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Abstract System combination has proved to be a successful technique in the1

pattern recognition field. However, several difficulties arise when combining the2

outputs of tasks, e.g. machine translation, that generate structured patterns. So3

far, machine translation system combination approaches either implement sophis-4

ticated classifiers to select one of the provided translations, or generate new sen-5

tences by combining the “best” subsequences of the provided translations. We6

present minimum Bayes’ risk system combination (MBRSC), a system combi-7

nation method for machine translation that gathers together the advantages of8

sentence-selection and subsequence-combination methods. MBRSC is able to de-9

tect and utilize the “best” subsequences of the provided translations to generate10

the optimal consensus translation with respect to a particular performance met-11

ric. Experiments show that MBRSC yields significant improvements in translation12

quality.13

Keywords minimum Bayes’ risk · system combination · statistical machine14

translation15

1 Introduction16

Machine translation (MT) is a fundamental technology that is emerging as a core17

component of language processing systems. However, after a major development18

boost in the early nineties, MT technology seems to have reached a technical19

plateau nowadays [31, 6]. The combination of multiple MT systems is a promising20
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research direction to overcome this stagnation. The key idea of system combina-21

tion [12] is that it is often very difficult to find the real best system for the task at22

hand, while different systems (for instance, trained on different data or using dif-23

ferent learning paradigms) can exhibit complementary strengths and limitations.24

Therefore, a proper combination of various systems could be more effective than25

using a single monolithic system.26

The combination of outputs from multiple systems have been found to improve27

performance in a number of classification task such as part-of-speech tagging [39],28

text categorization [27] and speech recognition [16]. However, unlike part-of-speech29

tagging or text categorization where the classes are atomic units (either a part-30

of-speech or a category), classes in a translation task are sequences (sentences of31

words). When combining MT systems, we can consider either the full sentence or32

the individual words as the atomic classes, which leads to two different MT system33

combination approaches.34

MT system combination methods that consider the full sentences as the classi-35

fication classes implement the so-called sentence-selection approach. The decision36

on the consensus translation is taken as a selection of one of the translation pro-37

vided by the individual MT systems [5, 32, 36, 11, 13]. Their main limitation is38

that they cannot generate new translations that include “good” subsequences from39

different individual sentences. In exchange, they can implement sophisticated clas-40

sifiers such as minimum Bayes’ risk classifiers [14], which constitutes their main41

virtue.42

In contrast, MT system combination methods that consider the individual43

words as the classification classes implement the so-called subsequence-combination44

approach. These methods detect which subsequences of words in the individual45

translations are “correct”, and combine them to generate a consensus translation46

with reduced error [16]. Unfortunately, the translations provided by the individ-47

ual systems can be of different length or have a different word order. Therefore, a48

synchronization (alignment) step is required to detect which is the correspondence49

between the subsequences of the different translations. The consensus translation50

is given by the highest scoring path throughout the graph, the so-called confusion51

network, defined by the computed alignment [1, 21, 37, 29, 19]. These methods52

have one obvious advantage over sentence-selection: they can generate new consen-53

sus translations that potentially contain the “best” subsequences of the individual54

translations. However, they have to deal with the challenging word alignment prob-55

lem that has a substantial effect on combination performance [19]. Moreover, these56

methods also require additional data to train complex search models that score57

the paths throughout the consensus network, which hinders their application to58

languages with scarce resources.59

We present minimum Bayes’ risk system combination (MBRSC), a method60

designed to gather together the advantages of sentence-selection and subsequence-61

combination methods. MBRSC can detect the “best” subsequences of the provided62

translations, and combine them into a new consensus translation which is optimal63

with respect to a particular performance measure. We choose the BLEU score [35]64

as our performance measure of interest. BLEU considers a sentence as a vector of65

n-gram1 occurrences rather than a word sequence. Therefore, BLEU can compare66

sentences without the need of a word alignment between them. Additionally, BLEU67

1 We will refer as n-gram to a sequence of n consecutive words in a sentence.
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is the standard performance measure for MT, thus, by using loss function based68

on BLEU, we are optimizing our system towards the most widespread translation69

quality measure.70

Compared with sentence-selection methods, MBSRC also implements a sophis-71

ticated classifier, and, additionally, it is able to generate new consensus translations72

that include the “best” subsequences from different individual translations. Re-73

garding subsequence-combination methods, MBRSC has several advantages over74

the dominant confusion network approach:75

– Translations do not have to be synchronized which avoids the limitations im-76

posed by the alignment.77

– The full target language is explored in the search for the consensus translation.78

– A minimum Bayes’ risk classifier is implemented. Thus, the consensus transla-79

tions are optimal with respect to the final evaluation measure.80

– The consensus translation is computed directly from the translations of the81

individual systems. I.e., no additional data is required to train graph-search82

models which allows the effective application of MBRSC to languages with83

scarce resources.84

The basic concept of MBRSC has been previously described in a conference85

publication [17]. Since then, the process to obtain the consensus translation have86

been substantially improved. We describe a novel dynamic programming beam87

search algorithm [22] that efficiently explores the full output language, outper-88

forming the previously used gradient ascent algorithm.89

The rest of the article is organized as follows. Section 2 reviews the basics of90

Bayesian decision theory and introduces minimum Bayes’ risk classifiers. Section 391

presents our system combination algorithm, MBRSC, in detail. Experimental re-92

sults are presented in section 4. Finally, we conclude with a summary in section 5.93

2 Minimum Bayes’ risk classifiers94

Let x ∈ X be a domain of objects, and Y = {y1, . . . ,yC} a set of classes. A
classification system is defined by a classification function (C : X → Y) that maps
each object to one class [14]. Given a loss function L(C(x),y′) that measures the
error of classifying object x into class C(x) knowing that the correct class is y′,
the performance of a classification function is measured through the Bayes’ risk2:

R(C(x)) = EPr(y |x)[L(C(x),y′)] (1)

The optimal classification function Ĉ(·) minimizes the Bayes’ risk for each
object [4], the so-called minimum Bayes’ risk (MBR) classifier:

ŷ = Ĉ(x) = arg min
y∈Y

∑
y′∈Y

Pr(y′ |x) · L(y,y′) (2)

MBR classifiers usually are computationally costly, particularly, when applied95

to tasks (e.g. MT) where the number of classes | Y | is very large or even infinite.96

2 Pr(·) denotes general probability distributions, P (·) denotes model-based distributions,
and EPr(X)[X] denotes the expected value of a random variable X under distribution Pr(X).
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Fig. 1 Overview of the process followed by the proposed MBRSC method to generate a
consensus translation.

However, this complexity can be greatly reduced if we consider linear loss functions97

of the form L(y,y′) =
∑
d θd(y) · φd(y′), where φd(y

′) is a real-valued feature of98

the reference class y′, and θd(y) is the count of that feature in the candidate class99

y. Then, the MBR classifier in Equation (2) can be re-written as:100

ŷ = arg min
y∈Y

∑
y′∈Y

Pr(y′ |x) ·
∑
d

θd(y) · φd(y′)

= arg min
y∈Y

∑
d

θd(y) ·
∑
y′∈Y

Pr(y′ |x) · φd(y′)

= arg min
y∈Y

∑
d

θd(y) · EPr(y′ |x)[φd(y
′)] (3)

Unfortunately, many loss functions of interest (e.g. BLEU) are nonlinear, and
so Equation (3) does not apply. However, this loss functions usually are functions of
features of y′. That is, they can be expressed as L̃(y;Φ(y′)) for a feature mapping
Φ : Y → Rn. Based on this observation, DeNero et al. [10] proposed to follow the
structure of Equation (3) also for nonlinear functions, choosing a class y based on
the feature expectations of y′:

ŷ ≈ arg min
y∈Y

L̃(y,EPr(y′ |x)[Φ(y′)]) (4)

Note that for nonlinear loss functions, this MBR classifier over features differs101

from the exact MBR classifier in Equation (2), but MT system combination results102

reported in [10] showed that there were no significant difference in performance103

between the two approaches.104

The main advantage of the MBR formulation over features in Equation (4) is105

that the computation of the Bayes’ risk is independent of the number of classes106

which largely simplifies its implementation. The main computational challenge107

that remains is the well-studied search problem (arg miny∈Y operation). The exact108

formulation of the search problem depends of the particular loss function under109

consideration, but it can be solved through several general purpose techniques110

such as dynamic programming [3] or branch-and-bound [26], that additionally can111

implement beam search [22] to improve their efficiency.112

3 Minimum Bayes’ risk system combination113

We now present the details of the proposed method: minimum Bayes’ risk system114

combination (MBRSC). Section 3.1 presents the probabilistic translation model115
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of MBRSC and its MBR formulation for BLEU. Section 3.2 describes the process116

to train the free parameters of the model. Finally, section 3.3 describes the search117

algorithm that generates the consensus translation. Figure 1 gives an overview of118

the process followed by MBRSC to generate a consensus translation.119

3.1 MBRSC model120

Let {C1, . . . , Ck, . . . , CK} denote K individual MT systems. Under the assumption
that the systems are statistically independent, we model the multi-system classifier
as a weighted ensemble of systems [23]:

P (y |x) =
K∑
k=1

αk ·Pk(y |x) (5)

where Pk(y |x) denotes the probability distribution over translations modelled
by system Ck. Free parameters α = {α1, . . . , αk, . . . , αK} are scaling factors that
can be interpreted as a measure of the importance of each individual system
(
∑K
k=1 αk = 1). The optimal classification function for the ensemble model in

Equation (5) is an instance of the MBR classifier in Equation (2):

ŷ = arg min
y∈Y

∑
y′∈Y

(
K∑
k=1

αk ·Pk(y′ |x)

)
· L(y,y′) (6)

We choose the widespread BLEU [35] score as loss function. BLEU computes
the geometric mean of the precision of n-grams of various lengths between a candi-
date and a reference translation. This geometric average is multiplied by a factor
that penalizes translations shorter than the reference, namely the brevity penalty.
Following the standard BLEU implementation, we consider n = 4 as the maximum
n-gram length. Formally, the BLEU score between a candidate y and a reference
translation y′ is given by:

BLEU(y,y′) =

(
4∏

n=1

pn(y,y′)

) 1
4

·BP(y,y′) (7)

where the n-gram precisions pn(y,y′) and the brevity penalty BP(y,y′) are com-121

puted as:122

pn(y,y′) =

∑
w∈Wn(y)

min(#w(y),#w(y′))

∑
w∈Wn(y)

#w(y)
(8)

BP(y,y′) = min

(
exp

(
1− |y

′ |
|y |

)
, 1

)
(9)

where Wn(y) is the set of n-grams of size n in y, #w(y) represents the count of123

n-gram w in translation y and |y | denotes its length.124
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BLEU is a percentage with a value of one denoting an exact match between
y and y′. Thus, the arg miny∈Y in Equation (6) is substituted by an arg maxy∈Y .
Finally, the BLEU-based MBR classifier for the ensemble is formulated as:

ŷ = arg max
y∈Y

∑
y′∈Y

K∑
k=1

αk ·Pk(y′ |x) ·BLEU(y,y′) (10)

This MBR classifier has a high temporal complexity in O(| Y |2 ·K · I), where125

| Y | denotes the number of possible target language sentences, and I represents the126

maximum sentence length given that BLEU(y,y′) has a computational complexity127

in O(max(|y |, |y′ |)).128

Since BLEU(y,y′) references y′ only via its n-gram counts3, we can follow [10]129

and approximate Equation (10) by choosing a translation y based on n-gram count130

expectations:131

ŷ = arg maxy∈Y B̃LEU(y,EP (y′ |x)[Φ(y′)])

= arg maxy∈Y

(
4∏

n=1

p̃n(y,EP (y′ |x)[Φ(y′)])

) 1
4

· B̃P(y,EP (y′ |x)[Φ(y′)]) (11)

where EP (y′ |x)[Φ(y′)] are the expected n-gram counts according to the probabil-132

ity distribution P (y′ |x) of the ensemble model in Equation (5). We reformulate133

pn(y,y′) and BP(y,y′) as functions of expected n-gram counts:134

p̃n(y,EP (y′ |x)[Φ(y′)]) =

∑
w∈Wn(y′)

min(#w(y),EP (y′ |x)[#w(y′)])

∑
w∈Wn(y′)

#w(y)
(12)

B̃P(y,EP (y′ |x)[Φ(y′)]) = min

(
exp

(
1−

EP (y′ |x)[|y′ |]
|y |

)
, 1

)
(13)

the n-gram count expectations can be computed in advance, thus Equation (11)135

has a computational complexity in O(| Y | · I).136

To compute the expected n-gram counts, all systems should share the same can-137

didate translations. However, due to differences in generative capabilities, training138

data selection, and various pruning techniques, the domain of translations of the139

different systems are always not identical in practice. Our approach is to compute140

the count expectations individually for each system4 and combine these counts141

according to the ensemble weights α. If a probability distribution over transla-142

tions is not available, e.g. translations generated by non-statistical MT systems,143

we can use a uniform distribution or assign a rank-based probability [37] to each144

translation.145

3 The brevity penalty is also a function of n-gram counts: |y′ | =
∑

w∈W1(y′) #w(y′).
4 This can be done straightforwardly if the domain of translations is represented as a list. For

more complex graph-based representations, we can use the algorithms proposed in [25, 10, 11].
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P (y |x) y
0.35 we are certainly faced with enormous challenges .
0.25 certainly we must tackle enormous challenges .
0.40 we are faced with enormous challenges .

we

certainly

are

must

we

y:

y: “we”

y: “certainly”

y: “we are”

y: “we must”

y: “certainly we”

Fig. 2 Example of the search-graph explored by MBRSC when combining three translations.

3.2 MBRSC training146

The objective of the training procedure is to obtain suitable values for the free pa-
rameters α of the ensemble model. By “suitable”, we mean parameter values that
yield good translation quality on unseen data, the so-called minimum error rate
training (MERT) [34]. Given a function Q(y,y′) that measures the quality of a
translation y with respect to a reference translation y′, our goal is to obtain the pa-
rameter values that maximize the translation quality of the consensus translations
generated by MBRSC for a representative training set {(x1,y1), . . . , (xS ,yS)}:

α̂ = arg max
α

S∑
s=1

Q(C(xs;α),ys) (14)

where function C(xs;α) returns the consensus translation for source sentence xs147

given by the MBRSC decision function (Equation (11)) using parameter values148

α. We solve this optimization problem with the downhill-simplex algorithm [30]149

using BLEU as quality function.150

3.3 MBRSC search151

We now address the search problem also referred to as generation or decoding. Its152

goal is to solve Equation (11) which involves to find for a given source sentence153

the translation of maximum expected BLEU score among all possible target lan-154

guage sentences. The main difficulty in the computation of Equation (11) is the155

potentially infinite number of target language sentences y ∈ Y that have to be156

considered as candidate translations during the search process. A similar search157

problem also arises in conventional MT models which has been demonstrated to158

be an NP-complete problem [24, 42], so we cannot expect to develop efficient159

algorithms to perform an exact search.160

We formalize the MBRSC search as a dynamic programming problem [3].161

Search is then interpreted as a sequence of decisions that incrementally generate162
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new translation hypotheses y′. Starting with an empty hypothesis, each decision163

expand a hypotheses of size i − 1 with one new target vocabulary word y ∈ Σ to164

create a hypothesis of size i. This search space can be represented as a directed165

acyclic graph where the states denote partial hypotheses and the edges are labelled166

with expansion words. Figure 2 shows an example of the two first expansions in the167

search graph when combining three sentences. We avoid repeated computations168

by traversing the search graph in a topological order, thus performing a breadth-169

first exploration of the search space. In other words, before we process a node,170

i.e. expand a hypothesis, we have to make sure that we have visited all predeces-171

sor states. We can easily guarantee the topological order by processing the nodes172

according to the size of the partial hypotheses.173

Each possible expansion of a partial hypothesis will be assigned a score repre-174

senting its expected BLEU score. Among all possible paths of the search graph, we175

are interested in that of the highest score. As have been explained above, a state176

of the graph represents a partial hypothesis, however only the n-grams counts of177

the partial hypothesis are required to compute its score. Two partial hypothe-178

ses sharing the same n-grams are indistinguishable, and we are only interested in179

the hypothesis of higher score. According to these considerations, each state of180

the graph can be represented by a specific bag (namely a specific multiset) N of181

n-grams. We define Q(N ) = {q,y}, where q is the maximum score of a path leading182

from the initial state to the state (N ), and y is the highest-scoring hypothesis in183

the state. The usage of N and y may seem redundant, however, while N allows to184

distinguish between hypotheses, the actual ordered sequence of words y is required185

to generate the subsequent expanded hypothesis. We also define Q̂ = {q̂, ŷ} as the186

final state of the optimal translation ŷ. Finally, we obtain the following dynamic187

programming recursion equations:188

Q(∅) = {0, ””}

Q(N e) =

 max
y∈Σ,{·,yp}=Q(Np),

ye=yp y,N e=Np ∪Θ(yp,y)

B̃LEU(y,EP (y′ |x)[Φ(y′)]), ye


Q̂ =

 max
{·,yp}=Q(Np)

ŷ=yp $

B̃LEU(ŷ,EP (y′ |x)[Φ(y′)]), ŷ


where $ is the end-of-sentence symbol that denotes a complete translation, and189

Θ(y, y) returns the new n-grams generated when expanding hypothesis y with word190

y. For example, given the hypothesis yp=“we are faced with” and the expansion word191

y=“enormous”, the expanded hypothesis ye=“we are faced with enormous” contains192

four5 n-grams more than yp: “enormous”, “with enormous”, “faced with enormous”,193

and “are faced with enormous”.194

As defined in the dynamic programming equations, every target language word
is a potential expansion option for each partial translation. However, not all word
sequences form correct natural language sentences. E.g., given the partial trans-
lation yp=“we are faced with”, it is clear that word y=“enormous” can be a valid

5 Following the definition of the BLEU score (see previous section), we take into considera-
tion n-grams up to size four.
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input : EP (y′ |x)[#w(y′)] (n-gram count expectations)
N (pruning parameter),
I (maximum translation length)

output : Q̂ (optimal translation along with its score)
auxiliary: Θ(y, y) (new n-grams after expanding hypothesis y with word y),

∆(y) (set of expansion words for y),

S(y,EP (y′ |x)[#w(y′)]) (returns the complete score of y),
Π(i, N) (prunes out low-scoring hypotheses of size i)

begin1

Q(·)← {0, ””}; Q̂← {0, ””};2

for i = 1 to I do3

forall N p : Q(N p) = {·,yp} ∧ |yp | == i− 1 do4

{·,yp} ← Q(N p);5

forall y ∈ ∆(yp) do6

ye ← yp y;7

qe ← S(ye,EP (y′ |x)[#w(y′)]);8

if y == $ then9

{q̂, ·} ← Q̂;10

if qe > q̂ then11

Q̂← {qe,ye};12

else13

N e ← N p
⋃

Θ(yp, y);14

{q, ·} ← Q(N e);15

if qe > q then16

Q(N e)← {qe,ye};17

Π(i, N);18

end19

Algorithm 1: Pseudocode of the dynamic programming beam search algorithm with
pruning.

expansion option while word y=“with” cannot. Thus, we consider y ∈ Σ ∪ {$} as
a valid expansion word for partial hypothesis yp only if at least one of the new n-
grams in the resulting expanded hypothesis ye = yp y has a expected n-gram count
above zero. Formally, the set of expansion words ∆(yp) for a partial hypothesis
yp is given by:

∆(yp) =
{
y | ∃w ∈ Θ(yp, y) ∧ EP (y′ |x)[#w(y′)] > 0

}
This dynamic programming search is optimal. Unfortunately, due to the ex-195

ponential number of states6, we cannot expect to efficiently obtain the optimal196

consensus translation. To speed up the search, we use a beam search algorithm [22]197

with pruning. Specifically, for each size i, we keep only the N best-scoring hypothe-198

ses and discard the rest of them. To assure a fair competition between hypotheses,199

the score of each of them is given by a combination of its score so far, and an esti-200

mate of the rest score to complete the translation. Following [18], we apply a light201

search process (considering at each step the single best expansion) to estimate the202

6 The number is computed by the multiset coefficient [41] and it is exponential in the size
of the target vocabulary.
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score of the complete translation that can be obtained from the hypothesis. This203

score is then used as the complete score of the hypothesis.204

Algorithm 1 shows the pseudocode of the dynamic programming beam search205

algorithm with pruning. It takes as input the set of n-gram count expectations206

(EP (y′ |x)[#w(y′)]), the number of hypotheses to keep after pruning (N), and207

the maximum translation length under consideration (I). We use some auxiliary208

functions: Θ(y, y) returns the set of new n-grams generated in the expansion of209

hypothesis y with word y, ∆(y) returns the set of valid expansion words for y,210

S(y,EP (y′ |x)[#w(y′)]) returns the complete score (current score plus rest score211

estimation) of y, and Π(i,N) is a function that prunes out search states that212

represent partial hypotheses of size i keeping only the N best-scoring ones for213

future expansions.214

The first loop in Algorithm 1 assures that the search graph is traversed in215

topological order. Additionally, it introduces an upper bound to the maximum216

translation size under consideration, and thus, to the number of iterations of the217

algorithm. At each iteration, line 4 loops over the states that remain from the218

previous iteration, i.e., non-pruned states that store a translation of size i − 1.219

For each of these predecessor states, line 6 loops over the corresponding expan-220

sion words. Given a predecessor state (N p) that stores a hypothesis yp, and a221

valid expansion word y, we compute the complete score (current score plus rest222

score estimation) qe of the expanded hypothesis ye = yp y (line 8). Then, if the223

expansion word is the end-of-sentence symbol (y == $), the expanded hypothesis224

is a complete translation, and if it improves the score (q̂) of the best consensus225

translation so far, we update this optimal translation (lines 9–12). For any other226

expansion words, we first compute the bag of n-grams N e of the expanded hypoth-227

esis (line 14). Then, if the score qe of the expanded hypothesis improves the score228

stored in the corresponding successor state (N e) (line 16), we update the state.229

Finally, we prune out states that represent low-scoring hypotheses of current size230

i (line 18).231

This beam search algorithm with pruning has a computational complexity in232

O(I2 ·N ·D), where N denotes the pruning parameter that controls the number of233

predecessor states in line 4, D denotes the maximum number of expansion words234

in line 6, and I is the maximum translation size in line 3. The extra O(I) factor is235

given by the score computation7 in line 8. Note that the computational complexity236

of Algorithm 1 does not depend on the number of translations provided by the237

individual systems.238

4 Experiments239

We now describe the experiments performed to study the soundness of the pro-240

posed system combination method. First, we describe the evaluation criteria used241

in the experimentation. Then, we present results for several comparative exper-242

iments between different setups of MBRSC. Finally, we compare MBRSC with243

several other state-of-the-art system combination algorithms.244

7 The BLEU-based score cannot be computed incrementally due to the min(·) functions in
its formulation.
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Table 1 Average number of translation options provided, and case insensitive BLEU scores
for the single best translation of each system.

System #trans opts BLEU [%]
A 13 24.8
B 9 25.2
C 41 25.8
D 263 25.8
E 126 26.4

4.1 Evaluation criteria245

4.1.1 Translation quality measures246

We used two well-established automatic measures to evaluate the quality of the247

consensus translations: BLEU [35], and TER [40]. BLEU measures the geometric248

average of the n-gram precisions multiplied by a factor that penalize short transla-249

tions, see Equation (7). TER measures the percentage of words that must be edited250

to convert the candidate translation into the reference translation; valid edit op-251

erations are: deletion, insertion and substitution of single words and shift of word252

sequences. Each measure assumes a different definition of “translation quality”.253

BLEU is a percentage that measures to which extent the candidate translation254

contains the same information as the reference translation. A 100% BLEU value255

denotes a candidate translation equal to the reference. In contrast, TER aims at256

measuring the amount of work needed to fix a candidate translation. Thus, TER257

is an error measure where a 0% denotes a perfect matching between the candidate258

translation and the reference. Since MBRSC is designed to optimize BLEU, we259

expect translation quality improvements in BLEU to be particularly important.260

We also report TER scores to independently assess BLEU results.261

4.1.2 Statistical Significance262

We apply statistical significance testing to establish that an observed performance263

difference between two methods is in fact significant, and has not just arisen by264

chance. The usual approach is to state as null hypothesis: “Methods A and B do not265

differ with respect to the evaluation measure of interest”. Then, we determine the266

probability, namely the p-value, that an observed difference has arisen by chance267

given the null hypothesis. If the p-value is lower than a predefined significance268

level (usually p < 0.01, or p < 0.05) we can reject the null hypothesis. To do that,269

we use randomization tests [33], specifically a randomization version of the paired270

t-test based on [9]:271

1. Collect the absolute difference in evaluation measure Q(·) for methods272

A and B273

|Q(A)−Q(B)|274

2. Shuffle N times (N = 9999 in our experiments)275

3. Count the number of times (N≥) that276

|Q(A′)−Q(B′)| ≥ |Q(A)−Q(B)|277

4. The estimate of the p-value is N≥+1
N+1278

(1 is added to achieve an unbiased estimate)279
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Table 2 Influence of individual MBRSC components on the quality of the generated consensus
translations.

System BLEU[%] TER[%]
worst single system 24.8 60.4
best single system 26.4 56.0
sentence selection baseline [15] 27.4 55.5
MBRSC system combination translation:

sentence selection (feature expectations loss) 27.4 55.5
gradient ascent search [17] 27.7 55.4
beam search (uniform weights) 27.8 55.1
+ automatic parameter optimization 28.0 54.9

oracle (beam search + reference n-gram counts) 43.3 42.2

Initially, we use an evaluation measure Q(·) (e.g. BLEU) to determine the280

absolute difference between the original outcomes of methods A and B. Then, we281

repeatedly create shuffled versions A′ and B′ of the original outcomes, determine282

the absolute difference between their evaluation metrics, and count the number283

of times N≥ that this difference is equal or larger than the original difference.284

To create the shuffled versions of the data sets, we iterate over each data point285

in the original outcomes and decide based on a simulated coin-flip whether data286

points should be exchanged between A and B. The p-value is the proportion of287

iterations in which the absolute difference in evaluation metric was indeed larger288

for the shuffled version (corrected to achieve an unbiased estimate).289

4.2 Comparative experiments290

First, we performed comparative experiments to evaluate the influence of the dif-291

ferent features of MBRSC on MT quality. This experiments were performed on292

French-English, from the translation task of the 2009 Workshop on Statistical Ma-293

chine Translation8 [7]. We combined the outputs of the five statistical MT systems294

that submitted lists of n-best translation options to the task. Table 1 shows the av-295

erage number of translation options for each source sentence, and case insensitive296

BLEU scores for the single best translation of each system. System outputs were297

tokenized and lower-cased before performing the combination. We report case-298

insensitive evaluation results to factor out the effect of true-casing of the English299

words from the effect of computing a consensus translation.300

Table 2 displays case-insensitive BLEU and TER results for the computed301

consensus translations. We used different setups of MBRSC to generate consensus302

translations that combine all the translation options provided by the five individual303

systems. On average, for each source sentence we combined about 450 translations.304

We also report results for the best and worst individual systems, and for an oracle305

experiment where the expected n-gram counts were computed directly from the306

reference translations.307

As a baseline, we present results for a conventional sentence-selection MBR308

classifier [15] for the ensemble model in Equation (5). The risk of each candidate309

translation was computed by exhaustively calculating its BLEU score with respect310

to the rest of the translations (Equation (10)). Results in Table 2 show that this311

8 http://statmt.org/wmt09/translation-task.html
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Table 3 Examples of translation quality improvements resulting from system combination.

single MT no aircraft universal also today is that the telephone .
MBRSC no current apparatus is as universal as the telephone .
reference no contemporary machine is as universal as the telephone .

single MT no confirmation was able to be obtained from aig .
MBRSC no confirmation could be obtained from aig .
reference no confirmation could be obtained from aig .

single MT simply complete , through the usb connector , the device of music
from the computer .

MBRSC it is enough to fill , through the usb connector , the music from the
computer .

reference it ’s enough to fill the device with music using the usb from the
computer .

single MT for their operation to be effective , they have indeed need much less
clients as a classic operator .

MBRSC for their operation to be effective , they need far fewer customers
than a classic operator .

reference in order to function effectively , they require many fewer customers
than a classic operator does .

baseline already resulted in a substantial improvement over the best individual312

system: +1.0 BLEU points and −0.5 TER points.313

We replicated this baseline sentence-selection experiment using n-gram count314

expectations to compute the loss (Equation (11)) and obtained the same BLEU315

and TER scores than the baseline. These results indicate that MBR over feature316

expectations is an accurate approximation to the exact MBR classifier even for317

nonlinear loss functions such as BLEU, a finding consistent with prior research [10].318

Then, we generated consensus translations using the beam search algorithm319

described in section 3.3; a pruning parameter value N = 100 was used. Re-320

sults showed a slight performance improvement: +0.4 BLEU points over sentence-321

selection search, and +0.1 BLEU points over the gradient ascent search algorithm322

described in [17]. Since we used the same n-gram count expectations in all three323

experiments, these BLEU improvements imply that beam search was able to gen-324

erate better translations than the translations already provided by the individual325

systems (sentence-selection search), and that it explores a broader search space326

than the gradient ascent search.327

Finally, we automatically optimized the values of free parameters α in a sepa-328

rate development set which further improved performance of MBRSC: +0.2 BLEU329

points and −0.2 TER points. This scarce improvements are rather surprising given330

that a much larger improvement, +1 BLEU points, was obtained in the develop-331

ment set. We hypothesize that this is due to overfitting: in fact, the optimized332

weight for one of the systems was very small. This can happen if the quality of a333

system varies between datasets. In this case, the importance of these systems in334

determining the consensus translation may be underestimated. Nevertheless, this335

final experiment showed a statistically significant improvement (p = 0.0003) of336

+0.6 BLEU points and −0.6 TER points over baseline. Table 3 shows examples337

of how the translation quality can be improved with system combination. Here,338

the consensus translation is compared with the translation of the best individual339

system, as well as with a human reference translation.340

We performed one last comparative experiment (oracle) to measure the upper341

bound for the performance of MBRSC. Instead of expected counts, we generated342
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Fig. 3 Performance, and significance testing against baseline, of MBRSC as a function of
the number of translation options combined. Parameter optimization was performed for both
methods.

consensus translations using n-gram counts computed directly from the reference343

translations. Naturally, oracle results showed a huge improvement in performance344

over the best individual system. Since MBRSC barely explores one tenth of this345

potential, we conclude that refinements in the estimation of n-gram count expec-346

tations could have the potential to boost translation quality.347

Additionally, we evaluated the performance of MBRSC as a function of the348

number of translation options combined. For each source sentence only a subset349

of translation options are combined to generate the consensus translation, namely350

the top scoring ones. Figure 3 compares MBRSC against the baseline sentence-351

selection search algorithm. Additionally, we report significance level of the differ-352

ence in performance between them9. We mark two standard levels of significance,353

0.01 and 0.05, for reference. MBRSC consistently outperformed baseline, although354

these differences were not statistically significant below 100 translation options.355

This is not surprising since the search space for the baseline sentence-selection356

method grows linearly with the number of translation options while for MBRSC357

it grows exponentially. Thus, as more translation options were used MBRSC was358

able to explore a broader space which involved a statistically significant difference359

in performance when combining 100 translation options or more.360

4.3 Comparison with state-of-the-art system combination methods361

We now compare MBRSC against several state-of-the-art subsequence system com-362

bination techniques. This experiments were performed on the official evaluation363

9 Similarly as done in [2], we give p-values on a logarithmic scale.Note that 10−4 is the
smallest possible p-value that can be computed with 9999 shuffles in the randomized test.
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Table 4 BLEU [%] scores of MBRSC in comparison with the best-performing system combi-
nation methods presented in the system combination task of the 2011 workshop on statistical
machine translation.

System cz→en en→cz de→en en→de
MBRSC 29.5 20.8 25.2 18.4
BBN [38] 29.9 – 26.5 –
CMU [20] 28.7 20.1 25.1 17.6
JHU [43] 29.4 – 24.9 –
RTWH [28] – – 25.4 –

sets from the system combination task 10 of the 2011 Workshop on Statistical Ma-364

chine Translation [8]. Consensus translations were generated for both translation365

directions of the following language pairs: Czech–English (cz–en), German–English366

(de–en), Spanish–English (es–en) and French–English (fr–en). For each translation367

direction, we combined the outputs of all the system that submit translations to368

the translation task. In contrast to the previous experiments, for each source sen-369

tence only single best translations were provided by each individual system. Thus,370

each experiment combined only about 10 translations.371

Table 4 compares the performance of MBRSC with respect to the various sys-372

tems that participate in the system combination task. For the sake of simplicity,373

we show results only for the four (out of ten) best-performing systems. All these374

system combination methods align the provided translations to build a consen-375

sus network, and compute the consensus translation as the highest-scoring path376

through the network in the style of [16]. They differ in the alignment method377

and the path-scoring models used. We report results only for cz↔en and de↔en378

translation directions. Experiments for other directions lead to similar conclusions.379

It is important to note that the experimental conditions of this task favored380

consensus network methods. On the one hand, only single-best translations were381

available so the n-gram count expectations could not be smoothly estimated and382

were biased to those single translations. On the other hand, organizers allowed the383

use of any additional data which permits network methods to train their complex384

search models. However, we found that even in this pessimistic setting MBRSC385

was the best performer for en→cz and en→de, and was between the top-performing386

systems for the rest of translation directions.387

Not surprisingly, MBRSC scored particularly high for those translation direc-388

tions (cz and de) whose target language had scarcer resources. For these languages,389

network-based systems simply did not had enough data to train their complex net-390

work search models. In fact, many participants submitted consensus translations391

for only a limited number of translation directions. In contrast, MBRSC does not392

require any additional data. Since the consensus translation is directly computed393

from the provided translation options, MBRSC obtained competitive results in all394

translation directions. These results confirm the soundness and generality of the395

proposed system combination technique.396

10 http://www.statmt.org/wmt11/system-combination-task.html
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5 Conclusion397

We have described minimum Bayes’ risk system combination (MBRSC) a new398

subsequence system combination approach for MT. MBRSC is able to detect and399

combine the “best” parts of the provided translations to generate the optimal400

consensus translation with respect to the BLEU score.401

Despite its simplicity, MBRSC provides strong performance by leveraging dif-402

ferent modelling, training and search techniques. We have performed a thorough403

analysis of how individual features of the algorithm influence the translation qual-404

ity, and have compared the overall performance with the upper bound achievable405

by the algorithm. These comparative experiments showed that MBRSC signifi-406

cantly outperforms MBR sentence-selection techniques. Additionally, we compared407

MBRSC with several state-of-the-art subsequence combination systems in the sys-408

tem combination task of the 2011 workshop on statistical machine translation.409

Experiments show that even in this pessimistic setting, better suited for the domi-410

nant network-based techniques, MBRSC obtained competitive results specially for411

languages with scarce resources.412
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