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Abstract We present a novel formulation for quasi-

supervised learning that extends the learning paradigm to

large datasets. Quasi-supervised learning computes the

posterior probabilities of overlapping datasets at each

sample and labels those that are highly specific to their

respective datasets. The proposed formulation partitions

the data into sample groups to compute the dataset pos-

terior probabilities in a smaller computational complexity.

In experiments on synthetic as well as real datasets, the

proposed algorithm attained significant reduction in the

computation time for similar recognition performances

compared to the original algorithm, effectively generaliz-

ing the quasi-supervised learning paradigm to applications

characterized by very large datasets.

Keywords Quasi-supervised learning � Posterior
probability estimation � Nearest neighbor rule � Large-scale
pattern recognition � Transductive inference

1 Introduction

Across the spectrum of statistical learning algorithms

requiring various degrees of guidance from available data,

supervised pattern classification algorithms such as the

nearest neighbor rule [6, 9], support vector machines [5,

25], artificial neural networks [12], discriminant functions

[21], and fuzzy classifiers [1, 18, 20] have enjoyed a par-

ticularly wide audience ranging from object recognition to

biomedical data analysis. Such a far-reaching pertinence

can be attributed to the ability of these algorithms to

construct decision rules based on a given set of training

samples for which the desired decisions are already avail-

able. The decision rules effectively infer the conditional

dependence of the true decisions on the patterns using the

training data and generalize it to form predictions on future

data.

Recently, the quasi-supervised learning method was

proposed to address the issue of learning on overlapping

datasets that arise in applications where obtaining manually

curated ground truth training datasets is problematic and

the available labelings are unreliable [14]. Note that in

classical pattern classification problems with clear class

definitions, the overlap of the datasets associated with

different classes reflects an inadequacy of the collected

features to present clearly separable regions in the obser-

vation space for the respective classes. The dataset overlap

under consideration in this case, however, is caused by the

lack of adequate labeling of the data points due to a variety

of possible reasons, such as the sheer volume of data points

to manually label, errors in existing labels, or a complete

lack of labels for one of the classes of interest. Let C0 and

C1 be two datasets of samples drawn from the distributions

pðxjC0Þ ¼ k0prðxÞ þ ð1� k0ÞpC0ðxÞ ð1Þ

and

pðxjC1Þ ¼ k1prðxÞ þ ð1� k1ÞpC1ðxÞ; ð2Þ

respectively; quasi-supervised learning aims to identify the

samples in C0 and C1 drawn, respectively, from pC0ðxÞ and
pC1ðxÞ in the absence of any representative samples of these

distributions. In the expressions above, prðxÞ represents the
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overlap between C0 and C1, pC0ðxÞ and pC1ðxÞ govern the

samples specific to the corresponding dataset and absent in

the other, and k0; k1 2 ½0; 1� control the extent of the

overlap. After learning, the samples are classified into three

categories, one for samples in C0 highly specific to C0,
another for those in C1 highly specific to C1, and a third for

samples that are not specific to either and can figure equally

in C0 as in C1.
Note that this problem description deviates from the

usual binary classification setting where k0 ¼ k1 ¼ 0 due to

the overlap between C0 and C1. This overlap would task the

classical supervised learning algorithms treating the data-

sets as representing distinct classes with the separation of a

set of prðxÞ samples in C0 from another set of prðxÞ samples

in C1 in an exercise in futility. Especially in cases char-

acterized by a large overlap with 1� k0\\1 and/or

1� k1\\1, these algorithms place a great emphasis on

separating the overlapping samples and, in the process, risk

losing track of the few differentiating samples [14]. The

distinction between the quasi-supervised learning problem

and semi-supervised learning also rests on this overlap,

precluding training sets of pC0ðxÞ and pC1ðxÞ samples from

exacting a separation boundary guided by the disper-

sion patterns of the unlabeled samples in the observation

space [4].

Likewise, when one of k0 or k1 is equal to zero, the

recognition task coincides with abnormality detection, as

well as a restricted case of multiple instance learning with

the whole of C0 representing one single sample (or bag in

the corresponding terminology) characterized by the

instances therein and C1 representing the other bag to be

differentiated from the first [2, 3, 7]. For general k0 and k1,
the quasi-supervised learning algorithm derived in [14]

allows identifying samples in C0 and C1 that are exclusively
specific to their respective datasets without any identifying

samples for pC0ðxÞ, pC1ðxÞ or prðxÞ, or any knowledge of k0
and k1, a task not undertaken by any other learning

paradigm.

From a Bayesian perspective, the quasi-supervised

learning problem can be addressed by representing the

probability densities prðxÞ, pC0ðxÞ and pC1ðxÞ in terms of

parametric families and deriving the conditions under

which the unknown parameters can be determined uniquely

from available data. Once the estimates for the distribution

parameters are formulated, optimal recognition rules can

be derived based on a probability model of choice. The

solution offered by the quasi-supervised learning algorithm

described in [14], on the other hand, involves non-para-

metric and model-free estimates of the dataset posterior

probabilities at each sample. This estimation is carried out

using the pairwise distances between the samples in C0 and
C1 by a low computational complexity scheme that can

be shown to converge to the unknown true posterior

probabilities when the number of samples in the two

datasets grows large.

Note that among the conventional learning strategies,

fuzzy classification appears to be the only one suitable to

sort through the samples observed in overlapping datasets,

since it allows associating samples to the classes via fuzzy

memberships. Indeed, the quasi-supervised learning algo-

rithm can be viewed as a special form of fuzzy classifica-

tion, with fuzzy class memberships expressed explicitly by

class posteriors in a situation where the available datasets

represent distinct classes (see [18], Definition 1.1.2). Pos-

terior probabilities also capture the reliability concept of

conflict proposed in [19], since it would produce roughly

equal posteriors for the datasets for samples that are situ-

ated between them, identifying such samples as nonspecific

to either dataset. A fuzzy classification-based solution to

the quasi-supervised learning problem described above,

however, has not been proposed to date.

The main computationally intensive component of the

quasi-supervised learning algorithm is the computation of

the pairwise distances. This can amount to a substantial

computational load for large sample sets, though learning

on a dataset containing over 55,000 samples was carried

out successfully in a previous application [15]. Nonethe-

less, the computational load associated with calculating,

storing and further processing all pairwise distances limits

the use of the algorithm for learning over larger datasets

composed of hundreds of thousands of samples or more.

In this paper, we derive a novel algorithm that computes

the dataset posterior probabilities using a conditional

probability decomposition over sample groups or clusters.

This group formulation avoids the computation of pairwise

sample distances and, instead, computes the posterior

probability estimates using the sample to cluster distances.

Given that the number of clusters that summarize the data

can be orders of magnitude smaller than the number of

samples, this amounts to a dramatic reduction in the data

storage requirements as well as the overall computational

complexity. In experiments on synthetic and real datasets,

the proposed algorithm achieved comparable recognition

performances to the original algorithm in significantly

reduced computation times. Improvement in recognition

accuracy was also observed in some cases, which can be

attributed to a secondary effect of the group formulation on

the learning framework regularizing the resulting posterior

probability estimates.

The details of the proposed algorithm based on a novel

group formulation for quasi-supervised learning over large

datasets are provided in the next section. Section 3 presents

the results of comparative performance evaluation experi-

ments on synthetic and real datasets against the original

quasi-supervised learning algorithm, followed by con-

cluding remarks in Sect. 4.
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2 Methodology

In this section, we first provide a technical derivation for

the asymptotic property of the nearest neighbor classifica-

tion rule that allows estimating the posterior probabilities

pðC0jxÞ and pðC1jxÞ at a given sample x, and describe the

original quasi-supervised learning algorithm that computes

these estimates for each sample in a collection. Next, we

derive the novel group formulation that decomposes the

dataset posterior probabilities conditionally over sample

groups. Finally, we frame the proposed algorithm for large-

scale quasi-supervised learning.

In the following, we use a simpler quasi-supervised

problem setting by letting k0 ¼ 1, k1 ¼ k, and pC1ðxÞ ¼
ptðxÞ, allowing C0 to represent a homogeneous dataset of

samples drawn from a reference distribution prðxÞ and C1 to
represent a mixed dataset of unlabeled samples, with the

objective of recognizing the samples in C1 drawn from ptðxÞ
(Fig. 1). Note, however, that while this allows an easier

interpretation of the posterior probability estimation

scheme, it does not limit its application to the general class

of quasi-supervised learning problems described earlier.

2.1 Estimation of posterior probabilities using

the nearest neighbor rule

Let xo 2 X and pXðxÞ be the probability density function of

a random variable X defined over X equipped with a metric

d. The cumulative distribution function of the random

variable D ¼ dðX; xoÞ is then defined by

PDðdÞ ¼
Z

x2BdðxoÞ

pXðxÞdx ð3Þ

for all d� 0, where BdðxoÞ denotes the ball of radius d
around xo. The corresponding probability density function

pDðdÞ is also defined in the usual way as the derivative of

PDðdÞ with respect to d. Note that when d is small, pXðxÞ ’

pXðxoÞ for x 2 BdðxoÞ and these distributions can be

approximated by

PDðdÞ ¼ VðdÞpXðxoÞ ð4Þ

and

pDðdÞ ¼ V 0ðdÞpXðxoÞ ð5Þ

where VðdÞ is the volume of a hypersphere of radius d in X,
and V 0ðdÞ its derivative with respect to d.

Next, let the collection X1;X2; . . .;Xn be independent

and identically distributed with pXðxÞ. The cumulative

distribution function PDmðdÞ governing the minimum dis-

tance Dm ¼ mini dðXi; xoÞ is given by

PDmðdÞ ¼ 1� 1� PDðdÞð Þn ð6Þ

with the associated density function

pDmðdÞ ¼ n 1� PDðdÞð Þn�1
pDðdÞ ð7Þ

following the formulations for the distributions of extreme

values [8].

Now, consider the minimum distances Dm
0 and Dm

1

observed over n0 points drawn from pðxjC0Þ and n1 points

from pðxjC1Þ; respectively, populating a random reference

set R ¼ fðXj; yjÞj Xj 2 X; yj 2 f0; 1g; j ¼ 1; 2; . . .; n0 þ n1g
for nearest neighbor classification, represented by the

labeling rule

f ðxojRÞ ¼ yjH ; jH ¼ argmin
j

dðXj; xoÞ : ð8Þ

Clearly, the rates at which the point xo is assigned to C0
or C1 are given by the probabilities PrfDm

0\Dm
1 g and

PrfDm
1\Dm

0 g with

PrfDm
0\Dm

1 g þ PrfDm
1\Dm

0 g ¼ 1:

Expanding PrfDm
0\Dm

1 g over the joint probability distri-

bution pDm
0
;Dm

1
ðd0; d1Þ and using the independence of Dm

0

and Dm
1 provide

PrfDm
0\Dm

1 g ¼
Z

d0;d1

1ðd0\d1ÞpDm
0
;Dm

1
ðd0; d1Þdd0dd1

¼
Z1

d0¼0

Z1

d1¼d0

pDm
0
ðd0ÞpDm

1
ðd1Þdd1dd0

¼
Z1

d0¼0

Z1

d1¼d0

pDm
1
ðd1Þdd1

0
B@

1
CApDm

0
ðd0Þdd0

¼
Z1

d0¼0

ð1� PDm
1
ðd0ÞÞpDm

0
ðd0Þdd0

where 1ð�Þ returns 1 when its argument is true and 0

otherwise. Due to the asymptotic properties of the non-

pr(x)

pt(x)

C0 points
C1 points

Fig. 1 Illustration of the simplified quasi-supervised learning prob-

lem. The points in C0 and C1 are represented by the asterisk and dot

symbols. The learning problem is to recognize the points in C1 drawn
from the target distribution marked by circle dot
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negative extreme value distributions for sufficiently large

n0 and n1; the probability masses in PDm
0
ðd0Þ and PDm

1
ðd0Þ

become concentrated in an interval ½0;D� with D\\1.

This implies that

PrfDm
0\Dm

1 g ’
ZD

d0¼0

ð1� PDm
1
ðd0ÞÞpDm

0
ðd0Þdd0:

Replacing the extreme value distributions with the respective

expressions derived earlier followed by further algebraic

manipulations indicated above expresses the probability

PrfDm
0\Dm

1 g as the sum of two terms as described later.

Further simplifications can be obtained by noting that

since D is small, PD1
ðd0Þ ’ 0 and pD0

ðd0Þ ’ V 0ðd0ÞpðxojC0Þ
for d0 2 ½0;D�. This eliminates the second term on the right-

hand side and allows expressing PrfDm
0\Dm

1 g as in Eq. (9).
Repeating the same derivation for PrfDm

1\Dm
0 g provides

the expression in Eq. (10). Taking the ratio of both sides, we

obtain

PrfDm
0\Dm

1 g
PrfDm

1\Dm
0 g

’ n0pðxojC0Þ
n1pðxojC1Þ

’ pðC0jxoÞ
pðC1jxoÞ

n0pðC1Þ
n1pðC0Þ

:

PrfDm
0\Dm

1 g ’
ZD

d0¼0

�
1�

�
1� 1�PD1

ðd0Þð Þn1
��

n0

� 1�PD0
ðd0Þð Þn0�1

pD0
ðd0Þdd0

’ n0

ZD

d0¼0

1�PD1
ðd0Þð Þn1 1�PD0

ðd0Þð Þn0�1

� pD0
ðd0Þdd0

’ n0

ZD

d0¼0

1�PD1
ðd0Þð Þ 1�PD1

ðd0Þð Þn1�1

� 1�PD0
ðd0Þð Þn0�1

pD0
ðd0Þdd0

’ n0

ZD

d0¼0

1�PD1
ðd0Þð Þn1�1

1�PD0
ðd0Þð Þn0�1

� pD0
ðd0Þdd0

� n0

ZD

d0¼0

PD1
ðd0Þ 1�PD1

ðd0Þð Þn1�1

� 1�PD0
ðd0Þð Þn0�1

pD0
ðd0Þdd0

PrfDm
0\Dm

1 g ’ n0pðxojC0Þ

�
ZD

d0¼0

1� PD1
ðd0Þð Þn1�1

1� PD0
ðd0Þð Þn0�1

V 0ðd0Þdd0
ð9Þ

PrfDm
1\Dm

0 g ’ n1pðxojC1Þ

�
ZD

d1¼0

1� PD0
ðd1Þð Þn1�1

1� PD1
ðd1Þð Þn0�1

V 0ðd1Þdd1

ð10Þ

where the last step follows from the Bayes rule. Note that

the second term in the expression above disappears when

n0=n1 ¼ pðC0Þ=pðC1Þ: By the same token, assuming equal

prior probabilities for both C0 and C1 and subsequently

letting n0 ¼ n1 ¼ n provide

PrfDm
0\Dm

1 g
PrfDm

1\Dm
0 g

’ pðC0jxoÞ
pðC1jxoÞ

: ð11Þ

Finally, since

Prff ðxojRnÞ ¼ 0g ¼ PrfDm
0\Dm

1 g

and

Prff ðxojRnÞ ¼ 1g ¼ PrfDm
1\Dm

0 g

by definition, this shows that the posterior probabilities

pðC0jxoÞ and pðC1jxoÞ can be estimated by the average

fraction of times xo is assigned to C0 and C1 via a nearest

neighbor classification rule operated using random refer-

ence sets Rn with sufficiently large n.

2.2 The original quasi-supervised learning algorithm

The quasi-supervised learning algorithm estimates the

probabilities Prff ðxjRnÞ ¼ 0g and Prff ðxjRnÞ ¼ 1g by

computing the fraction of times a sample x is assigned to

classes C0 and C1 for all possible reference sets Rn con-

structed using n points from the datasets C0 and C1; cor-
responding with a minor abuse of notation to the respective

classes [14]. To this end, the probability Prfy ¼ 0g with

y ¼ f ðxjRnÞ and Rn; restricted to the distinct reference sets

in C0
S
C1; is decomposed as

Prfy ¼ 0g
¼ Prfy ¼ 0jðxð1Þ; yð1ÞÞ 2 RngPrfðxð1Þ; yð1ÞÞ 2 Rng
þ Prfy ¼ 0jxð1Þ 62 RngPrfxð1Þ 62 Rng

¼ 1ðyð1Þ ¼ 0ÞPrfðxð1Þ; yð1ÞÞ 2 Rng
þ Prfy ¼ 0jðxð1Þ; yð1ÞÞ 62 RngPrfðxð1Þ; yð1ÞÞ 62 Rng:

In the expression above, fxðiÞg indicates a ranking of the

points in xi in increasing distance to x with xð1Þ the closest,

and fyðiÞg indicates their labels. This decomposition links

Prfy ¼ 0g to the conditioning event ðxð1Þ; yð1ÞÞ 2 Rn; since

the presence of xð1Þ in Rn sets the label produced by the

corresponding nearest neighbor classifier to yð1Þ regardless

of the other points in Rn. Clearly, this decomposition can be
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carried out further to compute Prfy ¼ 0jðxð1Þ; yð1ÞÞ 62 Rng
using the conditioning event ðxð2Þ; yð2ÞÞ 62 Rn and so on for

Prfy ¼ 0jðxðiÞ; yðiÞÞ 62 Rn; i ¼ 1; 2; . . .; kg until such k for

which

min
X‘

i¼k

1ðyðiÞ ¼ 0Þ;
X‘

i¼k

1ðyðiÞ ¼ 1Þ
( )

¼ n;

making the probability PrfðxðkÞ; yðkÞÞ 2 RnjðxðiÞ; yðiÞÞ 62 Rn;

i ¼ 1; 2; . . .; k � 1g ¼ 1. Collecting back the probabilities

starting from this limiting value of k computes Prfy ¼
0g as well as Prfy ¼ 1g ¼ 1� Prfy ¼ 0g, and estimates

the posterior probabilities of C0 and C1 at the sample x

via

p0ðxÞ,Prff ðxjRnÞ ¼ 0g ð12Þ

and

p1ðxÞ,Prff ðxjRnÞ ¼ 1g; ð13Þ

respectively. For a sample xi in one of C0 or C1, p0ðxiÞ and
p1ðxiÞ are computed by carrying out this procedure using

the reduced collection fxjg, j ¼ 1; 2; . . .; ‘, j 6¼ i, so that

whether xi 2 C0 or xi 2 C1 does not affect the calculations

in accordance with a leave-one-out framework. Finally, the

parameter n is selected to minimize the functional

EðnÞ ¼ 4
X‘

i¼1

p0ðxiÞp1ðxiÞ þ 2n ð14Þ

at an optimal trade-off between the separation of C0 and C1
calculated over the resulting posterior probabilities via the

first term and the VC dimension of the corresponding

nearest neighbor classification rule expressed by the second

term [14, 16, 17].

Note that the computational complexity of the algorithm

described above consists mainly of the computation and

sorting of all pairwise distances at Oð‘2 log ‘Þ. Assuming

an exhaustive approach to optimize EðnÞ that repeats the

posterior probability calculations for each n ¼ 1; 2; . . .; ‘ at
the worst case provides an overall complexity of

Oð‘3 log ‘Þ.
Note also that the quasi-supervised learning algorithm

described above corresponds to a transductive learning

strategy where the statistical learning occurs in the form

of posterior probabilities estimated individually at each

sample instead of an approximating function defined

globally [25–27]. Furthermore, the estimated posterior

probabilities are invariant to all nonlinear transformations

of the sample space X such as via kernel functions

replacing the original inner product as long as the

induced re-structuring of the local neighborhoods pro-

cures a monotonic transformation of the distances,

thereby preserving the order of dðx; xðiÞÞ for any x 2 X.

Finally, since the posterior probability estimates p0ðxiÞ
and p1ðxiÞ are computed exclusively based on the

ordering of the pairwise distances dðxi; xjÞ, it suggests

that the pairwise distances provide a complete charac-

terization of the collection fxig for statistical learning

purposes.

2.3 Decomposition of nearest neighbor classification

rates over sample groups

The quasi-supervised learning algorithm computes the

probability of assigning a newly observed sample x into C0
or C1 based on the labels of the nearest points in a col-

lection fxig to x and their likelihoods of figuring in a

random reference set Rn drawn from fxig ¼ C0
S
C1, for

i ¼ 1; 2; . . .; ‘. The posterior probabilities are then com-

puted by accumulation over the resulting conditional

probability decomposition that can extend up to ‘� 2n

steps. Consequently, reducing the number of steps required

for the computation of the posterior probabilities is critical

for lowering the computational expense of the learning

algorithm.

This issue can be addressed by considering the group

G ¼ fxð1Þ; xð2Þ; . . .; xð‘GÞg of ‘G samples in fxig nearest to x,

of which ‘G0 are from C0 and ‘G1 are from C1. Now, the
probability Prfy ¼ 0g of assigning the sample x to C0 by a

nearest neighbor classifier using a reference set Rn chosen

randomly from fxig can be decomposed as

Prfy ¼ 0g
¼ Prfy ¼ 0jRn \ G 6¼ ;gPrfRn \ G 6¼ ;g
þ Prfy ¼ 0jRn \ G ¼ ;gPrfRn \ G ¼ ;g

ð15Þ

with respect to the conditioning event Rn \ G ¼ ;.
Now, if the samples in G cover a relatively small region

in the observation space so that the probabilities pðxjC0Þ
and pðxjC1Þ are approximately constant for xi 2 G, then the

ordering between them becomes insignificant and incon-

sequential to the recognition problem. In that case, when

one or more of them appear in the reference set Rn, the

average rate at which x would be assigned to C0 across all
possible orderings becomes ‘G0 =‘

G. Note that this is tanta-

mount to replacing the samples fxð1Þ; xð2Þ; . . .; xð‘GÞg in G

with another set of latent samples f~xð1Þ; ~xð2Þ; . . .; ~xð‘GÞg;
each belonging ‘G0 =‘

G parts to C0 and ‘G1 =‘G parts to C1. The
expression for Prfy ¼ 0g then becomes

Prfy ¼ 0g

¼ ‘G0
‘G

PrfRn \ G 6¼ ;g

þPrfy ¼ 0jRn\ G ¼ ;gPrfRn\ G ¼ ;g

ð16Þ

with
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PrfRn \ G ¼ ;g ¼

‘0 � ‘G0
n

� �
‘1 � ‘G1

n

� �

‘0

n

� �
‘1

n

� �

¼
Yn�1

i¼0

ð‘0 � ‘G0 � iÞð‘1 � ‘G1 � iÞ
ð‘0 � iÞð‘1 � iÞ :

and PrfRn \ G 6¼ ;g ¼ 1� PrfRn \ G ¼ ;g. Now, the

probability Prfy ¼ 0jRn \ G ¼ ;g can be decomposed

further with respect to the conditioning event Rn \ G0 ¼ ;
with G0 ¼ fxðnGþ1Þ; xðnGþ2Þ; . . .; xðnGþnG

0 Þg and so on over a

succession of sample groups, until the probability of Rn and

a subsequent group being mutually exclusive becomes zero

due to the exhaustion of samples.

2.4 The large-scale quasi-supervised learning

algorithm

The decomposition of the probability Prfy ¼ 0g over

sample groups as described above offers substantial sav-

ings in computation time as it reduces the number of steps

required in the calculation, but these groups still remain to

be determined separately for each xi. While such groupings

can be carried out in a number of different ways such as

treating large jumps in the sequence of ordered distances

dðxi; xðjÞÞ for j ¼ 1; 2; . . .; ‘� 1, as transition zones

between successive groups, the approach is still challenged

by two issues.

First, collecting xi and xj into the same group in com-

puting p0ðxÞ for some x just because dðx; xiÞ ’ dðx; xjÞ
risks grouping together distant points that can be separated

from each other by as much as dðx; xiÞ þ dðx; xjÞ. While

this is still legitimate within the context of estimating

posterior distributions of C0 and C1 at x as shown in the

previous section, it falls at odds with a more general notion

of summarizing the dispersion of fxig across X via clusters

formed by samples at close proximity to each other. Sec-

ond, carrying out the probability decomposition over

groups determined independently for each sample does not

address the greatest computational expense of the learning

algorithm: the computation of the pairwise distances

dðxi; xjÞ for all i; j ¼ 1; 2; . . .; ‘, i 6¼ j.

We address both issues by considering a clustering of

the samples fxig into Ck containing ‘Ck

0 and ‘Ck

1 points from

C0 and C1, ‘Ck

0 þ ‘Ck

1 ¼ ‘Ck , for k ¼ 1; 2; . . .;K, with

K\\‘. Given a sample-to-cluster distance measure q,
computation of p0ðxÞ for a sample x 62 fxig then requires

calculating the distances qðx;CkÞ from x to each cluster Ck,

ranking the clusters in the ascending order of distances into

fCðkÞg containing ‘
CðkÞ
0 and ‘

CðkÞ
1 samples from C0 and C1;

respectively.

The computation of p0ðxiÞ for a sample xi in the col-

lection involves a minor complication of revising the

numbers ‘
C
kH

0 or ‘
C
kH

1 along with ‘CkH for the cluster CkH

with xi 2 CkH . This revision prevents the knowledge of xi
figuring in C0 or C1 from affecting the results and preserves

the leave-one-out formalism.

Given this cluster-oriented formulation for the compu-

tation of the posterior probabilities, what remains to be

resolved is the constitution of the clusters Ck and the

selection of a suitable sample-to-cluster distance measure

q. The well-known cluster distances qmin and qmax defined

by

qminðxi;CkÞ ¼ min
xj2Ck

dðxi; xjÞ ð17Þ

and

qmaxðxi;CkÞ ¼ max
xj2Ck

dðxi; xjÞ ð18Þ

are both inadequate as they entail computing all pairwise

distances dðxi; xjÞ. On the other hand, the mean distance

qmean defined by

qmeanðxi;CkÞ ¼ dðxi; lkÞ ð19Þ

where

lk ¼
1

‘Ck

X
xj2Ck

xj

avoids the computation of pairwise distances and offers a

viable option to assess the distance from the sample xi to

the cluster Ck.

As for the clustering of fxig, any method from the

unsupervised learning literature can be used provided that it

can be operated on large datasets. For instance, methods

based on hierarchical clustering [13, 22, 23], or vector

quantization [10, 11], can be incorporated to organize the

samples in the collection fxig in a way that avoids com-

puting the pairwise distances dðxi; xjÞ at least in a large part.
Clearly, the simplest strategy is to randomly select K

samples from the collection and carry out a nearest neighbor

classification of all samples into the clusters represented by

the selected ones in a random-k clustering. While this

scheme does not guarantee optimality of the representation

of the collection in any sense, it produces locally contiguous

clusters with little computational expense. A more sophis-

ticated strategy is the k-means clustering, revising the

cluster centers with the arithmetic means of the samples

assigned to the respective clusters followed by nearest

neighbor classification anew until convergence.

At last, we formulate the proposed large-scale quasi-

supervised learning algorithm that computes the posterior

probabilities p0ðxiÞ and p1ðxiÞ for the datasets C0 and C1 at
each sample xi, i ¼ 1; 2; . . .; ‘, as follows:
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– Partition fxig into K clusters and compute ‘Ck

0 and ‘Ck

1 :

– Initialize the ‘� K matrices L0 and L1 of sample

counts.

– For i ¼ 1; 2; . . .; ‘;

– Compute and sort qmeanðxi;CkÞ in the ascending

order for k ¼ 1; 2; . . .;K:

– Populate the i’th rows of L0 and L1 via L0i;k ¼ ‘
CðkÞ
0

and L1i;k ¼ ‘
CðkÞ
1 for all k:

– Find the index kH with xi 2 CðkHÞ, and reduce L0
i;kH

by 1 if xi 2 C0 and L1
i;kH

by 1.

– Otherwise, optimize EðnÞ using the sample counts in L0

and L1 to compute fp0ðxiÞg and fp1ðxiÞg:
– Return the probabilities fp0ðxiÞg and fp1ðxiÞg for the

optimal n:

Note that while the algorithm above is implemented in a

way to compute p0ðxiÞ, it can easily be modified to com-

pute p1ðxiÞ instead with no difference in the final outcome.

The optimization for EðnÞ is to be carried out numerically

such as using a line search or by searching for the optimal n

inside shrinking intervals. The number of clusters K and

the choice of the clustering method remain to be specified

as the operational parameters of the algorithm.

For a given choice of n, the computational complexity

associated with the procedure above is determined essen-

tially by the computation of the posterior probability p0ðxiÞ
through K sample-to-cluster distances that are subsequently

sorted at a complexity of OðK logKÞ for every xi.

Repeating this for ‘ samples, the overall complexity

reaches Oð‘K logKÞ. Since an exhaustive optimization

of EðnÞ recomputes the posterior probabilities for

n ¼ 1; 2; . . .; ð‘� 1Þ, the worst-case complexity becomes

Oð‘2K logKÞ. Note that this entails a reduction upon the

computational complexity of the original quasi-supervised

learning algorithm by a factor of K logK=‘ log ‘.

3 Results

In this section, we present the experimental results obtained

from a comprehensive performance evaluation of the pro-

posed quasi-supervised learning algorithm. Following an

illustrative comparison, the method is contrasted to the

original quasi-supervised learning algorithm, in the

absence of any other alternative method in the literature

that addresses the quasi-supervised learning problem, in

terms of both the recognition accuracy and the computation

time on synthetic datasets representing controlled recog-

nition tasks. The comparison is then extended to real

datasets used in the prediction of N-linked glycosylation

sites in amino acid sequences of human proteins and in

high-energy particle identification on collections repre-

senting signal and background events.

In the experiments, a C language implementation of the

proposed algorithm was executed within a Matlab envi-

ronment (The MathWorks, Inc., 3 Apple Hill Drive,

Natick, MA 01760-2098, USA). Briefly, the computation

of the posterior probability for a given sample was carried

out in C, while the clustering as well as the data manage-

ment used Matlab routines. This implementation mirrored

that of the original algorithm distributed at the Internet

address http://web.iyte.edu.tr/*bilgekaracali/Projects/QSL/

to establish the comparability of the two algorithms in terms

of computation times.

All experiments were carried out using a single core of

an IBM 93650 M2 rack server (IBM Corporation, 1 New

Orchard Road, Armonk, New York 10504-1722, USA)

equipped with two quad-core Intel Xeon processors (Intel

Corporation, 2200 Mission College Blvd., Santa Clara, CA

95054-1549, USA) and 52GB of RAM, operated by Debian

Linux 6.0.4 (http://www.debian.org/).

3.1 Illustration of the group formulation for quasi-

supervised learning

To elucidate the proposed algorithm for large-scale quasi-

supervised learning, we have generated a reference dataset

C0 and a mixed dataset C1 within the simplified learning

framework illustrated in Fig. 1. Each dataset consisted of

200 samples, and the mixed dataset contained samples

from the reference probability distribution prðxÞ at a rate

k ¼ 0:75, with the remaining samples drawn from the

target distribution ptðxÞ. We have then carried out the

original quasi-supervised learning algorithm as well as

the proposed method using random-k and k-means clus-

tering schemes with K ¼ 20 clusters separately to compute

the posterior probability of the mixed dataset C1 at each

sample. Finally, from each set of probabilities fp1ðxiÞg, we
have computed the detection and false alarm rates

PDðPcÞ ¼
1P

xi2C1
xi � ptðxÞ

1

X
xi2C1

xi � ptðxÞ

1ðp1ðxiÞ[PcÞ
ð20Þ

and

PFAðPcÞ ¼
1P

xi2C1
xi � prðxÞ

1

X
xi2C1

xi � prðxÞ

1ðp1ðxiÞ[PcÞ
ð21Þ

for varying detection thresholds Pc 2 ½0; 1� and calculated

the receiver operating characteristic curves from the PD–

PFA graphs.

The original data distribution and the C1 samples

detected to have been drawn from the target distribution at
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a false alarm rate of 5% using the original as well as the

proposed algorithm based on random-k and k-means clus-

tering schemes are shown in Fig. 2. The distribution of the

samples between the clusters was considerably more uni-

form in the k-means clustering, while the partitioning by

the random-k clustering produced markedly irregular par-

titions. The effects of these differences on the eventual

recognition accuracy, however, appears to be minimal as

evidenced by the corresponding receiver operating char-

acteristic curves that follow each other very closely as well

as the one achieved by the original method shown in Fig. 3.

3.2 Comparative performance evaluation results

The recognition task in a quasi-supervised learning setting

described in Section 2.2 is characterized primarily by the

overlap between the distributions pðxjC0Þ and pðxjC1Þ
associated with the datasets C0 and C1, and the inherent

overlap between the underlying reference and target

probability distributions prðxÞ and ptðxÞ. The usual factors

data original

random-k k-means

Fig. 2 Illustration of the proposed quasi-supervised learning algo-

rithm. Samples in the reference control and the mixed datasets are

shown with asterisk and dot symbols, respectively, with the mixed

dataset samples drawn from the target distribution shown with dark

dot symbols. The mixed dataset samples recognized to have been

drawn from the target distribution are shown with diamond symbols.

The cluster centers in the group formulation methods are shown with

plus symbols leading to the partitions shown with solid lines

0 0.2 0.4 0.6 0.8 1
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P
D
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Fig. 3 The receiver operating characteristic curves for the illustration

data obtained by the proposed group formulation of the quasi-

supervised learning algorithm using random-k and k-means clustering

methods as well as the original formulation. The recognition

accuracies provided by the group formulation methods are very

similar to the one achieved using the original method, slightly

surpassing it for larger false alarm rates
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including the dimensionality of the observation space X

and the size of the collection fxig, xi 2 X, i ¼ 1; 2; . . .; ‘
contribute to the overall difficulty in a secondary capacity.

To evaluate the proposed algorithm in terms of the

computational expense as well as the recognition perfor-

mance, we carried out a series of experiments on synthetic

datasets of differing difficulty. In all instances, the under-

lying reference and target distributions were represented by

multivariate Gaussian functions with identity covariance

matrices ID�D, differing only in their means such that while

prðxÞ�N ð½0 0. . .0�T ; ID�DÞ, ptðxÞ�N ð½3 0. . .0�T ; ID�DÞ
in X ¼ R

D. The experiments entailed collecting a set of

‘=2 samples drawn from prðxÞ into C0 and another set of

‘=2 samples drawn from kprðxÞ þ ð1� kÞptðxÞ into C1.
Following the original quasi-supervised learning algorithm,

the proposed algorithm was carried out for varying number

of clusters K established using the random-k and the k-

means clustering schemes. The computational expense

recorded the calculation time of the posterior probability

estimates p0ðxiÞ and p1ðxiÞ for all samples xi including the

minimization of EðnÞ for the optimal reference set size

parameter n. The recognition accuracy was determined in

terms of the detection and false alarm rates defined in Eqs.

(20) and (21), and the area under the receiver operating

characteristic curves generated by the PD–PFA graphs was

computed.

The average computation times of the original and

the proposed quasi-supervised learning algorithms for

‘ = 5,000, 7,500, 10,000, 15,000 and 20,000 with D ¼ 5,

K ¼ 50 and k ¼ 0:50 are shown in Fig. 4. The savings in

computation time achieved by the proposed algorithm are

substantial and statistically significant as evidenced by the

respective 95 % confidence intervals, especially for larger

‘. This improvement is certainly due to the smaller number

of iterations required to compute the posterior probabilities

in the group formulation running no higher than the num-

ber of clusters K, as opposed to as high as ‘� 2n in the

original formulation. The difference in the computation

times observed for the random-k and k-means clustering

methods amounts to the extra iterations involved in the

latter until convergence to a stationary configuration

between the cluster centers and the assignments of the

samples into the respective clusters.

The joint plots of the areas under the PD–PFA graphs and

the corresponding computation times by the proposed

algorithm using random-k and k-means clustering for

varying with K along with those obtained by the original

method observed for each combination of k ¼
0:50; 0:75; 0:90 and ‘ = 5,000, 10,000, 20,000 are shown in

Fig. 5. Clearly, the proposed algorithm achieves compa-

rable recognition performance in significantly smaller

computation times using both clustering strategies. The

recognition accuracy improves for larger K at the expense

of the computation times.

It is also interesting to note that the proposed algorithm

occasionally achieves better recognition performance than

the original method. This improvement in recognition

performance can be attributed to the averaging effect

achieved by the group formulation. In the original formu-

lation, small disturbances on x can change the order of the

distances dðx; xiÞ and the corresponding binary sequence

from which the posterior probabilities are computed,

introducing a jitter effect similar to noise in the resulting

calculations. The group formulation, however, reduces this

jitter by collecting the label data from nearby points into

clusters with average labels that achieve a more stable

ordering of the sample-to-cluster distances qðx;CkÞ.

3.3 Application to the N-glycosylation prediction

dataset

In a second comparison experiment, we have applied

the proposed quasi-supervised learning algorithm to the

N-glycosylation prediction dataset studied previously by

[15]. Prediction of functional or structural attributes of

amino acid sequences is problematic for algorithms

requiring absolute examples to train on due to the incom-

plete and error-prone nature of the accumulated body of

structural and functional annotations. First and foremost,

existing annotations document only the sites with posi-

tively identified attributes, but do not provide a comple-

mentary list of sites that are experimentally verified to lack

the attribute in question. To make matters worse, the

positive identifications themselves can be faulty due to a
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Fig. 4 The average computation times obtained for increasing dataset

size ‘ for the original quasi-supervised learning algorithm as well as

the group formulations operated with random-k and k-means cluster-

ing schemes for K ¼ 50 along with the 95 % confidence intervals.

Both axes are drawn in a logarithmic scaling. All plots represent

average computation times over 20 independent repeats
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variety of factors associated with wet laboratory experi-

mentation, prompting a constant need for revision of the

existing annotations in the sequence databases. In that

respect, the quasi-supervised learning strategy appears

particularly well suited to functional or structural attribute

prediction problems in computational biology.

The N-glycosylation prediction dataset consists of

55184 motif vectors composed of 150 features that best

characterize the physico-chemical composition in the

vicinity of the sites possessing the consensus sequon for

N-glycosylation along the among amino acid sequences of

human proteins. The consensus sequon N-X-S/T consists of

an asparagine residue followed by any amino acid X other

than proline and either a serine or a threonine residue [28,

29]. Among these sites, only 1939 were experimentally

verified N-glycosylation sites documented in the UniProt

Knowledgebase (http://www.uniprot.org/help/uniprotkb)

excluding the potential and probable glycosylation

annotations. The recognition task, then, is to predict which

of the remaining 53,245 consensus sites are most likely to

be glycosylated based on their motif vectors, given that an

unknown albeit small fraction of the 1,939 true-positive

sites are potentially due to erroneous experimental

validation.

We applied the proposed quasi-supervised learning

algorithm on this dataset using random-k clustering for

K = 50, 100, 200, 500, 1,000, 2,000, and recorded the

computation time in seconds as well as the separation

between the motif vectors of sites annotated for glycosyl-

ation and the remaining ones. To evaluate the separation

between the vector groups, we have derived the receiver

operation characteristics curves in the usual way, by plot-

ting the fraction of annotated sites predicted to be glycos-

ylated against the fraction of non-annotated sites also

predicted to be glycosylated for varying prediction

threshold Pc, and computing the area under the curve.
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Fig. 5 Recognition performance plotted against the corresponding

computation times by the proposed algorithm using random-k

(marked by dot) and k-means clustering (marked by plus) for K =

10, 15, 20, 35, 50, 75, 100, 150, 200, 350, 500, along with those by the

original method (marked by circle), and for k ¼ 0:50 (upper row),

k ¼ 0:75 (middle row) and k ¼ 0:90 (lower row). All values represent

averages over 20 independent repeats
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The results are shown in comparison to the original

algorithm in Fig. 6 where the areas under the curves are

plotted against the computation times in a logarithmic scale

as the average values obtained from ten independent runs

for each K. The proposed algorithm is clearly superior to

the original formulation in terms of the computation times,

though this is achieved at the expense of the separation

performance. While the separation between the groups

improves for larger K, it falls short of the separation

achieved by the original algorithm, due potentially to the

inherent complexity in the recognition problem. The

alternative approach using k-means clustering was omitted

from this analysis as the computation times exceeded that

of the original algorithm due to the poor convergence in

clustering of the motif vector data.

3.4 Application to the MiniBooNE neutrino dataset

The MiniBooNE experiment forms the first stage of the

Booster Neutrino Experiment (BooNE) conducted at the

Fermi National Accelerator Laboratory (Fermilab, P.O.

Box 500, Batavia, IL 60510-5011), with the objective of

conclusively confirming or refuting the existence of neu-

trino oscillations of muon neutrinos into electron neutrinos

(http://www-boone.fnal.gov/index.html). The neutrino

dataset consists of a total of 130065 instances, with 36499

signal events of electron neutrinos and 93,565 background

events of muon neutrinos [24]. Each instance is charac-

terized by 50 attributes such as the event hit multiplicity,

energy, and the reconstructed radial position.

To evaluate the labeling performance of the proposed

quasi-supervised learning algorithm over this dataset, we

have set up a learning experiment with the aim of identi-

fying the signal events in a mixed dataset in contrast to a

homogeneous dataset of background events. First, we have

removed the outliers characterized by attributes beyond the

[-500, 10,000] interval, and linearly normalized all attri-

butes across the remaining 129,592 instances with 36,488

signal and 93,104 background events to have unit standard

deviation. Next, we have randomly selected 64,796 back-

ground events to form the reference dataset C0 and pooled

the remaining background events with all of the signal

events into a mixed dataset C1 of equal size. The
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Fig. 6 Comparison of the proposed algorithm for large-scale quasi-

supervised learning using random-k clustering to the original

algorithm in terms of computation times and separation between the

motif vectors of the amino acid sites annotated and non-annotated for

N-linked glycosylation. The proposed method achieved learning at

smaller computation times, though it trailed the original algorithm in

the separation performance
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Fig. 7 The receiver operating characteristic curves of the proposed

quasi-supervised learning algorithm using random-k and k-means

clustering methods on the MiniBooNE data. The recognition perfor-

mance achieved using the k-means clustering was superior, though the

difference grew smaller for larger K. The curves are shown for K ¼
20; 50; 100 only for readability purposes
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recognition problem then consisted of identifying the sig-

nal events in C1.
We have applied the proposed algorithm to this data

using both random-k and k-means clustering methods for

K = 10, 15, 20, 35, 50, 75, 100. The receiver operating

characteristic curves in terms of the PD–PFA graphs and the

respective computation times are shown in Figs. 7 and 8.

The higher recognition performance achieved using the

k-means clustering method can be attributed to a more

adequate organization of the data among the clusters,

though the difference between the two alternatives grows

smaller with increasing K. The price for better recognition

performance is paid, however, in higher computation times

due to the extra iterations involved in the k-means

clustering.

4 Conclusion

In this paper, we have introduced a new method to address

the quasi-supervised learning problem over large datasets.

The proposed method decomposes the expression for the

posterior probabilities of the contrasting datasets over

sample groups instead of individual samples. This reduces

the computational expense incurred in posterior probability

calculation and allows large-scale quasi-supervised learn-

ing. In the experimental results on synthetic and real

datasets, the proposed algorithm operated with random-k

and k-means clustering alternatives achieved substantial

reduction in computation times for comparable recognition

performances. In particular, the results on the MiniBooNE

neutrino dataset confirmed the viability of quasi-supervised

learning on datasets containing over 100000 samples using

the proposed algorithm. It should also be pointed out that

the nature of the proposed algorithm is very suitable for

parallel computation, and the computational load incurred

during the calculation of the posterior probabilities can be

readily distributed among multiple cores to obtain further

reductions in the computation time.

Experimental results also revealed that the group for-

mulation can also improve the recognition performance in

addition to reducing the computational expense. This can

be attributed to a regularizing effect of the group formu-

lation that arbitrates the antagonistic effects of nearby

points of opposing datasets to the estimated probability.

While a change in the proximity order of samples alters the

resulting estimate in the original formulation, the group

formulation is, to a certain extent, immune to such small

perturbations in the data, as nearby points tend to be

clustered together.

Among the two clustering schemes evaluated here, the

random-k clustering is the simplest and the quickest one,

assigning samples to clusters via nearest neighbor classi-

fication to a randomly selected collection of k samples. In

contrast, the k-means clustering refines this initial grouping

by recomputing the cluster centers and reassigning the

samples until convergence to a stationary partitioning of

the whole dataset. In experiments, a positive effect of this

refinement was observed on the recognition performance.

This improvement, however, came at the expense of

greater computation times due to the extra iterations.

Naturally, the group formulation can also be adapted

readily to operate on groups established using any other

clustering algorithm of choice, as long as the distances

between the clusters and the individual samples can be

computed within limits of computational feasibility.

On a final note, further improvement in the computa-

tional expense can be achieved by expediting the optimi-

zation procedure carried out to determine the best reference

set size for the ultimate posterior probability estimation. To

this end, a variety of numerical optimization methods that

require the fewest evaluations of the cost functional can be

considered, since each evaluation of the cost functional

involves recomputing the posterior probability estimates

for the whole dataset. Another strategy would be to limit

the posterior probability computations to a smaller, but

representative subset of samples. A complete analysis in

this direction must also address the specific relationship

between the optimal reference set size and the size of the

learning dataset. These avenues of research remain to be

explored in future studies.
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