Skip to main content
Log in

Bayesian mixture of AR models for time series clustering

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a Bayesian framework for estimation of parameters of a mixture of autoregressive models for time series clustering. The proposed approach is based on variational principles and provides a tractable approximation to the true posterior density that minimizes Kullback–Liebler (KL) divergence with respect to prior distribution. This method simultaneously addresses the model complexity and parameter estimation problems. The proposed approach is applied both on simulated and real-world time series datasets. It is found to be useful in exploring and finding the true number of underlying clusters, starting from an arbitrarily large number of clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  2. Liao TW (2005) Clustering of time series data —a survey. J Pattern Recognit 38:1857–1874

    Article  MATH  Google Scholar 

  3. Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis. Forecasting and control, 3rd edn. Prentice Hall

  4. Xiong Y, Yeung D (2004) Time series clustering with ARMA mixtures. J Pattern Recognit 37:1675–1689

    Article  MATH  Google Scholar 

  5. Gaffney S, Smyth P (2003) Curve clustering with random effects regression mixtures. In: Proceedings of the ninth international workshop on artificial intelligence and statistics, Key West, Florida, USA, pp 3–6

  6. Kalpakis K, Gada D, Puttagunta V (2001) Distance measures for effective clustering of ARIMA time series. In: the Proceedings of the IEEE international conference on data mining, San Jose, CA, pp 273–280

  7. Pardey J, Roberts S, Tarassenko L (1995) A review of parametric modelling techniques for EEG analysis. J Med Eng Phys 18:2–11

    Article  Google Scholar 

  8. Burnham KP, Anderson DR (2002) Model selection and multi-model inference, 2nd edn. Springer

  9. Gelman A, Rubin DB, Carlin JB, Stern HS, Carlin JB (2000) Bayesian data analysis, second edn. Chapman and Hall

  10. MacKay DJC (2003) Information theory, inference, and learning algorithms. Cambridge University Press

  11. Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press

  12. Bishop CM (2006) Pattern recognition and machine learning. Springer

  13. Corduneanu A, Bishop CM (2001) Variational Bayesian model selection for mixture distributions. In: Proceedings of eighth international conference on artificial intelligence and statistics, pp 27–34

  14. Beal MJ (2003) Variational algorithms for approximate Bayesian inference. PhD thesis, Gatsby Computational Neuroscience Unit, University College, London

  15. Watanabe S, Minami Y, Nakamura A (2004) Variational Bayesian estimation and clustering for speech recognition. IEEE Trans Speech Audio Process 12(4):365–381

    Article  Google Scholar 

  16. Ting JA, D’Souza A, Kenji Y, Toshinori Y, Donna H, Shinji K, Lauren S, John K, Mitsuo K, Peter S, Stefan S (2008) Variational Bayesian least squares: an application to brain–machine interface data. Int J Neural Netw 21:1112–1131

    Article  MATH  Google Scholar 

  17. Teschendorff AE, Wang Y, Barbosa-Morais NL, Brenton JD, Caldas C (2005) A variational Bayesian mixture modeling framework for cluster analysis of gene expression data. J Bioinform 21(13):3025–3033

    Article  Google Scholar 

  18. Penny WD, Roberts SJ (2002) Variational Bayes for generalized AR models. IEEE Trans Signal Process 50(9):2245–2257

    Article  MathSciNet  Google Scholar 

  19. Penny WD, Roberts SJ (2000) Bayesian methods for autoregressive models. In: Proceedings of IEEE international workshop neural networks signal processing, Sydney, Australia, pp 125–134

  20. Tipping ME (2006) Bayesian inference: an introduction to principles and practice in machine learning. In: Bousquet O, von Luxburg U, Ratsch G (eds) Advanced lectures on machine learning. Springer, pp 41–62

  21. Lappalainen H, Miskin JW (2000) Ensemble learning. In: Girolami M (ed) Advances in independent components analysis. Springer, pp 75–92

  22. Attias H (2000) A variational Bayesian framework for graphical models. In: Advances in neural information processing systems. 12:209–215

  23. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    MathSciNet  MATH  Google Scholar 

  24. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  MATH  Google Scholar 

  25. Percival DB, Walden AT (2000) Wavelet methods for time series analysis, Cambridge Series in Statistical and Probabilistic Mathematics

  26. Gavrilov M, Anguelov D, Indyk P, Motwani R (2000) Mining the stock market: which measure is best? In: Proceedings of the sixth international conference on knowledge discovery and data mining, pp 487–496

  27. Hamilton JD (1989) A new approach to economic analysis of nonstationary time series and the business cycle. J Econom 57:357–384

    MathSciNet  MATH  Google Scholar 

  28. Cassidy MJ, Penny WD (2002) Bayesian nonstationary autoregressive models for biomedical signal analysis. IEEE Trans Biomed Eng 49:1142–1152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Venkataramana Kini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkataramana Kini, B., Chandra Sekhar, C. Bayesian mixture of AR models for time series clustering. Pattern Anal Applic 16, 179–200 (2013). https://doi.org/10.1007/s10044-011-0247-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-011-0247-5

Keywords

Navigation