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Abstract Bad quality spots should be filtered out at early
steps in microarray analysis to avoid noisy data. In this pa-
per we implement quality control of individual spots from
real microarray images. First of all , we consider the binary
classification problem of detecting bad quality spots. We
propose the use of ensemble algorithms to perform detec-
tion and obtain improved accuracies over previous studies
in the literature. Next, we analyzethe untackled problem of
identifyingspecific spot defects. Onespot may haveseveral
faults simultaneously (or none of them) yielding a multi -
label classification problem. We propose several extra fea-
tures in addition to those used for binary classification, and
we use threedifferent methods to perform the classification
task: five independent binary classifiers, the recent Convex
Multi -task FeatureLearning(CMFL) algorithm andConvex
Multi -task Independent Learning (CMIL). We analyze the
Hamming lossand areas under the receiver operating char-
acteristic curves (ROCs) to quantify the accuracies of the
methods. We find that the three strategies achieve similar
results leadingto asuccessful identification of particular de-
fects. Also, usingaRandom forestsbased analysisweshow
that thenewly introducedfeaturesarehighly relevant for this
performance.

Keywords Microarray images · Quality control · Defects
classification · Ensemble classifiers · Convex Multi -task
Learning · Pattern recognition

1 Introduction

Spotted DNA microarrays are a high-throughput technol-
ogy, which allows the analysis of thousands of genes si-
multaneously and study potential correlations among them
[32, 27, 18, 2]. In a spotted microarray image thousands

of spots represent the expression levels of the genes un-
der study. However, these imagespresent high variabilit y in
their quality due to intrinsic factors arising at the manufac-
turing process, such as the hybridizationand printing steps,
aswell asthequality of thebiological samples[13]. Thebad
quality of the images, and therefore, the spots, negatively
affects the gene expression levels which are measured. Ide-
ally, all thebad quality spots should befiltered at early steps
in order to avoid wrongconclusions in the subsequent data
analysis.

Most of the existing works in the literature concentrate
on developing algorithms to efficiently locate and segment
thespots in order to measure the expression levels [3, 11, 8,
14, 21, 7] (also areview of existingmethodscan befoundin
Bajcsy [5]), or on performing pattern recognition and data
mining tasks to processand analyze the already extracted
gene expressionlevels[22, 34, 15, 29] (thereader isreferred
to the work by Valafar [35] for a survey on this topic). In
Blekas et. al [26] and Bozinov et. al [10], for example, the
proposedsegmentationalgorithmsarerobust to thepresence
of artifacts, but no focus is placed onspot classification ac-
cordingto their quality nor ontheidentification of thefaults.

Microarray analysis tools such as Spot [38], Scanalyze
[17] andGenepix Pro [1] allow a human expert to manually
flag out bad spots. This leads to a tedious and error prone
procedure given the large number of available spots. These
software packages also provide automatic flagging, but this
is limited to computingseveral morphological andstatistical
measureswhich describe the spots (e.g. spot sizes, signal to
noiseratio for individual channels, correlation between both
channels). Thesemeasuresareintended to belater combined
in some way and thresholded in order to discard bad spots.
However, these features are not used to find a model of bad
quality spotsnor to identify thespecific defects.
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Only a few works [30, 25, 9] deal with the particular
problem of spotsquality control by findingamodel that dis-
criminatesbad from goodspots.

In the work by Ruosaari and Hollmen [30], the authors
extract spatial spot featuresand usethem to train aBayesian
binary classifier, whichseparatesthegood quality spotsfrom
the bad quality ones. The spatial featuresconsist of vertical
and horizontal range, elongation, circularity, uniformity and
Euclidean distancebetween the spot centers and the binary
mask which isused to extract the spots.

An automatic quality control strategy based onBayesian
networks is proposed by Hautaniemi et al. [25], where a
Gaussian 2D distribution is fitted to each spot in order to
perform feature extraction. Bad quality spots are separated
fromgood quality spotsin thisbinary classification problem.
Even thoughthe experiments show that Bayesian networks
are an effective tool for spot binary classification, it is nec-
essary to define first their structure, describing the relations
between the model components.

Bicego et al. [9] propose Support Vector Machines
(SVMs) [37] to separate goodfrom bad quality spots using
the same features as in Hautaniemi et al. [25]. This method
showed to improve the performance, and has the advantage
that it doesnot requirea priori knowledge about thedata.

In this paper we addressthe problem of spot classifica-
tion for microarray quality control. First of all , we perform
bad/good quality spots discrimination by means of ensem-
ble algorithms and using the same set of features proposed
by Hautaniemi et al. [25] and used by Bicego et al. [9].
As stated above, this problem has already been tackled by
these authors using several classifiers, including the recent
and powerful SVMs. However, to the best of our knowl-
edge, ensembleshavenot been used for thispurposeyet. We
compareour classification performancesto thoseobtained in
Hautaniemi et al. [25] and Bicego et al. [9], and show that
ensemblescan improvethe accuracy of thediscrimination.

Ensemblemethods[24] aremachinelearningalgorithms
developed in the last decades, which leverage the power of
multiple learners and combine their predictions in order to
achieve better accuracy and more robustness than any of
the single learners acting individually. The learners should
be complementary to one another to take advantage of the
method, becauseif they alwaysagreetherewould not be any
improvementsover usingtheindividual learners. Ensembles
showed to be very competitive against the best state of the
art learningalgorithms, i.e. SVMs, achievingsimilar or even
better performances(see e.g. Balujaet al. [6], where ensem-
blesalso show to be faster than SVMs, andLiu et al. [28]).

Regarding the bad/good quality classification problem,
our goal is to implement an ensemble of binary classifiers
able to predict the classlabel for each spot. We proposetwo
powerful representatives of ensemble algorithms to solve

this binary classification problem. These are Boosting and
Random Forests.

Boosting is an iterative algorithm based onthe ideathat
if several “weak” classifiers (simple classification rules
that providemis-classificationerrors slightly better thanchance)
are combined into an ensemble, the result will be a “strong”
classifier with ahighly improved performance[36, 31]. Per-
haps the most common and simplest version of boosting
is the AdaBoost algorithm [19], also called Discrete Ad-
aBoost. Several variants have been proposed sinceDiscrete
AdaBoost appearance, includingReal andGentleAdaBoost
[20].

Random forests [12] is an ensemble algorithm that cre-
atesalargeset of uncorrelatedtreesandmakesthem votefor
thefinal output. Thisvoting over thedecision of all thetrees,
called “bagging” , reduces the high variabilit y of the trees.
Random forests compares favorably to boosting in perfor-
mance, and is also faster and simpler to train and tune. Ad-
ditionally, it has the advantage of incorporating an internal
measure of input’s relevance that can be used to assessthe
relative importance of each feature for the discrimination
task.

Afterwards, we consider theproblem of spot defectsde-
tection in order to identify the faults appearing in the spots.
We propose a new set of additional features to represent
thespotsand use the recent algorithm of Convex Multi -task
Learning [4] to perform classification. We use for this pur-
pose real spots manually labeled by three human experts.
We assume that one spot may suffer from several defects at
the same time (or none of them) and that those faults are
correlated, i.e., the occurrenceof one defect may affect the
presenceof others. For example, it is feasible to think that
a spot of bad size (too small or too big) may also have a
non-circular morphology, or a non-uniform pixel intensity
distribution.

Our goal in this case is to detect all the defects in the
spot, and this constitutes a multi -label classification prob-
lem. Theidentification of thefaultsandtheir correlationmay
be used as feedback to correct or improve the manufactur-
ing process. Typical defects in cDNA microarray imagesare
described in the literature [25], as well as the experimental
factors that may causetheir ocurrence. For example, as sug-
gested by Hautaniemi et al. [25], big deviations in the spot
sizes (which ideally should be aproximately all the same)
may be caused byseveral issues, includingthe necessity for
replacement of damaged needles.

The detection of defects may also let distinguish differ-
ent degreesof reliabilit y of the information provided by the
spots. For example, spots sufferingfrom bleedingaregener-
ally not reliable. However, some variations in the spot sizes
are allowedand, unlessthespotsaretoosmall or too big, this
is usually not a drastic problem. The detection of the spe-
cific defects let calculate spot quality measures which can
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be incorporated into microarray analysis tools, such as the
R package limma [33]. Thispackagelet theuser weight the
spotsaccordingto their quality in order to measuretherelia-
bilit y of thespot ratiosfor posterior analysis. Theprocedure
proposed in this paper may be easily added to any microar-
ray image analysis software to compute these weights. The
scoresobtained in the classification processmay beused di-
rectly to rank the spots according to the different defects
under consideration.

Multi -label classification tasks are much more complex
than thesimplebinary classification, and thus thebasic spot
features previously used are not sufficient. We propose an
additional set of features, which are extracted for the iden-
tification of defects and show to improve classification ac-
curacy. In addition, we use the recent algorithm of Convex
Multi -task Feature Learning (CMFL) [4] to perform multi -
label classification. This algorithm is specifically designed
for solving multi -task problems where the tasks are corre-
lated, allowing to find an optimized shared representation
of the features across the different classes. To the best of
our knowledge, theidentification of multiplespot defectsby
modeling the criteriaof human expertsviamulti -task learn-
ing is a novel approach which has not been considered in
the literature yet. We evaluate the performancein terms of
theHamminglossandthe areasunder thereceiver operating
characteristic curves(ROCs), obtaining goodresults.

The rest of the paper is organized as follows. We report
in Section 2thebinary classification problem,wherewesep-
aratespotsinto goodand bad quality classes. Wedevelopthe
defectsidentification problem in Section 3. Finally, wedraw
some conclusions in Section 4.

2 The “ bad spots” detection problem

In this sectionwedescribe thedataset andexplain themeth-
ods used to solve the good/bad quality classification prob-
lem. We also discussthe obtained results.

2.1 Dataset description

We use apublicly available dataset, which consists of spots
extracted from two different microarray images[25]. A grid
of one of these images is shown in Fig. 1. These spots were
labeled by three human experts which have several years
of experiencedealing with microarray experiments. A total
number of 320spots (160from each image) were assigned
by the experts to four quality categories: bad, close to bad,
close to goodand good. The three experts labeling exactly
coincidesin 155spots. In order to perform binary classifica-
tion, we grouped the previously mentioned four quality cat-
egories into good quality (by joining “good” and “close to
good” sets) and bad quality (theunion of “bad” and“closeto

Fig. 1 Oneof themicroarray gridscontainingthespotsto be classified.

bad” sets). Using these settings, we found 97 out of the 155
spots to belong to the good quality classand 58to the bad
quality class. Thesesame settingswereused byHautaniemi
et al. [25] andBicegoet al. [9]. Themicroarray images, ex-
perts labeling and additional information about the dataset
arepublicly available1.

2.2 Basic featureset

Hautaniemi et al. [25] proposed to compute seven features
per spot for each channel (Cy3 and Cy5) in order to clas-
sify spots into goodand bad classes, giving rise to a 14-
component feature vector. We computed the seven features
as follows.

First of all , wefitted a2D Gaussian surfaceto every spot
using a standard non-linear least squares procedure over a
15× 15 pixel grid [25]. This function is the estimation of
thespot intensity distributionacrossthespot pixels. The2D
function isdefined as [25]

f (x,A,B, x̄,σx,σy,φ) = Ae−(x−x̄)T S(x−x̄)+B (1)

wherex= [x,y]T ∈R
2 isthepixel coordinatesvector, x̄∈R

2

is the Gaussian mean, and S = RT
φ diag

(

σ−2
x ,σ−2

y

)

Rφ is
the inverse covariance matrix, where σx and σy are the x
and y standard deviations, respectively, and Rφ is the rota-
tion matrix with rotation angle φ . Parameters A and B are
the foregroundand backgroundintensities of the spot, re-
spectively. In practice, the sizeof the pixel grid should not
be critical, given that it is high enoughas to clearly contain
thespot.

1 http://www.cs.tut.fi/TICSP/SpotQuality/
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We extracted the seven features from this 2D Gaussian
function in the following way (the reader is referred to [25]
for moredetailson how to compute these features):

➣ Spot intensity: parameter A.
➣ Backgroundintensity: parameter B.
➣ Alignment error: the distancebetween x̄ and the center

of the spot bounding box.
➣ Roundness: theσx/σy ratio.
➣ Spot size: the σxσy product.
➣ Background noise: the root mean square error between

the spot and the fitted 2D Gaussian function.
➣ Bleeding: the number of pixels of the spot which fall

outside thefitted Gaussian.

The final feature vector is composed by the aforemen-
tioned continuous features for Cy3 and Cy5 channels. In
contrast to previousworks [25, 9], we do not apply any dis-
cretization procedures nor feature selection algorithms on
thefeatureset in order to performbinary classification, since
it did not provide any improvementsin our case.

2.3 Ensemble algorithms

For the sake of completeness, next we briefly describe en-
semble algorithms[24].

2.3.1 Boosting

Boosting classifiers are based on the idea that if many
“weak” classifiers(slightly better thanchance) are combined
into a “strong” classifier, the overall performance will be
highly improved [36, 31]. In this paper we considered three
different boosting algorithms, namely Discrete, Real and
GentleBoost, which we describebelow.

Let D = {(xi,yi)}, with i = {1, ...,n}, be atraining da-
taset of n pairs of feature vectors xi ∈ R

p and classlabels
yi ∈ {−1,1}. Discrete AdaBoost [19] creates a sequenceof
weak classifiers ( fm(xi)) aimed at discriminating the train-
ing observations. Initially, all the observations are assigned
a unique weight wi,m. This distribution of weights is modi-
fied along with the m = {1, ...,M} iterations (rounds), i.e.,
observations which are badly classified (more difficult to
learn) are given higher weights. The algorithm attempts to
find an optimum classifier at each round. Each weak classi-
fier is weighted according to its performanceon the current
distribution of weights on the observations. At the end, the
final strongclassifier F(xi) is the weighted linear combina-
tion of theweak classifiers, as shown in Eq. (2).

F(xi) = sign

(

M

∑
m=1

wi,m fm(xi)

)

(2)

The output of Discrete AdaBoost at each iteration is a
discrete value correspondingto the predicted classlabel for
each observation. The efficiency of the algorithm may be
improved by computing class probabiliti es instead of dis-
crete labels. These classprobabiliti es are then converted to
the real scale and used to update the weight distribution for
the observations at each iteration. This improved algorithm
is named Real AdaBoost [20]. Both Discrete and Real Ad-
aBoost minimizethe expectation of theso-called “exponen-
tial loss” , definedase−yiF(xi). GentleAdaBoost [20] isan al-
gorithm very similar to Real AdaBoost, but usesasequence
of Newtonstepsto optimizethe expectation of the exponen-
tial loss. Even thoughthe classificationresultsarevery sim-
ilar for both methods, this feature makes Gentle AdaBoost
numerically superior to Real AdaBoost.

2.3.2 Random forests

Random forests [12] isarecent kind of ensemble algorithm,
where the individual classifiers are a set of de-correlated
trees. They perform similarly or even better than boosting
in somesituations, andare faster too.

The algorithm works by building a collection of
unpruned trees from B random samples with replacement
(bootstrap versions) of theoriginal training dataset. For each
random forest tree fb, a random sample of m ≤ p variables
is selected to split the data at each node and grow the de-
cision tree. The final classification result F(xi) is the class
correspondingto themajority voteof the ensembleof trees:

F(xi) = majority vote { fb(xi)}
B
b=1 (3)

As we mentioned before, Random forests incorporates
a mechanism for the estimation of the importanceof input
variables. As explained by Breiman [12], after the model
was trained, features are shuffled (i.e. their values are ran-
domly permuted between all cases in the dataset) one at a
time. Then, an out-of-bag estimation of the predictionerror
is made on this “shuffled” dataset. Intuitively, a feature that
is irrelevant to themodel will not changetheprediction per-
formancewhen altered in thisway. On theother hand, if the
model made strong use of a given feature, altering its val-
ues will l ead to an important decrease in performance. The
relative lossin performancebetween the “original” dataset
and the “shuffled” dataset is therefore related to the relative
relevanceof the feature affected by the process.

2.4 Experimental results

Weperformedclassificationwith thethreeversionsof boost-
ing classifiers described in Subsection 2.3.1, namely Dis-
crete, Real andGentleAdaBoost, resortingto theR package
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Table1 Test errors for thedifferent classifiers using LOOCV.

Classification Algor ithm Accuracy

B-Course (subjective) [25] 96.8%
Pair-wiseNB (subjective) [25] 95.5%
NB (subjective) [25] 95.5%
NB (uniform) [25] 94.8%
DecisionTree[25] 91.6%
Neural Networks [25] 90.3%

SVM (Linear)[9] 96.1%
SVM (Polynomial)[9] 94.2%
SVM (Gaussian RBF)[9] 97.4%

DiscreteAdaBoost (Proposed approach) 96.8%
Real AdaBoost (Proposed approach) 97.4%
GentleAdaBoost (Proposed approach) 98.1%
Random Forests (Proposed Approach) 98.7%

Table2 Mean test error andstandard error (SE ) for random subsampling and 20times5-fold crossvalidation.

Classification Test error (mean±SE )
algor ithm Random subsampling 20times5-fold CV

SVM (Gaussian RBF kernel) 0.0368±0.0034 0.0300±0.0034
Discrete AdaBoost 0.0342±0.0030 0.0303±0.0030
Real AdaBoost 0.0342±0.0030 0.0310±0.0033
GentleAdaBoost 0.0330±0.0031 0.0310±0.0032
Random Forest 0.0253± 0.0026 0.0235± 0.0028

ada [16], using stumps as weak learners. We implemented
the random forests algorithm described in Subsection 2.3.2
via the R package randomForest 2. We used 1000rounds
for each of the boosting methods and 500trees for random
forests. We computed the featuresas detailed in Subsection
2.2, and considered a total number of 155spots for this bi-
nary problem, which are the spots with unanimous labeling
by the three experts. Following the same methodology em-
ployed in previous works in the literature [25, 9], we used
leave-one-out cross-validation (LOOCV) to assessthe per-
formance, andwe comparedthegeneralizationerror to those
obtained in thesepreviousworks.

We show in Table 1 the accuracies of the four ensem-
ble methods against previous results existing in the litera-
ture. Weobtained very good performancesfor all the ensem-
ble algorithms. From Table 1 we can seethat Discrete Ad-
aBoost resulted in the same accuracy as B-Course (subjec-
tive) [25], and Real AdaBoost provided the same improve-
ment as SVM with Gaussian RBF kernel [9]. Gentle Ad-
aBoost reduced themis-classificationsfrom four to threeout
of the 155spots. However, we foundRandom forests to be
the most accurate algorithm (highlighted in gray) with only
two mis-classified spots.

As LOOCV is an unstable procedure, usually resam-
pling is implemented instead. We also computed the mean

2 http://stat-www.berkeley.edu/users/breiman/

RandomForests.

and its standard error for the generalization error by run-
ning the different classifiers 100 times, using each time a
random partitioning of the dataset with 75% of the spots
as training set and leaving the remaining 25% for testing
purposes. We show these results in Table 2. This form of
computingthe error ismorepessimistic than LOOCV, since
the trainingset becomes smaller. We computed the error for
the four ensemble algorithms and SVMs (which showed to
have thebest performance, accordingto Table1, amongthe
previously proposed classifiers). Weperformedasimilar ex-
periment by running 20 times 5-fold cross-validation. We
also show these results in Table 2. In all the cases, Random
forestsobtain thebest performancewith the lowest standard
error.

We can compare the errors in Table 2 to the accuracies
in Table1, which show to be consistent (taking into account
that accuracies are defined as “1-error rate”). The three er-
ror measures behave as expected, indicating that Random
forestsprovidethe lowest errors in all the cases.

For the classifiers shown in Table2, we computed the ar-
easunder theReceiver-Operating-Characteristic(ROC) curves,
obtaining valuesgreater than 0.97 in all the cases. This fact
indicatesthat all the algorithmsunder consideration provide
goodaccuracies with a very low level of random discrimi-
nation, and that the binary problem seems to be arelatively
easy classification problem.
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Fig. 2 Feature relative importancefor thebinary problem.

In Fig. 2 we show the relative importanceof the 14 fea-
tures measured by the Random forests classifier. The fea-
turesareordered in pairscorrespondingto thered and green
channelsfor intensity, backgroundintensity, roundness, spot
size, alignment error, background noise and bleeding. For
example, bins3 and 4in Fig. 2 show therelativeimportance
of both channels for the backgroundintensity feature. For
thebinary problem, it isclear that themost relevant features
are the spot size computed on both channels (bins 7 and 8).
Additionally, the intensity of the green channel seems to be
also important. In contrast, the lessrelevant featuresare the
roundness(bins 5 and 6) and the spot alignment error (bins
9 and 10). It is interesting to note that in only oneout of the
7 pairsof features there aremarked differencesbetween the
red and green channels.

3 The “ defects identification” problem

We describe in this section the dataset and the procedures
followedto detect thefaultspresent in thespots. Wedescribe
the different kinds of faults under consideration as well as
therepresentationfeaturesthat weused. We also discussthe
experimental results.

3.1 Dataset description

For themulti -label classification problem, we consideredthe
totality of the 320spots from two different microarray im-
agesbelongingto the dataset described in Subsection 2.1.

The three expertswhomanually classified thespots into
the bad/good quality classes also labeled them according to
their defects. Thesix typesof faultsthat wetakeintoaccount
in the experiment are

➣ Spot bleeding: it occurs when one spot overlays one or
moreof itsneighbors.

➣ Background defects: e.g. non-specific hybridizationsor
noisepresent in thebackground.

➣ Bad spot size: all thespotsaresupposed to have approxi-
mately thesamesize(measured in pixels). Thisproblem
concerns spots whose size deviates too much from the
rest, for instance, due to problems in the printing nee-
dles.

➣ Morphology defects: the spotswhosemorphology devi-
ates toomuch from a circle fall i n this category.

➣ Pixel intensity distribution defects: theforegroundinten-
sities should be uniform for good quality spots. How-
ever, non-specific hybridizations or uneven distribution
of the DNA samples may cause this defect to appear, as
in the caseof donutsor holey spots.

➣ Intensity issues: they happen when the foregroundsig-
nal is too weak due to genes which expressat very low
levels, incompletehybridization or low sensitivity of the
scanner. It causes difficulties at the segmentation step
since there is no goodcontrast of the spot against the
background.

We show some spot examples in Fig. 3. In Table 3 we
report the number of spots in each category, according to
the judgment of each expert. First, we report the number of
spots according to the independent labeling of each expert,
i.e., it is enoughfor one spot that only one expert considers
it asbelongingto afaulty class. Next, weinform thenumber
of spots for which two expertsagreed. Finally, we detail the
agreement of the three experts. It is worth mentioning that
there are no instances of spots suffering from background
problemsand, in consequence, we excluded thisclassin the
analysis.

From Table 3 it is evident that the conclusions drawn
by the experts are very subjective, and that the criteria they
used to classify spots according to their defects are not ho-
mogeneous. We can assumethat the experts should agreein
caseswheredefectsare clearly evident, andthat they should
producedifferencesin lessmarked situations. There are two
possible causes for those differences. On oneside, it is pos-
siblethat all expertscompletely agreein thedefinition of the
defects, and that in some cases any of them simply missed
to mark a defect in a spot. On the other side, it could be the
case that each expert is consistent in his own classification
but has a different opinion onwhich is the particular defect
present in a spot. This situation would produce amatrix of
co-occurrenceof defects with high values at non-diagonal
positions (as the same defect will be assigned two different
labels). In Table4 weshow the correspondingmatrix for our
dataset, whereseveral high non-diagonal valuesarepresent.
Of course, it is expected that some spots really suffer from
more than one fault, but the high disagreement observed in
Table3 together with thehighco-occurrenceof faults in Ta-
ble 4 points clearly to a set of experts that, in some cases,
havedifferent conceptsof each defect.
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(a) Good quality spot.

(b) Spot bleeding. (c) Intensity issues. (d) Bad spot size.

(e) Intensity dist. defects. (f) Morphology and intensity
dist. defects.

(g) Bad spot size and mor-
phology defects.

Fig. 3 Some examples of spotshaving good quality or different types of defects.

There are at least two ways to facethis problem. On
one side, we can choose to reduce the dataset considering
only the agreement of two or three experts. Unfortunately,
this results in low populated classes, hardening the model-
ing process. Oppositely, we choose to use the dataset as it
is, keepingtheopinion of all experts. This isamoredifficult
problem than the one we would faceif the experts would
agreein all cases, but if we can solvethisproblem with high
accuracy, it is expected that the same can be done with the
easier problem of coherent experts.

3.2 Additional featureset

We analyzed the seven basic features proposed by
Hautaniemi et al. [25] and previously used to deal with the
binary classification problemfor themulti -label problemtoo.
We already described them in Subsection 2.2. They gaverise
to a14-component vector for each spot (7 featuresper chan-
nel). However, they did not perform very well for themulti -
label problem, asweshow in Subsection 3.4. For thisreason,
we propose in this paper the following additional spot fea-
tures. They are computed on the grayscale image for each
spot.

➣ Intensity projection profiles of the spot image f . These
profiles are obtained by summing up the intensities
alongthe rows r (vertical sum profile Sv) and alongthe
columns c (horizontal sum profile Sh). This procedure
generates two vectors corresponding to the intensity
summation in each direction:

Sv(c) = ∑
r

f (r,c)

and

Sh(r) = ∑
c

f (r,c).

➣ Euler number ε: the number of connected components
nc in the image region minus the number of holes nh,
i.e.: ε = nc− nh.

➣ Eccentricity ξ : eccentricity of the elli pse, which has the
samesecondmomentsasthespot. Let d1 bethedistance
between the foci of the elli pse, and d2 the length of its
major axis. The eccentricity ξ isequal to ξ = d1/d2. The
valuesof ξ rangesfrom 0 (a circle) to 1(alinesegment).

➣ Spot perimeter P: computed as

P = ∑
r

∑
c

I(r,c),

where I is a binary image with 1s in the perimeter pix-
els. The perimeter pixels are those having at least one
neighbor pixel equal to 0.

➣ Texturedescriptors [23]:
✺ Mean of the intensity histogram (first order statisti-

cal moment, averagegray level):

µ =
L−1

∑
i=0

zi p(zi),

where L is the number of possible gray levels and
p(z) is theprobabilit y distribution of intensities zi.
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Table3 Classdistributions.

Spot BKG Bad spot Morphology Int. distr ib. Intensity
bleeding defects size defects defects issues

3 expert independent conclusions (no agreement required)

Number of spots 12 0 93 73 98 130
Probabili ty 0.0375 0 0.2906 0.2281 0.3063 0.4062

2 experts agreement

Number of spots 9 0 66 25 28 35
Probabili ty 0.0281 0 0.2062 0.0781 0.0875 0.1094

3 experts agreement

Number of spots 6 0 30 2 4 10
Probabili ty 0.0187 0 0.0938 0.0063 0.0125 0.0312

Table4 Contingency table for thefive classes of defects.

Classes Spot Bad spot Morphology Int. distr ib. Intensity
bleeding size defects defects issues

Spot 12 0 0 2 3
bleeding
Bad spot 0 93 51 25 66

size
Morphology 0 51 73 34 45

defects
Int. distr ib. 2 25 34 98 50

defects
Intensity 3 66 45 50 130

issues

✺ Standard deviation of the intensity histogram (sec-
ond order statistical moment, measure of contrast),
defined as:

σ =

√

L−1

∑
i=0

(zi − µ)2p(zi).

✺ Skewnessof the intensity histogram (third order sta-
tistical moment, asymmetry about themean):

s =
L−1

∑
i=0

(zi − µ)3p(zi).

✺ Smoothness: R = 1−1/(1+σ2). This measure
rangesfrom 0 (spot with constant intensities) to 1.

✺ Uniformity (also energy):

U =
L−1

∑
i=0

p2(zi).

This measure is maximum when the intensities are
uniformly distributed.

✺ Average entropyasa measureof randomness:

E =
L−1

∑
i=0

p(zi) log2 p(zi).

As we mentioned above, we do not compute the previously
described featureson the red and green channels separately,
but onthegrayscale imageof thespot (typically obtained as
the averagebetween thered and green channels). In particu-
lar, for theEuler number, eccentricity andspot perimeter we
used binary images obtained using a typical fixed threshold
at ahalf of therangeof thegrayscaleimage. Afterwards, we
concatenate all the features into a single vector with a total
number of 49components.

In this work, the intensity profiles are computed over
13×13spot masks. This number was selected because it is
thestandard sizefor good quality spots in thisdataset, andit
showed to perform well . In general, thenumber of binsused
to computetheintensity profiles should not be critical, aswe
aresimply estimatingahistogram of thespatial distribution.
As usually, the number of bins should be high enoughas to
seesome detail , but not too big as to introducenoise in the
problem. Also, this fixed number should not be aproblem
with test spots with a different size, as the images can be
easily sampled at the correct resolution.
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3.3 Convex Multi -task FeatureLearning(CMFL)

Learning low-dimensional features shared across different
classes/tasks has shown in the literature to improvethe per-
formance against learning the individual classes/tasks. Ar-
gyriou et al. [4] proposed a method which learns a shared
low-dimensional representation of the features among the
different tasks by regularizing within the tasks while keep-
ing them coupled to each other.

Let D = {(xi,yi)} be alabeled dataset with i = 1, ...,m
input/output observations. Every singlevector xi ∈R

d is the
input vector with associated label yi ∈ {±1}. Thesupervised
learning processcan be formulated as a single task classifi-
cation problem, wherethelabelsaredetermined byamargin
classifier f : Rd →R, such that

f (xi) =
d

∑
j=1

a jh j(xi), (4)

where h j : Rd → R are the features and a j ∈ R are the re-
gression parameters.

The single class/task problem can be extended to a
multi -class/task problem by introducingthevectorsyi ∈R

T

containingthelabelsfor T different classes/tasks. In thegen-
eral case, theinput observationsxti (with t = 1, ...,T ) may be
different for each class/task in themulti -class/task situation.

The margin classifiers for each class, ft , are expected to
be related to each other and share a small set of features,
and only a few featuresare expected to have non-zero coef-
ficientsacrossall the classes/tasks.

Let assumenow that thefeaturesarelinear, i.e., h j(xti)=
〈u j,xti〉, with vectors u j ∈ R

d and orthonormal. Let U be
the d × d matrix with columns formed by the vectors u j.
Assume that the functions ft are also linear, i.e., ft(xti) =

〈wt ,xti〉, with wt =
d

∑
j=1

a jtu j.

Extensionsto nonlinear functionsarepossible, e.g.,by using
kernels, but they areoutside thescopeof thiswork.

Denote by W the d ×T matrix with vectors wt as col-
umns, and by A the d × T matrix with entries a jt . Then
W = UA. As it is expected to find a low-dimensional set
of features shared by all the classes, the matrix A has many
rowsequal to zero and the correspondingfeatures (columns
of U) will bediscarded to represent thetask parameters(col-
umnsof W ). Matrix W is then a low rank matrix.

Thesolution to the learning problem then reducesto the
computation of the featurevectorsu j andtheparametersa jt

which minimizetheunconstrained problem

min{E (A,U) : U ∈ Od ,A ∈ R
d×T ,} (5)

where

E (A,U) =
T

∑
t=1

m

∑
i=1

L (yti〈at ,U
⊤xti〉)+ γ||A||22,1. (6)

In Eq. (5), Od is the set of d × d orthonormal matrices,
and in Eq. (6), γ > 0 is the regularization parameter. The
first term in this equation is the average of the empirical er-
ror acrossthe tasks, while the secondterm is the regularizer
which penalizes the (2,1)-norm of the matrix A. This norm
is the responsible for combining the tasks and the selection
of common features acrossthem. The number of non-zero
elements of b(A) represent the importanceof each derived
feature acrossthe tasks, also favoring uniformity acrossthe
tasks.

3.4 Experimental results for the “defects identification”
problem

As we showed in Subsection 2.4, very goodaccuracies can
easily be obtained for the detection of faulty spots using a
basic set of features and standard classification algorithms.
However, determination of the specific defectswhich affect
thespotsbecomesa more complicated task.

For the defectsclassification problem, which is a multi -
label task, we considered only the original set of features
described in Subsection 2.2 at first. However, the results
were not very good and these features seemed to be not
goodenoughto extract the most relevant characteristics of
the different defects when used alone. In order to improve
accuracy, we additionally computed the features described
in Subsection 3.2.

The ensemble algorithms described in Subsection 2.3
are not multi -class nor multi -label. As Random forests
reached the best performancefor the bad/goodspots prob-
lem, weselected thisclassificationalgorithmto implement 5
independent classifiers aimed at detecting the presence/
absenceof each defect separately.

We compared thisapproach to thevery recent algorithm
of Convex Multi -task Feature Learning (CMFL) [4] des-
cribed in Subsection 3.3, which is able to find a shared rep-
resentation of features for all the classesand perform multi -
label classification. Additionally, we computed the results
obtained by Convex Multi -task Independent Learning
(CMIL, similar to Convex Multi -task Feature Learning but
with nocoupling acrossthe classes, i.e., using ||W ||2 regu-
larization). We tested all the algorithmsusing leave-one-out
crossvalidation.

We computed the Hamming loss to measure the error
in classpredictions, since in most cases it provides a sim-
ple interpretation of the classifiers accuracy. It is calculated
as the percentageof erroneously predicted labels for all the
classes. In Table5 we report theHamming lossobtained by
each classification algorithm with each different set of fea-
tures. From theseresultswe can seethat using 5independent
classifiers provides the lowest error. The addition of the set
of features described in Subsection 3.2 improves the accu-
racy of all the classificationalgorithms.
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(a) Spot bleeding.
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(b) Bad spot size.
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(c) Morphology defects.
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(d) Intensity dist. defects.
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(e) Intensity defects.

Fig. 4 ROC curves for each defect classusing different feature sets andclassification algorithms.
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Table 5 Hamming lossfor the different classification algorithms and
different feature sets.

Hamming
loss(%)

Basic features only and 5IC 13.63
Basic features only and CMFL 27.69
Basic features only and CMIL 27.81
Proposed additional features and 5IC 11.94
Proposed additional features andCMFL 25.63
Proposed additional features andCMIL 24.81

Table 6 Areas under the ROC curves (highlighted in gray the best re-
sults).

Spot bleeding

Basic features Proposed additional
only features

5 IC 0.985 0.989
CMFL 0.996 0.999
CMIL 0.997 0.998

Bad spot size

Basic features Proposed additional
only features

5 IC 0.930 0.948
CMFL 0.904 0.949
CMIL 0.901 0.939

Morphology defects

Basic features Proposed additional
only features

5 IC 0.828 0.830
CMFL 0.807 0.855
CMIL 0.806 0.858

Int. distribution defects

Basic features Proposed additional
only features

5 IC 0.780 0.819
CMFL 0.686 0.774
CMIL 0.688 0.777

Int. defects

Basic features Proposed additional
only features

5 IC. 0.954 0.969
CMFL 0.972 0.968
CMIL 0.972 0.970

Even thoughthe independent classifiers show the lowest
HammingLoss, they do not provide auseful decision func-
tion in this case, as a detailed analysis show that they are
simply choosing to predict all spots as defectless(which in
fact producesthelowest error rate, asfaulty spotsare clearly
minoritary). A deeper analysisof theperformanceof thedif-
ferent methods can be obtained resorting to the Receiver-

Operating-Characteristic (ROC) curves(Fig. 4), whichshow
the relation between the true positive rate (TPR) and the
falsepositiverate(FPR) for each class. From thefiguresit is
evident that thethree classificationmethodsare, in fact, very
similar. Evidently, the Hamming lossis acting ona portion
of the ROCs where the curve of the independent classifiers
exceedsthe curveof theConvex Multi -task algorithms.

As we can appreciate from Figures 4(c) and 4(d), the
morphology and intensity distribution defects are the most
difficult to detect, since the ROC curves drawn after using
only the basic set of featuresare closer to the identity curve
correspondingto random classification. The areasunder the
ROCs (AUCs) that we show in Table 6 also confirm this.
Thesetwo classesare also theoneswhich obtain thegreatest
improvementsafter addingthe proposed features.

When using only the basic features for the defects iden-
tification problem, the5 independent classifiersget thehigh-
est AUCs for the classes involving bad spot sizes, morphol-
ogyandintensity distribution defects. CMIL andCMFL ob-
tain thebest performanceto detect intensity defectsandCMFL
to identify spot bleeding. After adding the proposed fea-
tures, all the AUCs are improved, except for a very slight
reduction in the performanceof the CMFL andCMIL algo-
rithms for the classcorrespondingto intensity defects. With
this feature set CMFL shows the best performance for the
spot bleedingand bad spot sizes problems, CMIL for inten-
sity and morphology defects and the 5 independent classi-
fiers for the remaining problem. There is not a clear win-
ner amongthe threemethods analyzed in this work. Over-
all , consideringall classesandclassifiers, we achieve ahigh
accuracy in this defects identification problem, in all cases
with an AUC of over 0.81.

As we discussed in Section 3.1, we considered for this
analysis the judgments of the three experts without taking
into account the lack of consensus among them. In a short
experiment, we also applied the 5 independent classifiers to
thedataset produced by consideringthe agreement between
two experts. In Table 7 we show the corresponding AUCs.
There is a clear global improvement in the accuracy of the
method, which indicates that this is an easier problem to
solve, aswe argued before.

In Fig. 5 we show, as an image, the coefficients of the
matrix A resulting from the multi -label classification of the
spots into the five classes using CMFL and the enlarged set
of features. This matrix has five non-zero rows of coeffi-
cients(seeSubsection 3.3). Thismeansthat the algorithm is
able to find a shared representation of 5 features, obtained
from the initial 49, among all the classes of defects. This
showsthat the intrinsic dimension of theproblem is, in fact,
low.

Therelativeimportanceof each featurefor thefive classes
of defects using the 5 independent classifiers and the ex-
tended set of features is depicted in Fig. 6. From thisfigure,
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Table7 Areas under theROC curves obtained by the5 IC using the agreement of 2 experts andLOOCV.

Spot bleeding Bad spot size Morphology defects Int. distribution defects Int. defects

0.984 0.973 0.902 0.828 0.922
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Fig. 5 Matrix A resulting from the CMFL algorithm, showing only 5
shared features amongthe classes.

it i s evident that the bleeding features, computed onthe red
and green channels(bins13and 14in group(A)) are clearly
the most relevant to detect the bleedingclass, as well as the
intensity at the spot borders (first intensity profile in group
(C)). A scatter plot of these relevant features (not shown)
suggeststhat thedefectsare alwaysassociated with high val-
uesof this set of variables. Thefeaturesfromgroup(B) seem
to benot relevant in thiscase.

Concerning the spot size defect, the most relevant fea-
turescorrespondto thespot size(bins7 and 8in (A)) for the
red and green channels, the intensity profilesout of the cen-
ter in (C) and (D), and the mean of the intensity histogram
(bin 19 in (B)). In all cases, low values of the variables are
associated with the defect. It is interesting to note that the
sameholdsfor themorphology defectsdetection, except for
themean of the intensity histogram. In the last case, noneof
the features in (B) seem to beof much importance.

Accordingto thefourth row in Fig. 5, themost important
features to detect the intensity spatial distribution defect are
the perimeter (bin 23in (B)), the mean of the intensity his-

togram, andtheintensity profiles. In thisdataset, theperime-
ter has low valuesfor spots suffering from thisdefect.

Finally, to detect the intensity defectsthe featureswhich
show to be more relevant are the skewness, the mean and
the standard deviation of the intensity histogram (bins 15,
19 and 20in (B)), and the intensity profiles ((C) and (D)),
all showing low values in thepresenceof thedefect.

4 Conclusions

In this paper, we analyzed two different problems related
to spot quality control. First of all , we considered the bi-
nary problem of separating goodfrom bad quality spots by
means of ensemble classifiers. We proposed to implement
four ensemble algorithms to perform classification, namely
Discrete, Real and Gentle AdaBoost, and Random forests.
Random forests showed to perform better than the other al-
gorithmsalready proposed in the recent literature. We com-
puted basic featuresonthespotsyielding very goodaccura-
cies.

The second problem was much more complex. It re-
quired the detection of five specific types of failures affect-
ing thespots. AsRandom forests showed to be the most ac-
curate classifier for the binary classification task, we tried it
as the basis for five independent classifiers. The set of basic
features suggested in previousworks showed to benot good
enoughfor this problem. Thus we proposed an additional
set of features, which clearly improved the performanceof
all methods, showing that it is possible to identify the indi-
vidual defects with high accuracy. Additionally, a Random
forestsanalysisof featuresimportance confirmsthat thenew
featuresare highly relevant for the discriminant models. Fi-
nally, we compared the independent classifiers to the re-
cent algorithmsof Convex Multi -task Learning, specifically
CMFL and CMIL, finding that the overall performanceof
the threemethods isequivalent on thisproblem.

As we discussed in the introduction, the results we ob-
tained in this work allow to compute spot quality measures
which can be later used in microarray analysis software.
Somemicroarray analysispackages, e.g. theR packagelimma
[33], let the user weight the spots according to their quality
and use those weights to measure the reliabilit y of the spot
ratios for further analysis. The results obtained in the clas-
sification processdescribed in this paper may allow to rank
thespotsaccordingto thepresenceof thedifferent defects.
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Fig. 6 Feature relative importance for the five defects using 5IC. From top to bottom: bleeding, spot sizedefects, morphology defects, intensity
distribution problems and intensity defects. From left to right: (A) Hautaniemi [25] features as in Fig. 2; (B) skewness, smoothness, uniformity,
average entropy, mean andstandard deviation of the intensity histogram, Euler number, eccentricity and perimeter; (C) and (D) intensity profiles.

A word isneeded about thevalidity of our results. As in
all previousworks, we are assumingthat our dataset isafair
sampleof all existingmicroarray images, andin thiscontext
weshow that our methodshavevery good generalizationca-
pabiliti es. Of course, in order to evaluate the real validity of
our methodand all previously published works much more
extended studies are needed, comprising hundreds of im-
ages from different typesof microarrays, experimental con-
ditions, etc. However, one can expect that our results and
also those available in previous studies will generalizewell
to new microarrays, as there are not methodological differ-
encesamongimages from different microarrays.
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