorably to boasting in perfor-
mance, and is also faster and simpler to train and tune. Ad-
ditionally, it has the advantage of incorporating an internal
measure of inpu’s relevance that can be used to assessthe
relative importance of ead fedure for the discrimination
task.

Afterwards, we consider the problem of spot defeds de-
tedionin order to identify the faults appeaing in the spats.
We propose anew set of additional feaures to represent
the spots and use the receant algorithm of Convex Multi-task
Leaning [4] to perform classficaion. We use for this pur-
pose red spots manually labeled by three human experts.
We asaume that one spot may suffer from several defeds at
the same time (or nore of them) and that those faults are
correlated, i.e., the occurrence of one defed may affed the
presence of others. For example, it is feasible to think that
a spot of bad size (too small or too kig) may also have a
non-circular morphdogy, or a nortuniform pixel intensity
distribution.

Our gadl in this case is to deted all the defeds in the
spot, and this constitutes a multi-label classficaion prob-
lem. Theidentificatiion o thefaultsandtheir correlationmay
be used as feadbadk to corred or improve the manufacur-
ing process Typicd defedsin cDNA microarray imagesare
described in the literature [25], as well as the experimental
fadorsthat may cause their ocurrence For example, as g
gested by Hautaniemi et al. [25], big deviations in the spot
sizes (which idedly shoud be groximately al the same)
may be caused by severa isaues, includingthe necessty for
replacement of damaged needles.

The detedion of defeds may also let distinguish differ-
ent degrees of reliability of the information provided by the
spats. For example, spots wff eringfrom bleeding are gener-
ally not reliable. However, some variations in the spot sizes
are dlowed and, unlessthe spatsaretoosmall or too kg, this
is usually not a drastic problem. The detedion o the spe-
cific defeds let cdculate spot quality measures which can
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be incorporated into microarray analysis tods, such as the
R padkage limma [33]. This padkage et the user weight the
spotsacardingto their quality in order to measuretherelia
bility of the spot ratiosfor posterior analysis. The procedure
proposed in this paper may be eaily added to any microar-
ray image analysis ftware to compute these weights. The
scores obtained in the dasdficaion processmay be used di-
redly to rank the spots acarding to the different defeds
under consideration.

Multi-label classficaion tasks are much more complex
than the simple binary classfication, and thus the basic spot
feaures previousdly used are naot sufficient. We propose an
additional set of fedures, which are extraded for the iden-
tification o defeds and show to improve dassficaion ac
curagy. In addition, we use the recent algorithm of Convex
Multi-task Feaure Leaning (CMFL) [4] to perform multi-
label clasgficaion. This algorithm is gedficdly designed
for solving multi-task problems where the tasks are corre-
lated, alowing to find an optimized shared representation
of the feaures aaossthe different classes. To the best of
our knowledge, the identification of multi ple spat defeds by
modeling the aiteria of human experts via multi-task lean-
ing is a novel approach which has not been considered in
the literature yet. We evaluate the performancein terms of
the Hamminglossandthe aeas under the recaver operating
charaderistic curves (ROCs), obtaining goodresults.

The rest of the paper is organized as foll ows. We report
in Sedion 2the binary classficaion problem, where we sep-
arate spotsinto goodand bad quality classes. We developthe
defedsidentification problemin Sedion 3 Finally, we draw
some anclusionsin Sedion 4.

2 The“bad spots’ detedion problem

In this dionwe describe the dataset and explain the meth-
0ds used to solve the goodbad quality classficaion prob-
lem. We dso discussthe obtained results.

2.1 Dataset description

We use apuHicly avail able dataset, which consists of spots
extraded from two diff erent microarray images[25]. A grid
of one of these imagesis shown in Fig. 1. These spots were
labeled by three human experts which have severa yeas
of experiencededing with microarray experiments. A total
number of 320 spats (160from ead image) were assgned
by the experts to four quality categories: bad, close to bad,
close to goodand good The three eperts labeling exadly
coincidesin 155spats. In order to perform binary classfica
tion, we grouped the previously mentioned four quality ca-
egories into good quality (by joining “good and “close to
good' sets) and bed quality (theunion o “bad” and“closeto
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Fig.1 Oneof themicroarray grids containingthe spotsto be dassfied.

bad” sets). Using these settings, we found 97 otiof the 155
spots to belongto the good quaity classand 58to the bad
quality class These same settings were used by Hautaniemi
et al. [25] and Bicegoet al. [9]. The microarray images, ex-
perts labeling and additional information about the dataset
are publicly avail able!.

2.2 Basic fedure set

Hautaniemi et al. [25] proposed to compute seven feaures
per spat for ead channel (Cy3 and Cy5) in order to clas-
sify spats into goodand bad classes, giving rise to a 14-
comporent feaure vedor. We computed the seven feaures
asfollows.

First of al, wefitted a2D Gaussan surfaceto every spot
using a standard nonlinea least squares procedure over a
15x 15 pixel grid [25]. This function is the estimation of
the spot intensity distribution aaossthe spot pixels. The 2D
functionis defined as [25]

f(x,A,B,X, 0,0y, p) = Ae * N'Sx% 1 g @)

wherex = [x,y]T € R?isthepixel coordinatesvedor, X € R?
is the Gaussan mean, and S = R, diag (0, 2,0y 2) Ry is
the inverse covariance matrix, where oy and oy are the x
and y standard deviations, respedively, and Ry, is the rota-
tion matrix with rotation angle ¢. Parameters A and B are
the foregroundand badgroundintensities of the spat, re-
spedively. In pradice the size of the pixel grid shoud nat
be aiticd, given that it is high enoughasto clealy contain
the spat.

1 http://wuw.cs.tut.fi/TICSP/SpotQuality/
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We extraded the seven feaures from this 2D Gaussan
functionin the following way (the reader is referred to [25]
for more detail son how to compute these feaures):

O Spotintensity: parameter A.

O Badkgroundintensity: parameter B.

O Alignment error: the distance between X and the center
of the spat boundng box

O Roundress the i/ oy ratio.

O Spot size the oxoy product.

0 Badkground nase: the root mean square aror between
the spot and the fitted 2D Gaussan function.

O Bleding: the number of pixels of the spot which fall
outside the fitted Gaussan.

The final fedure vedor is compased by the &oremen-
tioned continuous feaures for Cy3 and Cy5 channels. In
contrast to previousworks [25, 9], we do nd apply any dis-
cretization procedures nor feaure seledion algorithms on
thefeaureset in order to performbinary classficaion, since
it did na provide any improvementsin our case.

2.3 Ensemble dgorithms

For the sake of completeness next we briefly describe en-
semble dgorithms[24].

2.3.1 Boosting

Boosting clasdfiers are based on the idea that if many
“wed” clasdfiers(dightly better than chance) are combined
into a “strong’ clasdfier, the overal performance will be
highly improved [36, 31]. In this paper we considered three
different boosting algorithms, namely Discrete, Red and
Gentle Boost, which we describe bel ow.

Let D = {(xi,yi)}, withi = {1,...,n}, be atraining d&-
taset of n pairs of fedure vedorsx; € RP and classlabels
yi € {—1,1}. Discrete AdaBoast [19 creaes a sequence of
week classfiers (fm(xi)) amed at discriminating the train-
ing observations. Initialy, al the observations are assgned
aunique weight w; m. This distribution of weights is modi-
fied dlongwith the m= {1,...,M} iterations (round), i.e,
ohservations which are badly classfied (more difficult to
lean) are given higher weights. The dgorithm attempts to
find an optimum clasdfier at ead round Each wek class-
fier isweighted acmrding to its performanceon the aurrent
distribution of weights on the observations. At the end, the
final strongclassfier F(x;) isthe weighted linea combina-
tion o the wedk classfiers, as hawnin Eq. (2).

F(xi) =Sign< % Wi.mfm(xi)) @
m=1

The output of Discrete AdaBoost at ead iteration is a
discrete value arrespondngto the predicted classlabel for
ead observation. The dficiency of the dgorithm may be
improved by computing class probabiliti es instead of dis-
crete labels. These dass probabiliti es are then converted to
the red scde and wsed to updbte the weight distribution for
the observations at ead iteration. This improved algorithm
is named Red AdaBoost [20]. Both Discrete and Red Ad-
aBoost minimizethe expedation of the so-cdl ed “exporen-
tial loss’, defined ase YiF (%), Gentle AdaBoost [20] isan al-
gorithm very similar to Red AdaBoost, but uses a sequence
of Newton stepsto optimizethe expedation o the exporen-
tial loss Even thoughthe dasdficdionresults are very sim-
ilar for both methods, this feaure makes Gentle AdaBoost
numericaly superior to Red AdaBoost.

2.3.2 Random forests

Randam forests[12] isarecent kind df ensemble dgorithm,
where the individual classfiers are a set of de-correlated
trees. They perform similarly or even better than boasting
in some situations, and are faster too.

The dgorithm works by bulding a olledion o
unpruned trees from B random samples with replacement
(boastrap versions) of the original training dataset. For ead
random forest tree f,,, arandom sample of m < p variables
is eleded to split the data & ead noce and gow the de-
cision tree The final clasdficaion result F(x;) is the dass
correspondngto the majority vote of the ensemble of trees:

F (xi) = majority vote {fb(xi)}E:l (3)

As we mentioned before, Random forests incorporates
amechanism for the estimation o the importance of inpu
variables. As explained by Breiman [12], after the model
was trained, feaures are shuffled (i.e. their values are ran-
domly permuted between all cases in the dataset) one & a
time. Then, an ou-of-bag estimation o the prediction error
is made onthis “shuffled” dataset. Intuitively, a feaure that
isirrelevant to the model will not change the prediction per-
formancewhen altered in thisway. On the other hand, if the
model made strong wee of a given feaure, altering its val-
ues will | ead to an important deaease in performance The
relative lossin performance between the “original” dataset
andthe “shuffled” dataset istherefore related to the relative
relevanceof the feaure df eded by the process

2.4 Experimental results
We performed classficaionwith thethreeversions of boost-

ing clasdfiers described in Subsedion 23.1, namely Dis-
crete, Red and Gentle AdaBoost, resortingto the R padage
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Tablel Test errors for the different classfiers usng LOOCV.

Clasdfication Algorithm

Accuracy

B-Course (subjedive) [25]

Pair-wise NB (subjedive) [25]

NB (subjedive) [25]
NB (uniform) [25]
DedsionTree[25]
Neural Networks [25]

96.8%
95.5%
95.5%
94.8%
91.6%
90.3%

SVM (Linea)[9]
SVM (Polynomial)[9]
SVM (Gaussan RBF)[9]

96.1%
94.2%
97.4%

Discrete AdaBoaost (Propased approacd)
Red AdaBoost (Proposed approad)
Gentle AdaBoost (Propaosed approach)
Random Forests (Proposed Approach)

96.8%
97.4%
98.1%
98.7%

Table2 Mean test error and standard error (Sg) for random subsampling and 20times 5-fold crossvalidation.

Classfication Test error (mean+S¢)

algorithm Random subsampling  20times 5-fold CV
SVM (Gaussan RBF kernel) 0.0368+0.0034 00300+ 0.0034
Discrete AdaBoost 0.0342+0.0030 00303+ 0.0030
Red AdaBoost 0.0342+0.0030 00310+ 0.0033
Gentle AdaBoost 0.0330+£0.0031 00310+ 0.0032
Random Forest 0.0253+ 0.0026 0.0235+ 0.0028

ada [16], using stumps as week learners. We implemented
the randam forests algorithm described in Subsedion 23.2
viathe R package randomForest 2. We used 1000rounds
for ead of the boasting methods and 500trees for randam
forests. We computed the fedures as detail ed in Subsedion
2.2, and considered a total number of 155 spats for this bi-
nary problem, which are the spots with uranimous labeling
by the three eperts. Following the same methoddogy em-
ployed in previous works in the literature [25, 9], we used
leave-one-out crossvalidation (LOOCV) to assssthe per-
formance andwe compared the generali zaionerror to those
obtained in these previous works.

We show in Table 1 the acwrades of the four ensem-
ble methods against previous results existing in the litera-
ture. We obtained very good performancesfor all the ensem-
ble dgorithms. From Table 1 we ca seethat Discrete Ad-
aBoost resulted in the same acairacy as B-Course (subjec
tive) [25], and Red AdaBoost provided the same improve-
ment as SVM with Gaussan RBF kernel [9]. Gentle Ad-
aBoost reduced the mis-classficaionsfrom four to threeout
of the 155 spots. However, we foundRandam forests to be
the most acairate dgorithm (highlighted in gray) with ony
two mis-classfied spats.

As LOOCYV is an urstable procedure, usualy resam-
pling is implemented instead. We dso computed the mean

2 http://stat-www.berkeley.edu/users/breiman/
RandomForests.

and its dandard error for the generalizaion error by run-
ning the different classfiers 100 times, using ead time a
random partitioning of the dataset with 7% of the spots
as training set and leaving the remaining 2%% for testing
purposes. We show these results in Table 2. This form of
computingthe aror is more pesgmistic than LOOCV, since
the training set beaomes amaller. We computed the eror for
the four ensemble dgorithms and SVMs (which showed to
have the best performance, acordingto Table 1, amongthe
previously propased clasgfiers). We performed asimilar ex-
periment by running 20times 5-fold crossvalidation. We
also show these resultsin Table 2. In all the cases, Randam
forests obtain the best performancewith the lowest standard
error.

We can compare the erorsin Table 2 to the acaurades
in Table 1, which show to be consistent (takinginto acount
that acarades are defined as “ 1-error rate”). The three e-
ror measures behave a expeded, indicaing that Randam
forests provide the lowest errorsin al the cases.

For the dasdfiers shownin Table 2, we computed the a-
easunder the Recaver-Operating-Charaderistic (ROC) curves,
obtaining values greaer than 0.97in al the caes. Thisfad
indicatesthat all the dgorithmsunder consideration provide
goodacawrades with a very low level of randam discrimi-
nation, and that the binary problem seansto be arelatively
easy clasdficdion problem.
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Fig. 2 Fedure relative importance for the binary problem.

In Fig. 2 we show the relative importance of the 14 fea
tures measured by the Randam forests classfier. The fea
turesare ordered in pairs correspondngto thered and green
channelsfor intensity, bacdkgroundintensity, roundress spot
size, alignment error, badkground nase and Heealing. For
example, bins3 and 4in Fig. 2 show the relativeimportance
of both channels for the badgroundintensity fedure. For
the binary problem, it is clea that the most relevant feaures
are the spot size mmputed on bdh channels (bins 7 and 8).
Additionally, the intensity of the green channel seemsto be
also important. In contrast, the lessrelevant feaures are the
roundress(bins 5 and 6) and the spot alignment error (bins
9and 10. Itisinterestingto naethat in orly one out of the
7 pairs of feduresthere ae marked diff erences between the
red and green channels.

3 The“defedsidentification” problem

We describe in this fdion the dataset and the procedures
foll owed to deted thefaults present in the spots. We describe
the diff erent kinds of faults under consideration as well as
the representation feaures that we used. We dso discussthe
experimental results.

3.1 Dataset description

For the multi-1abel classfication problem, we considered the
totality of the 320 spats from two diff erent microarray im-
ages belongngto the dataset described in Subsedion 21.

Thethree expertswho manually classfied the spotsinto
the bad/good quality classes also labeled them acwrding to
their defeds. Thesix typesof faultsthat we takeinto acourt
in the experiment are

O Spot bleeding: it occurs when ore spot overlays one or
more of its neighbas.

0 Badkground dfeds: e.g. nonspedfic hybridizations or
noise present in the background

0 Badspatsize althe spotsare suppacsed to have goproxi-
mately the same size (measured in pixels). Thisproblem
concerns gots whose size deviates too much from the
rest, for instance, due to problems in the printing ree
dles.

O Morphdogy defeds: the spots whose morphdogy devi-
atestoomuch from a drclefall i n this caegory.

O Pixelintensity distribution defeds: the foregroundinten-
sities shodd be uniform for good quality spots. How-
ever, nonspedfic hybridizaions or uneven distribution
of the DNA samples may cause this defed to appea, as
in the case of donusor holey spats.

O Intensity issues. they happen when the foregroundsig-
nal is too wedk due to genes which expressat very low
levels, incomplete hybridization o low sensitivity of the
scanner. It causes difficulties at the segmentation step
since there is no goodcontrast of the spat against the
badground

We show some spot examplesin Fig. 3. In Table 3 we
report the number of spats in ead caegory, acording to
the judgment of ead expert. First, we report the number of
spots acording to the independent labeling o ead expert,
i.e, it isenoughfor one spat that only one expert considers
it asbelongngto afaulty class Next, we inform the number
of spats for which two experts agreed. Finally, we detail the
agreament of the three perts. It is worth mentioning that
there ae no instances of spots wffering from badkground
problemsand, in consequence, we excluded this classin the
analysis.

From Table 3 it is evident that the conclusions drawn
by the experts are very subjedive, and that the aiteria they
used to classfy spots acwording to their defeds are not ho-
mogeneous. We can asaume that the experts shoud agreein
caseswhere defeds are dealy evident, and that they shoud
producedifferencesin lessmarked situations. There aetwo
posshle causes for those diff erences. On ore side, it is pos-
siblethat all expertscompletely agreein the definition o the
defeds, and that in some cases any of them simply missed
to mark adefed in aspot. On the other side, it could be the
cese that ead expert is consistent in his own clasdfication
but has a diff erent opinion onwhich is the particular defect
present in a spot. This stuation would produce amatrix of
co-occurrence of defeds with high values at non-diagoral
positions (as the same defed will be asdgned two diff erent
labels). In Table 4 we show the correspondngmatrix for our
dataset, where several high norrdiagoral values are present.
Of coursg, it i's expeded that some spats redly suffer from
more than ore fault, but the high dsagreement observed in
Table 3 together with the high co-occurrenceof faultsin Ta-
ble 4 pants clealy to a set of experts that, in some cases,
have diff erent concepts of eat defed.
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(e) Intensity dist. defeds.

Morphdogy and intensity  (g) B
dist. defeds.

spot size and mor-
phdogy defeds.

Fig. 3 Some examples of spats having good qality or diff erent types of defeds.

There ae a least two ways to facethis problem. On
one side, we can choose to reduce the dataset considering
only the agreement of two or three eperts. Unfortunately,
this results in low popuated classes, hardening the model -
ing process Oppasitely, we chocse to use the dataset as it
is, kegoingthe opinion o al experts. Thisisamore difficult
problem than the one we would faceif the experts would
agreein all cases, but if we can solvethis problem with high
acairagy, it is expeded that the same can be dore with the
easier problem of coherent experts.

3.2 Additiona feaure set

We aayzed the seven basic feaures proposed by
Hautaniemi et al. [25] and previously used to ded with the
binary clasgfication problem for the multi-label problemtoo.
We dready described them in Subsedion 22. They gaverise
to al4-comporent vedor for ead spot (7 feaures per chan-
nel). However, they did na perform very well for the muilti-
|abel problem, aswe show in Subsedion 3.4. For thisreason,
we propcose in this paper the foll owing additional spot fea
tures. They are computed on the grayscde image for ead

spot.

O Intensity projedion profiles of the spot image f. These
profiles are obtained by summing up the intensities
alongthe rowsr (verticd sum profile S;) and alongthe
columns ¢ (horizontal sum profile S,). This procedure
generates two vedors correspondng to the intensity
summationin ead diredion:

S/(c) = Z f(r,c)
and r

S(r) =5 f(r.0).

Euler nur%ber €: the number of conrneced comporents
nc in the image region minus the number of hales nh,
i.e: € =nc—nh.

Eccentricity &: eccantricity of the dli pse, which hasthe
same secondmoments asthe spat. Let d; bethe distance
between the foci of the dlipse, and d, the length of its
major axis. The eccatricity & isequal to & =d;/d,. The
valuesof ¢ rangesfrom O (a drcle) to 1 (aline segment).
Spot perimeter P: computed as

P= ZZI(r,c),

where | is a binary image with 1sin the perimeter pix-

els. The perimeter pixels are those having at least one

neighba pixel equal to 0.

Texture descriptors[23]:

O Mean of the intensity histogram (first order statisti-
cd moment, average gray level):

L-1
u= i;ap(a),

where L is the number of possble gray levels and
p(z) isthe probahility distribution of intensities z.
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Table 3 Classdistributions.

Spot BKG Bad spot  Morphology Int. distrib.  Intensity
bleeding defeds dze defeds defeds isues
3 expert independent conclusions (no ageement required)
Number of spots 12 0 93 73 98 130
Probabili ty 0.0375 0 02906 02281 03063 04062
2 experts agreement
Number of spots 9 0 66 25 28 35
Probabili ty 0.0281 0 02062 00781 Q0875 01094
3 experts agreement
Number of spots 6 0 30 2 4 10
Probabili ty 0.0187 0 00938 Q0063 Q0125 00312
Table4 Contingency table for the five dasses of defeds.
Classs Spot Bad spot  Morphology Int.distrib. Intensity
bleeding size defeds defeds isales
Spot 12 0 0 2 3
bleading
Bad spot 0 93 51 25 66
size
M orphology 0 51 73 34 45
defeds
Int. distrib. 2 25 34 98 50
defeds
Intensity 3 66 45 50 130
issues

0 Standard deviation o the intensity histogram (sec
ond ader statisticd moment, measure of contrast),
defined as:

L-1
o=/ 3 @-1’P)
=
O Skewnessof the intensity histogram (third order sta-
tisticd moment, asymmetry abou the mean):

L1
s= 3 (a—1)°pa).
2,
O Smoothness R=1-1/(1+0?). This measure

ranges from O (spot with constant intensities) to 1.
O Uniformity (also energy):

L-1
U= i; p*(2).

This measure is maximum when the intensities are
uniformly distributed.
O Average entropy as a measure of randomness

L-1

E= Z) p(z)l0g, p(z).

Aswe mentioned above, we do nd compute the previously
described feaures onthe red and green channels sparately,
but onthe grayscde image of the spat (typicdly obtained as
the average between the red and green channels). In particu-
lar, for the Euler number, ecceantricity and spot perimeter we
used binary images obtained using atypicd fixed threshold
at ahalf of the range of the grayscdeimage. Afterwards, we
concaenate dl the feaures into a single vedor with a total
number of 49 comporents.

In this work, the intensity profiles are computed over
13 13 spot masks. This number was Eleded becaiseitis
the standard sizefor good quality spotsin this dataset, andit
showed to performwell . In general, the number of bins used
to computetheintensity profiles shoud na be aiticd, aswe
are smply estimating a histogram of the spatial distribution.
As usually, the number of bins shoud be high enoughas to
seesome detail, but not too big as to introduce noise in the
problem. Also, this fixed number shoud na be aproblem
with test spots with a different size as the images can be
easily sampled at the corred resolution.
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3.3 Convex Multi-task Feaure Leaning (CMFL)

Leaning low-dimensional fedures shared aaoss diff erent
clases/tasks has shown in the literature to improve the per-
formance ggainst learning the individual classes/tasks. Ar-
gyriou et al. [4] proposed a method which leans a shared
low-dimensional representation o the feaures among the
different tasks by regularizing within the tasks whil e keegp-
ing them couped to ead other.

Let D = {(xi,yi)} be alabeled dataset withi =1,....m
inpuw/output observations. Every single vedor x; € RY isthe
inpu vedor with associated label yi € {+1}. The supervised
leaning processcan be formulated as a single task classfi-
caion problem, where the label s are determined by amargin
classfier f : RY — R, such that

d

f(xi)=Y ajhj(x), 4)
X J; ihj (x

where hj : RY — R are the feaures and aj € R are the re-
gresson parameters.

The single dasdtask problem can be extended to a
multi-classtask problem by introducing the vedorsy; € RT
containingthe labelsfor T diff erent classes/tasks. Inthegen-
eral case, theinput observationsxy; (witht =1,...,T) may be
different for ead clasgtask in the multi-clasgtask situation.

The margin clasdfiers for ead class f;, are expeded to
be related to ead other and share asmall set of fedures,
and orly afew feaures are expeded to have non-zero coef-
ficientsaaossall the dasegtasks.

Let assumenow that thefeduresarelinea, i.e., hj(xi) =
(uj,Xti), with vedors u; € RY and athonamal. Let U be
the d x d matrix with columns formed by the vedors u;.
Asaume that the functions f; are dso linea, i.e, fi(xi) =

d
(W, Xtj), with wy = Z ajtu;.
=1

Extensionsto norlinea functionsare possble, e.g., by using
kernels, but they are outside the scope of thiswork.

Dencte by W the d x T matrix with vedors w; as col-
umns, and by A the d x T matrix with entries aj;. Then
W = UA. Asit is expeded to find a low-dimensional set
of feaures shared by all the dasss, the matrix A has many
rows equal to zero and the correspondngfeaures (columns
of U) will be discarded to represent the task parameters (col-
umns of W). Matrix W is then alow rank matrix.

The solutionto the leaning problem then reducesto the
computation o the fedure vedorsuj andthe parameters aj
which minimizethe unconstrained problem

min{&(AU):U € 09 Ac R>T } (5)
where

T m
&(AU) :t;i;i”(yn (@, U ")) + VIIAl5 1. (6)

In Eq. (5), OY is the set of d x d orthonamal matrices,
and in Eq. (6), y > 0 is the regularization parameter. The
first term in this equationis the average of the empiricd er-
ror acossthe tasks, whil e the sscondterm is the regularizer
which penalizes the (2,1)-norm of the matrix A. This norm
is the resporsible for combining the tasks and the seledion
of common feaures aaossthem. The number of nonzero
elements of b(A) represent the importance of ead derived
feaure agossthe tasks, also favoring uriformity aaossthe
tasks.

3.4 Experimental results for the “defeds identification”
problem

As we showed in Subsedion 24, very goodacalrades can
easily be obtained for the detedion o faulty spots using a
basic set of feaures and standard classfication algorithms.
However, determination o the spedfic defeds which affea
the spots becomes a more compli cated task.

For the defeds clasdficaion problem, which is a multi-
label task, we aonsidered orly the original set of feaures
described in Subsedion 22 at first. However, the results
were not very good and these feaures samed to be not
goodenoughto extrad the most relevant charaderistics of
the different defeds when used alone. In order to improve
acasracy, we aditionally computed the feaures described
in Subsedion 32.

The ensemble dgorithms described in Subsedion 23
are not multi-class nor multi-label. As Randam forests
readed the best performance for the bad/goodspots prob-
lem, we seleded this classficaion agorithm to implement 5
independent classfiers aimed at deteding the presence/
absenceof eat defed separately.

We compared this approach to the very recent algorithm
of Convex Multi-task Fedure Leaning (CMFL) [4] des-
cribed in Subsedion 33, which is able to find a shared rep-
resentation of feauresfor al the dasses and perform multi-
label clasgficaion. Additionally, we computed the results
obtained by Convex Multi-task Independent Leaning
(CMIL, similar to Convex Multi-task Feaure Leaning bu
with nocouding acossthe dasses, i.e., using ||W||, regu-
larization). We tested all the dgorithms using leave-one-out
crossvalidation.

We ocomputed the Hamming loss to measure the aror
in class predictions, since in most cases it provides a sm-
ple interpretation of the dassfiers acarragy. It is cdculated
as the percentage of erroneously predicted labels for all the
classes. In Table 5 we report the Hamming lossobtained by
ead clasdfication agorithm with ead different set of fea
tures. From these resultswe can seethat using 5independent
clasdfiers provides the lowest error. The adition of the set
of feaures described in Subsedion 3.2 improves the aca-
racy of all the dasdficaion algorithms.
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Table 5 Hamming lossfor the different clasdficaion agorithms and
different feaure sets.

Hamming
loss(%)
Basic feaures only and 5I1C 1363
Basic fegures only and CMFL 27.69
Basic feaures only and CMIL 2781
Propacsed additional feauresand 51C 1194
Propcsed additional feaures and CMFL 25.63
Proposed additional fegures and CMIL 2481

Table6 Areas under the ROC curves (highlighted in gray the best re-
sults).

Spot bleeding
Basic features  Proposed additional
only features
5IC 0.985 Q989
CMFL 0.996 0.999
CMIL 0.997 Q998
Bad spot size
Basic features  Proposed additional
only features
5IC 0.930 Q948
CMFL 0.904 0.949
CMIL 0.901 Q939
Morphology defects
Basic features  Proposed additional
only features
5IC 0.828 Q830
CMFL 0.807 0855
CMIL 0.806 0.858
Int. distribution defects
Basic features  Proposed additional
only features
5IC 0.780 0.819
CMFL 0.686 Q774
CMIL 0.688 Q777
Int. defects
Basic features  Proposed additional
only features
5IC. 0.954 Q969
CMFL 0.972 0.968
CMIL 0.972 0.970

Even thoughthe independent classfiers show the lowest
Hamming Loss they do nd provide auseful dedsionfunc-
tionin this case, as a detailed analysis show that they are
simply choaosing to predict al spots as defedless(which in
fad producesthelowest error rate, asfaulty spotsare dealy
minoritary). A degoer analysis of the performanceof the dif-
ferent methods can be obtained resorting to the Receaver-

Operating-Charaderistic (ROC) curves(Fig. 4), which show
the relation between the true positive rate (TPR) and the
fasepositiverate (FPR) for ead class From thefiguresitis
evident that the three dasdficationmethodsare, in fad, very
similar. Evidently, the Hamming lossis ading ona portion
of the ROCs where the aurve of the independent classfiers
exceals the arve of the Convex Multi-task algorithms.

As we can appredate from Figures 4(c) and 4(d), the
morphdogy and intensity distribution defeds are the most
difficult to deted, since the ROC curves drawn after using
only the basic set of fedures are doser to the identity curve
correspondngto random classdficaion. The aeas under the
ROCs (AUCs) that we show in Table 6 also confirm this.
Thesetwo classes are dso the oneswhich ohtain the greaest
improvements after adding the propaosed feaures.

When using orly the basic feaures for the defedsiden-
tification problem, the 5 independent classfiers get the high-
est AUCs for the dasses invalving bad spat sizes, morphd-
ogyandintensity distribution defeds. CMIL and CMFL ob-
tain the best performanceto deted intensity defedsand CMFL
to identify spot bleeding. After adding the propcsed fea
tures, all the AUCs are improved, except for a very dight
reductionin the performanceof the CMFL and CMIL algo-
rithmsfor the dasscorrespondngto intensity defeds. With
this feaure set CMFL shows the best performance for the
spot bleading and bad spot sizes problems, CMIL for inten-
sity and morphdogy defeds and the 5 independent class-
fiers for the remaining problem. There is not a dea win-
ner among the three methods analyzed in this work. Over-
al, consideringall classes and classfiers, we adieve ahigh
acarrag in this defeds identification problem, in al cases
with an AUC of over 0.81.

As we discussed in Sedion 31, we mnsidered for this
analysis the judgments of the three experts withou taking
into acount the lack of consensus amongthem. In a short
experiment, we dso applied the 5 independent classfiersto
the dataset produced by consideringthe agreement between
two experts. In Table 7 we show the correspondng AUCs.
Thereis a dea global improvement in the acaracy of the
method, which indicates that this is an easier problem to
solve, aswe agued before.

In Fig. 5 we show, as an image, the wefficients of the
matrix A resulting from the multi-label clasdficaion o the
spatsinto the five dasses using CMFL and the enlarged set
of feaures. This matrix has five nonzero rows of coeffi-
cients (seeSubsedion 33). This meansthat the dgorithmis
able to find a shared representation of 5 feeures, obtained
from the initial 49, among all the dasses of defeds. This
showsthat the intrinsic dimension o the problemis, in fad,
low.

Therelativeimportanceof eat feaurefor thefive dasses
of defeds using the 5 independent classfiers and the ex-
tended set of feauresis depicted in Fig. 6. From thisfigure,
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Table7 Areas under the ROC curves obtained by the 5 1C using the agreement of 2 experts and LOOCV.

Spot bleeding

Bad spot size Morphology defects

Int. distribution defects  Int. defects

0.984 Q973

Q902

0828 Q922

14

21

28

42

49

Fig. 5 Matrix A resulting from the CMFL agorithm, showing oy 5
shared feaures anongthe dasss.

it is evident that the bleeding feaures, computed onthe red
and green channels (bins13and 14in group(A)) are dealy
the most relevant to deted the bleealing class as well asthe
intensity at the spot borders (first intensity profile in group
(C)). A scatter plot of these relevant feaures (not shown)
suggeststhat the defedsare dways asociated with high val-
uesof this st of variables. Thefeauresfrom group(B) seemn
to be not relevant in this case.

Concerning the spat size defed, the most relevant fea
tures correspondto the spat size (bins 7 and 8in (A)) for the
red and green channels, the intensity profiles out of the cen-
ter in (C) and (D), and the mean of the intensity histogram
(bin 19in (B)). In all cases, low values of the variables are
asociated with the defed. It is interesting to nae that the
same holds for the morphdogy defeds detedion, except for
the mean of theintensity histogram. In the last case, none of
thefeauresin (B) seem to be of much importance

Accordingto thefourthrow in Fig. 5, the most important
feauresto deted the intensity spatial distribution defed are
the perimeter (bin 23in (B)), the mean of the intensity his-

togram, andtheintensity profiles. In this dataset, the perime-
ter has low valuesfor spots auffering from this defed.

Finaly, to deted theintensity defedsthe feaureswhich
show to be more relevant are the skewness the mean and
the standard deviation o the intensity histogram (bins 15,
19 and 20in (B)), and the intensity profiles ((C) and (D)),
all showinglow valuesin the presenceof the defed.

4 Conclusions

In this paper, we analyzed two different problems related
to spot quality cortrol. First of all, we considered the bi-
nary problem of separating goodfrom bad quality spats by
means of ensemble dassfiers. We proposed to implement
four ensemble dgorithms to perform classfication, namely
Discrete, Red and Gentle AdaBoost, and Randam forests.
Randam forests showed to perform better than the other al-
gorithms already proposed in the recent literature. We com-
puted basic feaures onthe spatsyielding very goodacara
cies.

The second poblem was much more complex. It re-
quired the detedion o five spedfic types of fail ures aff ed-
ing the spats. As Randam forests showed to be the most ac
curate dassfier for the binary classficaion task, wetried it
asthe basis for five independent classfiers. The set of basic
fedures suggested in previous works showed to be not good
enoughfor this problem. Thus we propcsed an additional
set of feaures, which clealy improved the performance of
al methods, showing that it is possble to identify the indi-
vidual defeds with high acaragy. Additionaly, a Randam
forestsanalysis of feduresimportance mnfirmsthat the new
feaures are highly relevant for the discriminant models. Fi-
nally, we compared the independent classfiers to the re-
cent algorithms of Convex Multi-task Leaning, spedficdly
CMFL and CMIL, finding that the overall performance of
the threemethodsis equivalent on this problem.

As we discus=d in the introduction, the results we ob-
tained in this work allow to compute spot quality measures
which can be later used in microarray analysis oftware.
Somemicroarray analysis padages, e.g. the R padkagelimma
[33], let the user weight the spots acoording to their quality
and wse thase weights to measure the reliability of the spot
ratios for further analysis. The results obtained in the das-
sification processdescribed in this paper may all ow to rank
the spots acarding to the presence of the diff erent defeds.
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Fig. 6 Fedure relative importance for the five defeds using 51C. From top to batom: bleeding, spot size defeds, morphdogy defeds, intensity
distribution problems and intensity defeds. From left to right: (A) Hautaniemi [25] fedures asin Fig. 2; (B) skewness smoothness uniformity,
average antropy, mean and standard deviation o the intensity histogram, Euler number, eccentricity and perimeter; (C) and (D) intensity profiles.

A word is needed abou the validity of our results. Asin
al previousworks, we ae sssumingthat our dataset isafair
sample of al existingmicroarray images, andin this context
we show that our methodshave very good generali zationca
pabiliti es. Of course, in order to evaluate the red validity of
our methodand all previously published works much more
extended studies are neaded, comprising hundeds of im-
ages from diff erent types of microarrays, experimental con-
ditions, etc. However, one can exped that our results and
also those availablein previous gudies will generalizewell
to new microarrays, as there ae not methoddogicd differ-
ences amongimages from diff erent microarrays.
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