Skip to main content
Log in

Analysis of small infrared target features and learning-based false detection removal for infrared search and track

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

An infrared search and track system is an important research goal for military applications. Although there has been much research into small infrared target detection methods, we cannot apply them in real field situations due to the high false alarm rate caused by clutter. This paper presents a novel target attribute extraction and machine learning-based target discrimination method. In our study, eight target features were extracted and analyzed statistically. Learning-based classifiers, such as SVM and Adaboost, have been incorporated and then compared to conventional classifiers using real infrared images. In addition, the generalization capability has also been inspected for various types of infrared clutter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Arnold J, Pasternack H (1990) Detection and tracking of low-observable targets through dynamic programming. Proc SPIE 1305:207–217

    Article  Google Scholar 

  2. Bai Z, Zhou F, Jin T, Xie Y (2007) Infrared small target detection and tracking under the conditions of dim target intensity and clutter background. Proc SPIE 6786

  3. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434

    MathSciNet  MATH  Google Scholar 

  4. Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning. Artif Intell Eng Des Anal Manuf 97:245–271

    Article  MathSciNet  MATH  Google Scholar 

  5. Caefer CE, Mooney JM, Silverman J (1995) Point target detection in consecutive frame staring IR imagery with evolving cloud clutter. Proc SPIE 2561:14–24

    Article  Google Scholar 

  6. Campana SB (1993) The infrared and electro-optical systems handbook. SPIE Opt Eng Press 5(4)

  7. Chan DSK (1992) A unified framework for ir target detection and tracking. Proc SPIE 1698:66–76

    Article  Google Scholar 

  8. Chan DSK, Langan DA, Staver DA (1990) Spatial processing techniques for the detection of small targets in IR clutter. Proc SPIE 1305:53–62

    Article  Google Scholar 

  9. Crosby F (2005) Signature adaptive target detection and threshold selection for constant false alarm rate. J Electron Imag 14(3)

  10. Csurka G, Dance CR, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. Workshop on statistical learning in computer vision, ECCV, pp 1–22

  11. de Jong AN (1995) IRST and perspective. Proc SPIE 2552:206–213

    Article  Google Scholar 

  12. Bouma H, de Lange D-JJ, van den Broek SP, Kemp RAW, Schwering PBW (2008) Automatic detection of small surface targets with electro-optical sensors in a harbor environment. Proc SPIE 7114

  13. Despande SD, Er MH, Venkateswarlu R, Chan P (1999) Max-mean and max-median filters for detection of small-targets. Proc SPIE 3809:74–83

    Article  Google Scholar 

  14. Dijk J, van Eekeren AWM, Schutte K, de Lange D-JJ (2007) Point target detection using super-resolution reconstruction. Proc SPIE 6566:65660U

    Google Scholar 

  15. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley-Inersicence, New York

  16. Zelinsky A, Loy G (2003) Fast radial symmetry for detecting points of interest. IEEE Trans Pattern Anal Mach Intell 25(8):959–973

    Article  Google Scholar 

  17. Gregoris DJ, Yu SKW, Tritchew S (1994) Detection of dim targets in flir imagery using multiscale transforms. Proc SPIE 2269:62–71

    Article  Google Scholar 

  18. Hsu C-W, Chang C-C, Lin C-J (2010) A practical guide to support vector classification

  19. Hubbard WA, Page GA, Carroll BD, Manson DC (1999) Feature measurement augmentation for a dynamic programming based IR target detection algorithm in the naval environment. Proc SPIE 2698:2–9

    Article  Google Scholar 

  20. Joachims T. SVMlight available at http://www.cs.cornell.edu/People/tj/svmlight

  21. Khan JF, Alam MS (2005) Target detection in cluttered forward-looking infrared imagery. Opt Eng 44(7)

  22. Kim S (2010) Double layered-background removal filter for detecting small infrared targets in heterogeneous backgrounds. J Infrared Millimeter Terahertz Waves 32(1):79–101

    Article  Google Scholar 

  23. Kim S, Choi B, Kim J, Kwon S, Kim K-T (2012) Three plot correlation-based small infrared target detection in dense sun-glint environment for infrared search and track. Proc SPIE 8393:83930T

    Google Scholar 

  24. Kim S, Yang Y, Choi B (2010) Realistic infrared sequence generation by physics-based infrared target modeling for infrared search and track. Opt Eng 49:116401

    Google Scholar 

  25. Kohavi R, John GH (1997) Wrappers for features subset selection. Int J Digit Libr 1:108–121

    Article  Google Scholar 

  26. Kumar S (2004) Detection and tracking algorithms for IRST, M. Tech Cedit Seminar Report, IIT Bombay

  27. Longmire MS, Takken EH (2003) LMS and matched digital filters for optical clutter suppression. Appl Opt 27(6):1141–1159

    Article  Google Scholar 

  28. Luo J-H, Ji H-B, Liu J (2007) An algorithm based on spatial filter for infrared small target detection and its application to an all directional IRST system. Proc SPIE 6279

  29. Luo Y, Tao D, Geng B, Xu C, Maybank SJ (2013) Manifold regularized multitask learning for semi-supervised multilabel image classification. IEEE Trans Image Process 22(2):523–536

    Article  MathSciNet  Google Scholar 

  30. Maji S, Berg AC, Malik J (2008) Classification using intersection kernel support vector machines is efficient. IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008, pp 1–8

  31. Melacci S, Belkin M (2011) Laplacian support vector machines trained in the primal. J Mach Learn Res 12:1149–1184

    MathSciNet  MATH  Google Scholar 

  32. Mikolajczyk K, Schmid C (2001) Indexing based on scale invariant interest points. In: Proceedings of the 8th international conference on computer vision, Vancouver, pp 525–531

  33. New WL, Tand MJ, Er MH, Venkateswarlu R (1999) New method for detection of dim point-targets in infrared images. Proc SPIE 3809:141–150

    Article  Google Scholar 

  34. Novak LM (1994) Radar target identification using an eigen-image approach. IEEE national radar conference, pp 129–131

  35. Ondini A, Marsiglia G, Fortunato L, Balzarotti G (2006) Techniques for detection of multiple, extended, and low contrast targets in infrared maritime scenarios. Opt Eng 45(12)

  36. Pajares G, Ruz JJ, de la Cruz JM (2009) Image change detection from difference image through deterministic simulated annealing. Pattern Anal Appl 12(2):137–150

    Article  MathSciNet  Google Scholar 

  37. Reed IS, Gagliardi RM, Stotts LB (1990) A recursive moving-target-indication algorithm for optical image sequences. IEEE Trans Aerospace Electron Syst 26(3):434–440

    Article  Google Scholar 

  38. Rivest J-F, Fortin R (1996) Detection of dim targets in digital infrared imagery by morphological image processing. Opt Eng 35(7):1886–1893

    Article  Google Scholar 

  39. Ronda V, Er MH, Deshpande SD, Chan P (1999) Multi-mode algorithm for detection and tracking of point-targets. Proc SPIE 3692:269–278

    Article  Google Scholar 

  40. Rozovskii B, Petrov A (1999) Optimal nonlinear filtering for track-before-detect in ir image sequences. Proc SPIE 3809:152–163

    Article  Google Scholar 

  41. Sang H, Shen X, Chen C (2003) Architecture of a configurable 2-d adaptive filter used for small object detection and digital image processing. Opt Eng 48(8):2182–2189

    Article  Google Scholar 

  42. Sang N, Zhang T, Shi W (1998) Detection of sea surface small targets in infrared images based on multi-level filters. Proc SPIE 3373:123–129

    Article  Google Scholar 

  43. Serrano AJ, Soria E, Martin JD, Magdalena R, Gomez J (2010) Feature selection using roc curves on classification problems. The 2010 international joint conference on neural networks (IJCNN), pp 1–6

  44. Shirvaikar MV, Trivedi MM (1995) A neural network filter to detect small targets in high clutter backgrounds. IEEE Trans Neural Netw 6(1):252–257

    Article  Google Scholar 

  45. Silverman J, Mooney JM, Caefer CE (1997) Tracking point targets in cloud clutterr. Proc SPIE 3061:496–507

    Article  Google Scholar 

  46. Soni T, Zeidler JR, Ku WH (1993) Performance evaluation of 2-d adaptive prediction filters for detection of small objects in image data. IEEE Trans Image Process 2(3):327–340

    Article  Google Scholar 

  47. Thiam E, Shue L, Venkateswarlu R (2002) Adaptive mean and variance filter for detection of dim point-like targets. Proc SPIE 4728:492–502

    Article  Google Scholar 

  48. Torralba A, Murphy KP, Freeman WT (2007) Sharing visual features for multiclass and multiview object detection. IEEE Trans Pattern Anal Mach Intell 29:854–869

    Article  Google Scholar 

  49. Tzannes AP, Brooks DH (2000) Point target detection in ir image sequences: a hypothesis-testing approach based on target and clutter temporal profile modeling. Opt Eng 39(8):2270–2278

    Article  Google Scholar 

  50. van den Broek SP, Bakker EJ, de Lange D-J, Theil A (2000) Detection and classification of infrared decoys and small targets in a sea background. Proc SPIE 4029:70–80

    Article  Google Scholar 

  51. Wallraven C, Caputo B, Graf A (2003) Recognition with local features: the kernel recipe. In: Proceedings of the ninth IEEE international conference on computer vision, vol 2, ICCV ’03, pp 257–264

  52. Wang G, Zhang T, Wei L, Sang N (1996) Efficient method for multiscale small target detection from a natural scene. Opt Eng 35(3):761–768

    Article  Google Scholar 

  53. Wang G-D, Chen Ch-Y, Shen X-B (2005) Facet-based infrared small target detection method. Electron Lett 41(22):1244–1246

    Article  Google Scholar 

  54. Wang YL, Dai JM, Sun XG, Wang Q (2006) An efficient method of small targets detection in low SNR. J Phys Conf Ser 48:427–430

    Article  Google Scholar 

  55. Warren RC (2002) Detection of distant airborne targets in cluttered backgrounds in infrared image sequences, Ph.D. Thesis, University of South Australia

  56. Wu B, Ji H-B (2008) Improved power-law-detector-based moving small dim target detection in infrared images. Opt Eng 47(1):010503

    Article  Google Scholar 

  57. Yu J, Liu D, Tao D, Seah HS (2011) Complex object correspondence construction in two-dimensional animation. IEEE Trans Image Process 20(11):3257–3269

    Article  MathSciNet  Google Scholar 

  58. Yu J, Liu D, Tao D, Seah HS (2012) On combining multiple features for cartoon character retrieval and clip synthesis. IEEE Trans Syst Man Cybern Part B 42(5):1413–1427

    Article  Google Scholar 

  59. Yu J, Tao D, Wang M (2012) Adaptive hypergraph learning and its application in image classification. IEEE Trans Image Process 21(7):3262–3272

    Article  MathSciNet  Google Scholar 

  60. Yu J, Wang M, Tao D (2012) Semisupervised multiview distance metric learning for cartoon synthesis. IEEE Trans Image Process 21(11):4636–4648

    Article  MathSciNet  Google Scholar 

  61. Zhang B, Zhang T, Cao Z, Zhang K (2007) Fast new small-target detection algorithm based on a modified partial differential equation in infrared clutter. Opt Eng 46(10)

  62. Zhang L, Du B, Zhong Y (2010) Hybrid detectors based on selective endmembers. IEEE Trans Geosci Remote Sens 48(6):2633–2646

    Article  Google Scholar 

  63. Zhang L, Zhang L, Tao D, Huang X (2011) A multifeature tensor for remote-sensing target recognition. IEEE Geosci Remote Sens Lett 8(2):374–378

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0009684) and by the Sensor Target Recognition Laboratory (STRL) program of Defense Acquisition Program Administration and Agency for Defense Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungho Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MPG (1077 KB)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S. Analysis of small infrared target features and learning-based false detection removal for infrared search and track. Pattern Anal Applic 17, 883–900 (2014). https://doi.org/10.1007/s10044-013-0361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-013-0361-7

Keywords

Navigation