Skip to main content
Log in

Robust sparse kernel density estimation by inducing randomness

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, a robust sparse kernel density estimation based on the reduced set density estimator is proposed. The key idea is to induce randomness to the plug-in estimation of weighting coefficients. The random fluctuations can inhibit these small nonzero weighting coefficients to cluster in regions of space with greater probability mass. By sequential minimal optimization, these coefficients are merged into a few larger weighting coefficients. Experimental studies show that the proposed model is superior to several related methods both in sparsity and accuracy of the estimation. Moreover, the proposed density estimation is extensively validated on novelty detection and binary classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A, Grimson E, Willsky A (2003) A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans Med Imaging 22(2):137–154

    Article  Google Scholar 

  2. Leventon M, Grimson W, Faugeras O (2000) Statistical shape influence in geodesic active contours. IEEE Int Conf Comput Vis Pattern Recogn 1:316–323

    Google Scholar 

  3. Rousson M, Cremers D (2005) Efficient kernel density estimation of shape and intensity priors for level set segmentation. Int Conf Med Image Comput Comput Assist Interv 3750:757–764

    Google Scholar 

  4. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Machine Intell 24:603–619

    Article  Google Scholar 

  5. Elgammal A, Duraiswami R, Harwood D, Davis L (2002) Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc IEEE 90:1151–1163

    Article  Google Scholar 

  6. Han B, Comaniciu D, Zhu Y, Davis LS (2008) Sequential kernel density approximation and its application to real-time visual tracking. IEEE Trans Pattern Anal Machine Intell 30(7):1186–1197

    Article  Google Scholar 

  7. Cremers D, Osher S, Soatto S (2006) Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int J Comput Vis 69(3):335–351

    Article  Google Scholar 

  8. Kim J, Scott CD (2010) L2 kernel classification. IEEE Trans Pattern Anal Machine Intell 32(10):1822–1831

    Article  Google Scholar 

  9. Silverman BW (1982) Kernel density estimation using the fast Fourier transform. Appl Stat 31:93–99

    Article  MATH  Google Scholar 

  10. Yang C, Duraiswami R, Gumerov N, Davis L (2003) Improved fast gauss transform and efficient kernel density estimation. IEEE Int Conf Comput vis 1:664–671

    Google Scholar 

  11. Vapnik V, Mukherjee S (1999) Support vector method for multivariate density estimation. In: Proceedings of NIPS, pp 659–665

  12. Girolami M, He C (2003) Probability density estimation from optimally condensed data samples. IEEE Trans Pattern Anal Machine Intell 25(10):1253–1264

    Article  Google Scholar 

  13. Chen S, Hong X, Harris CJ (2008) An orthogonal forward regression technique for sparse kernel density estimation. Neurocomputing 71(4):931–943

    Article  Google Scholar 

  14. Gopalakrishnan B, Bellala G, Devadas G, Sricharan K (2008) EECS 545 machine learning-sparse kernel density estimates. http://www-personal.umich.edu/~gowtham/. Accessed 12 Apr 2013

  15. Hong X, Chen S, Harris CJ (2010) Sparse kernel density estimation technique based on zero-norm constraint. In: Proceeding of the IJCNN, pp 3782–3787

  16. Schölkopf B, Platt J, Shawe-Taylor J, Smola A, Williamson R (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13:1443–1471

    Article  MATH  Google Scholar 

  17. Schölkopf B, Smola AJ (2002) Learning with kernels. MIT Press, Cambridge

    Google Scholar 

  18. Kim J, Scott CD (2008) Robust kernel density estimation. ICASSP, pp 3381–3384

  19. Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. SIGKDD Explor 6(1):90–105

    Article  Google Scholar 

  20. Ihler A, Mandel M (2003) Kernel density estimation toolbox for MATLAB. http://www.ics.uci.edu/~ihler/code. Accessed 12 Apr 2013

  21. Sain S (1994) Adaptive kernel density estimation. PhD thesis. Rice University, Houston

  22. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    Book  MATH  Google Scholar 

  23. Bishop CM (1994) Novelty detection and neural network validation. IEEE Proc Vis Image Signal Process 141(4):217–222

    Article  Google Scholar 

  24. Metz C (1978) Basic principles of ROC analysis. Semin Nucl Med 8(4):283–298

    Article  Google Scholar 

  25. Chao H, Girolami M (2004) Novelty detection employing an L2 optimal nonparametric density estimator. Pattern Recogn Lett 25(12):1389–1397

    Article  Google Scholar 

  26. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley-interscience, New York

    MATH  Google Scholar 

  27. Chang CC, Lin CJ (2006) LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Accessed 12 Apr 2013

Download references

Acknowledgment

This work was supported by a National Key Basic Research Project of China (973 Program No. 2012CB316400) and NSFC (No. 60872069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Yu, H., Yao, J. et al. Robust sparse kernel density estimation by inducing randomness. Pattern Anal Applic 18, 367–375 (2015). https://doi.org/10.1007/s10044-013-0330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-013-0330-1

Keywords

Navigation