Skip to main content

Advertisement

Log in

Automatic grading system for human tear films

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Dry eye syndrome is a prevalent disease which affects a wide range of the population and has a negative impact on their daily activities, such as driving or working with computers. Its diagnosis and monitoring require a battery of tests which measure different physiological characteristics. One of these clinical tests consists in capturing the appearance of the tear film using the Doane interferometer. Once acquired, the interferometry images are classified into one of the five categories considered in this research. The variability in appearance makes the use of a computer-based analysis system highly desirable. For this reason, a general methodology for the automatic analysis and categorization of interferometry images is proposed. The development of this methodology included a deep study based on several techniques for image texture analysis, three color spaces and different machine learning algorithms. The adequacy of this methodology was demonstrated, achieving classification rates over 93 %. Also, it provides unbiased results and allows important time savings for experts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Moss SE (2000) Prevalence of and risk factors for dry eye syndrome. Archiv Ophthalmol 118(9):1264–1268

    Article  Google Scholar 

  2. Jie Y, Xu L, Wu YY, Jonas JB (2008) Prevalence of dry eye among adult Chinese in the Beijing Eye Study. Eye 23(3):688–693

    Article  Google Scholar 

  3. Smith JA (2007) The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop. Ocular Surf 5(2):93–107

    Article  Google Scholar 

  4. Nichols KK, Nichols JJ, Zadnik K (2000) Frequency of dry eye diagnostic test procedures used in various modes of ophthalmic practice. Cornea 19(4):477–482

    Article  Google Scholar 

  5. Bron AJ (2001) Diagnosis of dry eye. Surv Ophthalmol 45(2).

  6. Bron AJ, Smith JA, Calonge M (2007) Methodologies to diagnose and monitor dry eye disease: report of the Diagnostic Methodology Subcommittee of the International Dry Eye WorkShop. Ocular Surf 5(2):108–152

    Article  Google Scholar 

  7. Lemp MA (2007) The definition and classification of dry eye disease: report of the definition and classification Subcommittee of the International Dry Eye WorkShop. Ocular Surf 5(2):75–92

    Article  Google Scholar 

  8. Nichols KK, Mitchell GL, Zadnik KT (2004) The repeatability of clinical measurements of dry eye. Cornea 23(3):272–285

    Article  Google Scholar 

  9. Rolando M, Zierhut M (2001) The ocular surface and tear film and their dysfunction in dry eye disease. Surv Ophthalmol 45(Supplement 2(0)):S203–S210

  10. Korb D, Craig J, Doughty M, Guillon J, Smith G, Tomlinson A (2002) The tear film structure, function and clinical examination, Chap. 2. Butterworth Heinemann, UK

  11. Doane MG (1989) An instrument for in vivo tear film interferometry. Optometry Vis Sci 66(6):383–388

    Article  Google Scholar 

  12. Guillon JP, Guillon M (1997) Tearscope plus clinical hand book and tearscope plus instructions. Keeler Ltd., Keeler Inc, Windsor, Broomall

    Google Scholar 

  13. Thai LC, Tomlinson A, Doane MG (2004) Effect of contact lens materials on tear physiology. Optometry Vis Sci 81(3):194–204

    Article  Google Scholar 

  14. Bron AJ, Tiffany JM, Gouveia SM, Yokoi N, Voon LW (2004) Functional aspects of the tear film lipid layer. Exp Eye Res 78:347–360

    Article  Google Scholar 

  15. Freeman MH, Hull CC (2014) Interference and optical films

  16. McCann LC, Tomlinson A, Pearce EI, Papa V (2012) Effectiveness of artificial tears in the management of evaporative dry eye. Cornea 31(1):1–5

    Article  Google Scholar 

  17. Fagehi RA, Tomlinson A, Manihilov V (2012) Comparative study of soft contact lenswetting in vitro after storage in Biotrue MPS. Contact Lens Anterior Eye 35(1)

  18. CMEX-1300x camera. Euromex Microscopen BV. Arnhem, The Netherlands

  19. ImageFocus Capture and Analysis software, Euromex Microscopen BV, Arnhem, The Netherlands

  20. ImageToAvi software, ASW Software, Mesa, AZ, US.

  21. Gonzalez R, Woods R (2008) Digital image processing. Pearson, Prentice Hall

  22. Remeseiro B, Penas M, Barreira N, Mosquera A, Novo J, García-Resúa C (2013) Automatic classification of the interferential tear film lipid layer using colour texture analysis. Comput Methods Progr Biomed 111:93–102

    Article  Google Scholar 

  23. McLaren K (1976) The development of the CIE 1976 (L*a*b*) uniform colour-space and colour-difference formula. J Soc Dyers Colourists 92(9):338–341

    Article  Google Scholar 

  24. Sangwine SJ, Horne REN (1998) The colour image processing handbook. Chapman & Hall, London

  25. Hering E (1964) Outlines of a theory of the light sense. Harvard University Press, Cambridge

  26. Borer S, Ssstrunk S (2002) Opponent color space motivated by retinal processing. In: Proc. IS&T first European conference on color in graphics, imaging and vision (CGIV), vol 1, pp 187–189

  27. Ramos L, Penas M, Remeseiro B, Mosquera A, Barreira N, Yebra-Pimentel E (2011) Texture and color analysis for the automatic classification of the eye lipid layer. LNCS: advances in computational intelligence (international work conference on artificial neural networks-IWANN 2011) 6692:66–73

  28. Gabor D (1946) Theory of communication. J Inst Electr Eng 93:429–457

    Google Scholar 

  29. Grigorescu SE, Petkov N, Kruizinga P (2002) Comparison of texture features based on Gabor filters. IEEE Trans Image Process 11(10):1160–1167

    Article  MathSciNet  Google Scholar 

  30. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693

    Article  MATH  Google Scholar 

  31. Fdez-Sarria A, Ruiz LA, Recio JA (2005) Study of methods based on wavelets for texture classification of high resolution images. In: Procs of 25th EARSeL symposium. Global developments in environmental earth observation from space, pp 19–25

  32. Remeseiro B, Ramos L, Penas M, Martínez E, Penedo MG, Mosquera A (2011) Colour texture analysis for classifying the tear film lipid layer: a comparative study. In: International conference on digital image computing: techniques and applications (DICTA), pp 268–273, Noosa, Australia

  33. Daubechies I (1992) Ten lectures on wavelets. SIAM, CBMS series

  34. Woods JW (1972) Two-dimensional discrete markovian fields. IEEE Trans Inf Theory 18(2):232–240

    Article  MATH  Google Scholar 

  35. Çesmeli E, Wang D (2001) Texture segmentation using Gaussian–Markov random fields and neural oscillator networks. IEEE Trans Neural Netw 12

  36. Haralick RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Trans Syst Man Cybern Syst Man Cybern 3:610–621

  37. Mitchell TM (1997) Machine learning. McGraw-Hill, New York

  38. Remeseiro B, Penas M, Mosquera A, Novo J, Penedo MG, Yebra-Pimentel E (2012) Statistical comparison of classifiers applied to the interferential tear film lipid layer automatic classification. Comput Math Methods Med 1–10:2012

    Google Scholar 

  39. Jensen F (1996) An introduction to bayesian networks. Springer, Berlin

  40. Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Machine Learn 29:131–163.

  41. Biau G (2012) Analysis of a random forests model. J Machine Learn Res 13:1063–1095

    MathSciNet  MATH  Google Scholar 

  42. Breiman L (2001) Random Forests. Machine Learning 45(1):5–32

    Article  MATH  Google Scholar 

  43. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Mining Knowl Discov 2:121–167

    Article  Google Scholar 

  44. VOPTICAL_GCU, VARPA optical dataset annotated by optometrists from the Department of Life Sciences, Glasgow Caledonian University (UK), 2012. http://www.varpa.es/voptical_gcu.html. Accessed July 2014

  45. Chang C, Lin C (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27

  46. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD Explor Newslett 11(1):10–18

    Article  Google Scholar 

  47. Rodriguez J, Perez A, Lozano J (2010) Sensitivity analysis of k-fold cross-validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell 32:569–575

    Article  Google Scholar 

  48. Goulden CH (1956) Methods of statistical analysis, 2nd edn. Wiley, Chapman & Hall, New York

  49. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1(6):80–83

    Article  Google Scholar 

  50. Hogg R, Ledolter J (1987) Engineering Statistics. MacMillan, New York

  51. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  52. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701

    Article  Google Scholar 

  53. Nemenyi PB (1963) Distribution-free multiple comparisons. PhD thesis, Princeton University

  54. Fawcett T (2006) An Introduction to ROC Analysis. Pattern Recognit Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  55. Efron N (1997) Clinical application of grading scales for contact lens complications. Optician 213:26–34

    Google Scholar 

  56. Efron N, Morgan PB, Katsara SS (2001) Validation of grading scales for contact lens complications. Ophthal Physiol Optics 21(1):17–29

    Google Scholar 

  57. Efron N (2011) A survey of the use of grading scales for contact lens complications in optometric practice. Clin Exper Optometry 94(2):193–199

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research has been partially funded by the Secretaría de Estado de Investigación of the Spanish Government and FEDER funds of the European Union through the research projects TIN2011-25476 and PI12/02075; and by the Consellería de Cultura, Educación e Ordenación Universitaria of the Xunta de Galicia through the agreement for the Singular Research Center CITIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Remeseiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remeseiro, B., Oliver, K.M., Tomlinson, A. et al. Automatic grading system for human tear films. Pattern Anal Applic 18, 677–694 (2015). https://doi.org/10.1007/s10044-014-0402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-014-0402-x

Keywords

Navigation