Skip to main content
Log in

Improved nuisance attribute projection for face recognition

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Th e illumination variation is one of the well-known problems in face recognition under uncontrolled environments. Several techniques have been presented in the literature to cope up with this problem. Lately, a technique known as Nuisance Attribute Projection (NAP), originally developed for the speaker recognition field was introduced to image processing in order to compensate for luminance artifacts. This paper extends and improves the earlier work by exploring efficient methodologies for using NAP for face recognition under varied illumination conditions. In particular, we propose a modified NAP formulation and show that NAP training can be simplified for face recognition. Additionally, we suggested a compact framework merging between NAP compensation and eigenface recognition. A series of experiments using the extended YaleB database, and a cross-validation using the PIE CMU and the Oulo databases are performed to validate our proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang M, Kriegman DJ, Ahuja N (2002) Detecting faces in images: a survey. IEEE TPAMI 24:34–58

    Article  Google Scholar 

  2. Zou X, Kittler J, Messer K (2007) Illumination invariant face recognition: a survey. In: First IEEE international conference on biometrics: theory, applications, and systems, 2007. BTAS 2007, 27–29 Sep 2007. doi:10.1109/BTAS.2007.4401921

  3. Land EH, McCann JJ (1971) Lightness and retinex theory. J Opt Soc Am 61(1):1–11

    Article  Google Scholar 

  4. Short J, Kittler J, Messer K (2004) A comparison of photometric normalisation algorithms for face verification. In: Proceedings of the sixth IEEE international conference on automatic face and gesture recognition, 2004, 17–19 May 2004, pp 254–259. doi:10.1109/AFGR.2004.1301540

  5. Zhang T, Fang B, Yuan Y, Tang YY, Shang Z, Li D, Lang F (2009) Multiscale facial structure representation for face recognition under varying illumination. Pattern Recognit 42:251–258

    Article  MATH  Google Scholar 

  6. Stockham TG Jr (1972) Image processing in the context of a visual model. IEEE 60:828–842

    Article  Google Scholar 

  7. Gross R, Brajovic V (2003) An image preprocessing algorithm for illumination invariant face recognition. In: Proceedings of the international conference on audio and video based biometric person authentication, pp 10–18

  8. Shashua A, Riklin-Raviv T (2001) The quotient image: class-based re-rendering and recognition with varying illuminations. IEEE TPAMI 23:129–139

    Article  Google Scholar 

  9. Wang H, Li SZ, Wang Y (2004) Face recognition under varying lighting condition using self quotient image. In: Proceedings of IEEE international conference on AFGR, pp 819–824

  10. Wang H, Wang H, Li SZ, Wang Y (2004) Generalized quotient image. In: Proceedings of IEEE conference on CVPR, pp 498–505

  11. Choi S, Jeong G (2011) Shadow compensation using Fourier analysis with application to face recognition. IEEE 18:23–26

    Google Scholar 

  12. Makwana RM (2010) Illumination invariant face recognition: a survey of passive methods. Proc Comput Sci 2:101–110

    Article  Google Scholar 

  13. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE TPAMI 19:711–720

    Article  Google Scholar 

  14. Wang H, Li SZ, Wang Y (2004) Face recognition under varying lighting condition using self quotient image. In: Proceedings of IEEE conference on AFGR, pp 819–824

  15. Shan S, Gao W, Cao B, Zhao D (2003) Illumination normalization for robust face recognition against varying lighting conditions. In: Proceedings of IEEE conference on AMFG, pp 157–164

  16. Kong SG, Heo J, Abidi B, Paik J, Abidi M (2005) Recent advances in visual and infrared face recognition—a review. CVIU 97:103–135

    Google Scholar 

  17. Pan Z, Healey G, Prasad M, Tromberg B (2003) Face recognition in hyperspectral images. IEEE Trans PAMI 25:1552–1560

    Article  Google Scholar 

  18. Zhang T, Tang YY, Fang B, Shang Z, Liu X (2009) Face recognition under varying illumination using gradient faces. IEEE IP 18:2599–2606

    MathSciNet  Google Scholar 

  19. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3:71–86

    Article  Google Scholar 

  20. Chen T, Yin W, Zhou XS, Comaniciu D, Huang TS (2006) Total variation models for variable lighting face recognition. TPAMI 28:1519–1524

    Article  Google Scholar 

  21. Belhumeur PN, Kriegman DJ (1996) What is the set of images of an object under all possible lighting conditions? In: IEEE conference on CVPR, pp 270–277

  22. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE TPAMI 23:643–660

    Article  Google Scholar 

  23. Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. IEEE TPAMI 25:218–233

    Article  Google Scholar 

  24. Savvides M, Vijaya Kumar BVK, Khosla PK (2004) “Corefaces”—robust shift invariant PCA based correlation filter for illumination tolerant face recognition. IEEE CVPR 2:834–841

    Google Scholar 

  25. Lee KC, Ho J, Kriegman D (2001) Nine points of light: acquiring subspaces for face recognition under variable lighting. In: Proceedings of IEEE conference on CVPR, pp 519–526

  26. Pizer SM, Amburn EP, Austin J, Cromartie R, Geselowitz A, Greer T, Haar B, Zimmerman JB, Zuiderveld K (1987) Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 39:355–368

    Article  Google Scholar 

  27. Savvides M, Kumar BVK (2003) Illumination normalization using logarithm transforms for face authentication. In: AVBPA, pp 549–556

  28. Chen W, Er MJ, Wu S (2006) Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE 36:458–466

    Google Scholar 

  29. Struc V, Vesnicer B, Mihelic F, Pavesic N (2010) Removing illumination artifacts from face images using nuisance attribute projection. In: Proceedings of the IEEE international conference on ICASSP, pp 846–849

  30. Solomonoff A, Campbell WM, Boardman I (2005) Advances in channel compensation for SVM speaker recognition. In: Proceedings of IEEE International conference on ICASP, pp 629–632

  31. Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25:1615–1618

    Article  Google Scholar 

  32. Marszalec E, Martinkauppi B, Soriano M, Pietikäinen M (2000) A physics-based face database for color research. J Electron Imaging 9:32–38

    Article  Google Scholar 

  33. Kirby M, Sirovich L (1990) Application of the Karhunen-Loève procedure for the characterization of human face. IEEE TPAMI 12:103–108

    Article  Google Scholar 

  34. Fukunnaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic Press, New York

    Google Scholar 

  35. Vesnicer B, Mihelic F (2008) The likelihood ratio decision criterion for nuisance attribute projection in GMM speaker verification. EURASIP 2008:1–11

    MATH  Google Scholar 

  36. Cristianini N, Shawe-Taylor J (2000) Support vector machines. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  37. Collobert R, Bengio S (2001) SVMTorch: support vector machines for large-scale regression problems. J Mach Learn Res 1:143–160

    MathSciNet  MATH  Google Scholar 

  38. Campbell WM, Sturim DE, Reynolds DA, Solomonoff A (2006) SVM based speaker verification using A GMM supervector kernel and NAP variability compensation. In: Proceedings of IEEE international conference on ICASSP, pp 97–100

  39. Sezer OG, Ercil A, Keskinov M (2005) Subspace based object recognition using Support Vector Machines. In: Proceedings of European signal processing conference (EUSIPCO)

  40. Solewicz Y, Aronowitz H (2009) Two-wire nuisance attribute projection. In: INTERSPEECH, pp 928–931

  41. Jobson DJ, Rahman Z, Woodell GA (1997) Properties and performance of a center/surround retinex. IEEE Trans Image Process 6(3):451–462

    Article  Google Scholar 

  42. Zhang T, Fang B, Yuan Y, Tang YY, Shang Z, Li D, Lang F (2009) Multiscale facial structure representation for face recognition under varying illumination. Pattern Recognit 42(2):252–258

    Article  MATH  Google Scholar 

  43. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  Google Scholar 

  44. Struc V, Pavesic N (2011) Performance evaluation of photometric normalization techniques for illumination invariant face recognition. In: Zhang YJ (ed) Advances in face image analysis: techniques and technologies. IGI Global

  45. Struc V, Pavesic N (2009) Gabor-based kernel partial-least-squares discrimination features for face recognition. Informatica (Vilnius) 20(1):115–138

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Vitomir Struc for his helpful comments and to Ralph Gross for his assistance with the PIE database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Yifrach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yifrach, A., Novoselsky, E., Solewicz, Y.A. et al. Improved nuisance attribute projection for face recognition. Pattern Anal Applic 19, 69–78 (2016). https://doi.org/10.1007/s10044-014-0388-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-014-0388-4

Keywords

Navigation