Skip to main content
Log in

Fast spatio-temporal stereo for intelligent transportation systems

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper presents a fast approach for matching stereoscopic images acquired by stereo cameras mounted aboard a moving car. The proposed approach exploits the spatio-temporal consistency between consecutive frames in stereo sequences to improve matching results. This means that the matching process at current frame uses the matching results obtained at its preceding one. The preceding frame allows to compute an Initial Disparity Map for the current frame. The initial disparity map is used to derive disparity ranges for each scanline as well as what we call Matching Control Edge Points. Dynamic programming is performed for matching edge points in stereo pairs. The matching control edge points are used to drive the search for an optimal solution in the search plane. This is accomplished by dividing the dynamic programming search space into a number of subspaces depending on the number of the matching control edge points. The proposed approach has been tested both on virtual and real stereo images sequences demonstrating satisfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Barnard S, Fisher M (1982) Computational stereo. ACM Comput Surv 14:553–572

    Article  Google Scholar 

  2. Bertozzi M, Broggi A, Fascioli A (2000) Vision-based intelligent vehicles: state of the art and perspectives. Rob Auton Syst 32:1–16

    Article  Google Scholar 

  3. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  4. Brown MZ, Burschka D, Hager GD (2003) Advances in computational stereo. IEEE Trans Pattern Anal Mach Intell 25(8):993–1008

    Article  Google Scholar 

  5. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679698

    Google Scholar 

  6. Cyganek B, Borgosz J (2003) An improved variogram analysis of the maximum expected disparity in stereo images. In: Bigun J, Gustavsson T (eds), SCIA 2003, LNCS 2749, pp 640–645

  7. Davis J, Nehab D, Ramamoorthi R, Rusinkiewicz S (2005) Spacetime stereo: a unifying framework for depth from triangulation. IEEE Trans Pattern Anal Mach Intell 27(2):1–7

    Article  Google Scholar 

  8. Dhond UR, Aggarwal JK (1989) Sructure from stereo—a review. IEEE Trans Syst Man Cybern 19:1489–1510

    Article  MathSciNet  Google Scholar 

  9. El-Ansari M, Mousset S, Bensrhair A (2008) A new stereo matching approach for real-time road obstacle detection for situations with deteriorated visibility. In: Proceedings of the IEEE intelligent vehicle symposium. Eindhoven University of Technology, Eindhoven

  10. El-Ansari M, Mousset S, Bensrhair A (2010) Temporal consistent real-time stereo for intelligent vehicles. Pattern Recogn Lett 31(11):1226–1238

    Article  Google Scholar 

  11. El-Ansari M, Mousset S, Bensrhair A, Bebis G (2010) Temporal consistent fast stereo matching for advanced driver assistance systems (ADAS). In: Proceedings of the IEEE intelligent vehicles symposium. San Diego, pp 825–831

  12. Gong M (2006) Enforcing temporal consistency in real-time stereo estimation. In: Proceedings of the European conference on computer vision, Graz, pp III–564–577

  13. Labayrade R, Aubert D, Tarel JP (2002) Real time obstacle detection in stereo vision on non flat road geometry through v-disparity representation. In: Proceedings IEEE intelligent vehicle symposium, Versailles

  14. Leung C, Appleton B, Lovell BC, Sun C (2004) An energy minimisation approach to stereo-temporal dense reconstruction. In: Proceedings of the IEEE international conference on pattern recognition, Cambridge, pp 72–75

  15. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110

    Article  Google Scholar 

  16. Miché P, Debrie R (1995) Fast and self-adaptive image segmentation using extended declivity. Ann Telecommun 50(3–4):401–410

    Google Scholar 

  17. Otha Y, Kanade T (1989) Stereo by intra- and inter-scanline search using dynamic programming. IEEE Trans Pattern Anal Mach Intell 7(2):139–154

    Google Scholar 

  18. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vision 47(1–3):7–42

    Article  MATH  Google Scholar 

  19. Stereo data for algorithms evaluation (2008) http://stereodatasets.wvandermak.com/

  20. Tao H, Sawhney HS, Kumar R (2001) Dynamic depth recovery from multiple synchronized video streams. In: Proceedings of IEEE international conference on computer vision and pattern recognition. Kauai

  21. Vedula S, Baker S, Rander P, Collins R, Kanade T (1991) Three-dimensioal scene flow. In: Proceedings of IEEE international conference on computer vision and pattern recognition, pp II–722–729

  22. Zhang L, Curless B, Seitz SM (2003) Spacetime stereo: shape recovery for dynamic scenes. In: Proceedings of IEEE international conference on computer vision and pattern recognition, Madison, pp 367–374

  23. Zhang G, Jia J, Wong T, Bao H (2009) Consistent depth maps recovery from a video sequence. IEEE Trans Pattern Anal Mach Intell 31(6):974–988

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Ansari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazoul, A., El Ansari, M., Zebbara, K. et al. Fast spatio-temporal stereo for intelligent transportation systems. Pattern Anal Applic 17, 211–221 (2014). https://doi.org/10.1007/s10044-012-0310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-012-0310-x

Keywords

Navigation