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Abstract

In the spirit of Lindeberg’s approach for image analysis on regular lattice, we

adapt from a statistical viewpoint, the blob detection procedure for graphs non em-

bedded in a metric space. We treat data observed on such a graph in the goal of

detecting salient modules. This task consists in seeking subgraphs whose activity is

strong or weak compared to those of their neighbors. This is performed by analyzing

nodes activity at multi-scale levels. To do that, data are seen as the occurrence of a

univariate random field, for which we propose a multi-scale graphical modeling. In

the framework of diffusion processes, the covariance matrix of the random field is

decomposed into a weighted sum of graph Laplacians at different scales. Under the

assumption of Gaussian law, the maximum likelihood estimation of the weights is

performed that provides a set of relevant scales. As a result, we obtain a multi-scale

decomposition of the random field on which the module detection is based. This

method is experimentally analyzed on simulated data and biological networks.
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Modeling, Scale-space Random Field, Graph Laplacian, Diffusion Kernel, Multi-

scale Decomposition, Scale Selection

∗CMLA, UMR CNRS 8536, ENS Cachan, France
†Cergy-Pontoise University, France

1



Scale-space module detection for random fields 2

1 Introduction

This paper is related to the following general issue : given an undirected graph G =
(V,E) with only one component non embedded in a metric space, and an observation

x of a univariate real random field X indexed by the nodes V of this graph, one seeks

subgraphs {Mk} in V for which the respective observations {xMk
} appear as salient

profiles, in comparison to their surrounding. Such a subgraph with its profile (Mk, xMk
)

is called module. In summary, we have the following schema :

[{xi}i∈V , G = (V,E)] ❀ {(Mk, xMk
)} , (1)

where xi ∈ R. This concept depends on the context and what we seek. We use the term

module in a broad sense. However, we focus in the following on a particular module

called blob or spot, depending of the context.

Concretely, the problem is as follows. Consider Fig. 3 that shows an image {xi, i ∈
V } where V denotes the nodes of a sampling grid L included in R

2. This image shows a

multitude of dark spots of various sizes that a scale-space algorithm has detected. This de-

tection uses the graph L = (V,E) where E are the nearest neighbor connections. Here,

our visual perception clearly distinguishes the spots. While keeping the values {xi},

suppose now that we replace L by a graph G whose nodes are not in a metric space.

Displaying x requires to represent the graph in the plane, which implies to choose a par-

ticular layout. This is illustrated in Fig. 7 and Fig. 8(c) that display an "image" on such a

graph with three different layouts. This image contains five distinct spots that it is difficult

to recognize, although these figures display the same image x. Similarly, in the case of

Fig. 3, our perception of spots would be greatly disturbed, and the detection algorithm

would not work because it requires a metric space. Dealing with this problem is the sub-

ject of our article. To our knowledge it has not been still treated.

Although different, this problem suggests another problem that needs to be presented

in order to avoid some confusions. Let a set of points {�ξi, i ∈ V } in space R
p with

p > 1, allowing to define a similarity matrix W between these points, e.g. from their

correlations or distances. This matrix is then used to infer a connectivity structure E,

typically by connecting highly correlated or spatially close nodes. The detection of mod-

ules is then performed on the graph G = (V,E), for example by using the concept of

betweenness [19]. Here, the objective is the determination of {Mk}. In summary, we

have the following two-step schema :

(i) {�ξi}i∈V ❀ W ❀ E ,

(ii) G = (V,E) ❀ {Mk} .
(2)

This second schema is further discussed in Section 1.1. In a nutshell, we can say that (2)

seeks sub-networks in G whereas (1) seeks active sub-networks with respect to x.

The tackled issue is resulting from molecular biology for which a vast literature ex-

ists. With respect to our concerns, a few references are [17, 9, 35, 27, 11, 22]. This
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issue arises also in other fields, like social networks where modules refer to communities

[1, 26]. One crucial step when studying the structure and dynamics of these networks is to

identify modules/communities. However, these studies are mainly devoted to the schema

(2) for biological networks and (2-ii) for social networks, whereas we are interested by

the schema (1) due to the nature of our data, which come from a univariate random field.

The connectivity of G is summarized in the graph Laplacian matrix L, which plays a

central role in our context :

Li,j =

⎧
⎨
⎩

−1 if i ∼ j
di if i = j
0 otherwise ,

(3)

where i ∼ j denotes the edge (i, j) ∈ E, and di =
∑

j 1j∼i is the degree of node i, i.e.

the number of edges connected to i. L is a symmetric positive semi-definite matrix, which

can be written as

L = D −A

where D = diag{di} and A is the binary adjacency matrix ai,j = 1 if i ∼ j. Note that

the graph Laplacian appears when one considers the local variation energy, called bending

energy :

U(x) =
∑

i∼j

(xi − xj)
2 = x′Lx, (4)

where the sum is over the edges (i, j) ∈ E. In (3) each edge i ∼ j carries the value

ai,j = 1. This definition can be extended to the weighted case, where the nonnegative

weights are not necessarily all equal to 1. In both cases, we have di =
∑

j ai,j .

We continue this introduction by positioning our contribution with respect to previous

works. Then, the model and the methodology are presented in Section 2. The multi-scale

decomposition and the module detection are tested on simulated random fields and on real

data in Section 3, where diagnostic tools are introduced. We invite the reader to have a

look at Fig. 8 that illustrates and summarizes the method.

1.1 Graph partitioning

Although module detection is not a partitioning task, some aspects of the related problem

of spectral partitioning could lead to confusions. There is a large literature on spectral

clustering for graph partitioning [36, 30, 28, 10, 3] among many others. In spectral clus-

tering [30, 36], given a graph as in (2-ii) we compute eigenvectors u1, ..., um associated

to the m smallest eigenvalues µ1, ..., µm of L, and assign to every node i the vector

{uk(i)}
m
k=1 in R

m. Then, graph partitioning is the outcome of a vector space cluster-

ing algorithm such as k-means applied to the resulting vectors. In background of this

procedure, there is an important property. If the graph is composed with c connected

components, then the first c eigenvalues of L are zero, and the corresponding eigenvec-

tors are the indicator vectors of the connected components. Fig.5 illustrates such a graph

with 4 components.
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This approach also works when one replaces the adjacent/ nonadjacent coefficients

ai,j by a similarity or closeness measure : ai,j = w(i, j). The multiplicity of the eigen-

value 0 is the number of connected components of the underlying graph where nodes i, j
are adjacent when w(i, j) > 0.

Two examples illustrate the closeness measure for the schema (2). When the graph

Laplacian represents a 3D discrete surface (mesh), every node i ∈ V is associated with

a 3D coordinate point �ξi in R
3, also denoted �vi [31]. The weight of an edge i ∼ j is

defined by the Gaussian function w(i, j) = exp−(‖�vi−�vj‖2/σ2
v). Hence, the geometric

structure of the mesh is encoded in the weights. The second example concerns graph

based image segmentation [28]. The image is {xi, i ∈ V } where V are the nodes of

a 2D regular grid embedded in R
2. Every node i ∈ V is associated with a 3D vector

�ξ′i = (�v′i, xi) where �vi is a 2D coordinate point. The Gaussian weight function is rewritten

w(i, j) = exp−(‖�vi − �vj‖2/σ2
v + |xi − xj |2/σ2

x). Other weighting functions were

proposed in the literature.

Two pixels are connected if they are within distance δ : w(i, j) �= 0 if ‖�vi − �vj‖ < δ.

But how to chose the graph connection radius δ ? In [10], from heuristic considerations,

the graph weights are segmented into different scales :

W = W1 +W2 + ...+Wr , (5)

where Ws corresponds to a specific spatial separation range : ws(i, j) �= 0 if δs−1 <
‖�vi − �vj‖ < δs.

In our case, the graph G is not embedded in an Euclidean space as the mesh in the

examples above. Although non uniform weights ai,j can be chosen, these weights are

not necessarily associated to a distance. To perform blob extraction, we use the diffusion

property based on the graph Laplacian that does not require to have an explicit closeness

measure. Since diffusion is a multi-scale process, we take advantage of this property to

define a decomposition of the affinity matrix. This decomposition is related to generalized

additive models that bring a theoretical base [37, 14].

1.2 Blob detection

On a regular mesh

In the image analysis domain, when G is simply a regular grid embedded in R
2, the

problem of salient area detection has received much attention and in particular for blob

detection [24], as illustrated in Fig.3. In this figure, the detected blobs are localized by

squares whose size (scale) is adapted to the width of the blobs.

A blob is regarded as a spot and a simple model is given by the Gaussian profile

[29]. In this case, we have the following result on which the scale-space blob detection

is based. Consider the simple image x = {xi, i ∈ V } representing a Gaussian spot

characterized by a width parameter λ0 and centered at a point �v0 on the grid : xi ∝

exp−‖�vi − �v0‖2/2λ0, for every i ∈ V . Consider a smooth version x̃
(λ)

of the image
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obtained by convolution with Gaussian kernel Gλ :

x̃
(λ)
i =

∑

i′

xi′ Gλ(i, i
′) = Gλ(i, .) ⋆ x ,

Gλ(i, i
′) ∝ exp−(‖�vi − �vi′‖

2/2λ) .

(6)

[24] gives the following property that the spot center satisfies :

d

dλ
λ[∆x̃

(λ)
]i0

∣∣∣∣
λ=λ0

= 0 , (7)

where ∆ denotes the discretized Laplacian operator on the grid. In the image processing

literature, ∆Gλ called Laplacian of Gaussian, is used for multi-resolution representations

[33]. Laplacians of Gaussian have mathematical properties, which have been widely stud-

ied in the scale-space community. (7) tell us that the derivative of λ∆Gλ is able to select

the width λ0 of the Gaussian spot. Essentially, λ∆ quantifies in some sense a curva-

ture of the smoothed spot, and this curvature is optimal when λ = λ0. This property is

used to detect blobs in the images : the detected blob centers are the local extrema of the

discretized scale-space volume

{λ[∆x̃
(λ)

]i, i ∈ V, λ ∈ Λ} , (8)

where Λ is a finite set of scales corresponding to an increasingly coarse sub-sampling of

the regular grid. For every detected blob, the optimization of (8) returns a scale, which

characterizes the width of the blob.

From mesh to graph non embedded in a metric space

In this paper, module refers to the extension of the blob concept to graphs. In a first step,

this extension is straightforward since (6) is the solution of the heat equation on Z2 whose

extension to graphs is well known [20].

However, extending the blob detection to non geometric graphs requires some mod-

ifications with respect to scale and space. While for a mesh, it is natural to choose Λ
from a sub-sampling of the grid ([12], Chap. 10), for non geometric graph this choice is

much less trivial since the relevant scales are irregularly spread in R
+, and the scale has

no explicit dimension. In this goal, the multi-scale representation {x̃(λ), λ ∈ Λ} must be

revisited in order to get a sparse representation denoted {x(λ), λ ∈ Λ} yielding a non-

redundant decomposition of x in term of reconstruction :
∑

λ x
(λ) = x, a property that

x̃
(λ) does not satisfy. This property of non-redundancy is necessary for the identification

of the right scales.

1.3 Module, semantic module and related works

In image analysis, the module detection is used first for extracting areas of interest without

using any strong prior information. These areas are then interpreted with greater preci-

sion or extended using high-level information in order to obtain semantic modules, as for
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object recognition [8]. This remark holds also in systemic biology where semantic mod-

ules correspond to biological modules (see [17, 9] among many others). The definition

of biological modules does not rely solely on areas and profiles, but also uses complex

biological knowledge. In several papers, the detection of biological modules operates in

two stages: firstly, detection of module seeds, or more simply modules , and secondly

refinement of the detected modules to finally obtain meaningful biological modules [35].

We comment some main approaches for module detection as introduced in the bioin-

formatic literature. Given a scoring function that allows to compute the importance of

every sub-network, finding the maximal-scoring connected subgraph is an NP-problem.

In the seminal work [17], the main limitation is that node scores are treated independently

since the sub-network score is calculated as a sum of the node scores. To overcome

this limitation, [9] proposes an inverse problem approach in which the node scores are

modeled by a hidden Markov random field model under a constraint of regularity that is

expressed by a bending energy as (4). Two major well-known drawbacks are inherent

to this approach [5] : the data-driven determination of the regularity scale (the trade-off

parameter), and the energy minimization that requires stochastic optimization, a difficult

computation task, already encountered in [17]. But conceptually, the main limitation of

the Markovian model is that it is mono-scale, which is not suitable when the size of the

modules is varying.

Instead of using the bending energy at a single scale, we propose to use it with a

multi-scale formulation in order to adapt the scale to the module sizes. Technically, the

advantage of this approach is twofold. First, the set of relevant scales can be estimated

efficiently from the data. Second, we avoid the huge computation burden of the stochastic

optimization. The computation is limited to scan a multi-scale representation of type (6)

by searching the differential local extrema as it is done for blob detection on a grid L.

2 Models and Method

2.1 Random Field and Diffusion Process

This section summarizes a set of fundamental results on graph Laplacian and diffusion

kernels. Consider a random field X = (X1, ..., Xn)
′ observed on an undirected graph

G = (V,E). V denotes the node set and E the edges connecting them. The dependency

structure between the random variables {Xi} depends on the topological structure given

by E. This dependency structure is here limited to a covariance structure modeled by

a diffusion kernel [25], a choice explored in many domains and especially in pattern

recognition, biological networks analysis and image processing [2, 32, 39].

We seek to represent X by a random field model on G, denoted Y(λ), whose covari-

ance stucture depends on a scale parameter λ > 0. Essentially, this model is obtained by

equalizing the variations due to a change of scale, with the spatial variations as follows :

Yi(λ + dλ)− Yi(λ) =̇ dλ
∑

j∈V : j∼i

(Yj(λ)− Yi(λ)) , (9)
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and in vector form :

Y(λ + dλ) −Y(λ) = −dλ LY(λ) ,

L = D −A ,
(10)

where the graph Laplacian L is defined in (3). The equation (10) is the discretized version

on G of the classical heat differential equation : 1

{
d
dλY(λ) = −LY(λ) ,
Y(0) = X .

(11)

whose solution is

Y(λ) = Kλ X . (12)

Kλ = e−λL , (13)

Kλ is a matrix exponential whose definition is eM =
∑∞

i=0
Mi

i! . For every node, one

has :

Yi(λ) =
∑

j: j∼i

Kλ(i, j)Xj = Kλ(i, .)X , (14)

which is the generalization of (6). The exponential of a symmetric matrix providing a

semi-definite positive matrix, the matrix Kλ, which is called diffusion kernel, can be used

as a covariance matrix for modeling the covariance between the random variables {Xi}.

The more λ is large, the more the off-diagonal effects in Kλ increase. λ is interpreted as

a scale parameter and Yi(λ) as a scale-space random field on V ×R
+.

By nature, the diffusion kernel has a multi-scale property that is well identified, and

especially for dimensionality reduction applications [23]. However, the choice of its scale

parameter λ remains a difficulty [11]. For small λ, Kλ(i, i) reflects local properties of G
around the node i, while for large λ it captures some global structures. For instance, in the

geometry processing field, the diagonal term Kλ(i, i) has been used as a shape descriptor

[31] by considering that for every λ, the local spatial extrema of this function provide a

feature-based scale-space representation of shapes, useful for shape matching.

2.2 Graphical Modeling

The outstanding issue at the end of the previous modeling step is the choice of λ. In

other words what is the scale λ the most representative of the observed profile x. In

fact, several scales may explain this profile. Therefore, a natural approach consists of

decomposing X into r independent random fields according to a discrete set of relevant

scales Λ = {λ1 < ... < λr} :

X =

r∑

j=1

X
(j) +X

(0) , (15)

1In the classic case of diffusion in R
2, λ is a time parameter.
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where X
(j) denotes the random field at scale λj and X

(0) a residual [16, 34]. Follow-

ing the idea of Fourier decomposition, for every profile x, the {x(j)}rj=1 can be seen as

frequency components of x, from high to low frequencies. The decomposition (15) is

related to the additive spline models whose theoretical foundation can be traced back to

[37] Chap.10, (see also [14]) and later reintroduced under the name of multiple kernel

in the machine learning community [21]. Note that X(j) does not match Y(λj) in (12),

since the sum
∑

j Y(λj) over a given set of scales does not reconstruct X.

In our approach, the covariance matrix Cov(X(j)) of every component is modeled

from the diffusion kernel (13). So we use r kernels {Kλ1
, ...,Kλr

} denoted {K1, ...,Kr},

such that Cov(X(j)) = Kj = σ2
jκj where κj is given by (13) at scale λj . Due to the

independence of the components, the covariance matrix Cov(X) is the following multi-

scale diffusion kernel :

K̄σ,Λ =

r∑

j=0

Kj =

r∑

j=0

σ2
jκj

=

r∑

j=1

σ2
j e

−λjL + σ2
0In .

(16)

Each kernel κj is weighted by a positive parameter σ2
j that is all the more great than the

scale λj significantly contributes to the random field X. The covariance matrix K0 is

that of a white noise. As we said above, the more λj is large, the more the off-diagonal

effects in Kj increase. In other words, when λj increases, the components {X(j)} are

increasingly smooth. The passage from X
(j) to X

(j+1) implies that some details in X
(j)

are attenuated.

If we assume that the dependency structure of the random variables {Xi} is uniquely

described by its kernel, then it is legitimate to consider that X is distributed according to

the Gaussian law

X ∼ N (0, K̄σ,Λ) . (17)

The scales {λj}rj=0 and their associated weights σ=̇{σ2
j }

r
j=0 are unknown parameters

that are estimated using the maximum likelihood principle 2.

Although the theoretical mean of X is zero, the empirical mean of each observed sub-

profile xMk
is not necessarily zero, as for instance in Fig. 9. This is due to high scales

that create long range correlations, or in other words low frequencies. Understanding the

diffusion kernel is not a trivial task, this requires to call the graph spectral theory [25].

Note also that the choice of the diffusion kernel as covariance matrix arises as a necessity

because we have only one observation of X. If we could have many observations then the

covariance matrix could be estimated.

In comparison with the heuristic decomposition (5), which uses a hard multi-scale

separation of the weights, the multi-scale representation (16) appears as a soft decompo-

sition based on the overall structure of the graph via L, and moreover allows statistical

estimation of each component contribution.

2For notational convenience, we introduce λ0 = 0 that is associated to K0.
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• Weight estimation. For a given Λ, let ℓ(σ|Λ) = log(pσ,Λ(x)) be the log-likelihood

of σ, where pσ,Λ denotes the probability density of x. Given an observation x and the

Gaussian N (0, K̄σ,Λ), the log-likelihood is

ℓ(σ|Λ) = − log |K̄σ,Λ| − x′K̄−1
σ,Λ x + Cte , (18)

where Cte denotes a constant term. The maximum likelihood estimate is computed under

the constraint of positivity of the parameters σ :

σ̂(λ) = argmax
σ

ℓ(σ|Λ) under the constraint σ > 0 . (19)

For moderate sizes of n, the non-linear programming algorithms using gradient descent

techniques are operational. For larger dimensions, the computation of the determinant

|K̄σ,Λ| and the inverse K̄−1
σ,Λ becomes more difficult [18]. To reduce the amount of compu-

tation, one might also wonder whether it would be possible to remove the term log |K̄σ,Λ|
in the likelihood, in order to work only with the generalized least-squares x′K̄−1

σ,Λ x. The-

oretically, we know that this estimate is not statistically consistent [13]. Our experiments

have confirmed this defect, by showing severe aberrations in the multi-scale decomposi-

tions (cf. Section 3.1).

• Scale estimation. A procedure for selecting the set Λ is now required. Given a uni-

form discretization Λ0 of the scale domain in R, the scale selection procedure estimates a

subset Λ of scales irregularly distributed in Λ0, which explains the profile of x according

to a given criteria :

Λ0={λ0
j = jδ, j = 1, ..., r0} ❀ Λ={λ0

j1 , ..., λ
0
jr} ,

where δ is the discretization stepsize. First, the estimation σ̂(Λ0) is computed according

to (19). To determine r, we perform a diagonalization of the covariance matrix

K̃ =
r0∑

j=1

σ̂2
j (Λ

0)e−λ0

jL , (20)

of which we retain only the r largest eigenvalues ν1 ≥ ... ≥ νr according to the criteria

∑r
i=1 νi∑r0

i=1 νi
= 1− ǫ , (21)

where ǫ is a positive parameter chosen close to 0, typically ǫ = 0.01 or 0.025. This crite-

rion is related to that used in Principal Component Analysis [15]. It means the dispersion

of X can be approximatively represented by r linearly independent components with an

information loss determined by ǫ. Finally, from the estimated r, we can then achieve the

selection of relevant scales Λ. These scales are associated with the r largest σ̂2
j (Λ

0), i.e.

the scales whose components are the most involved in the dispersion of X. These scales

are denoted {λ0
j1 , ..., λ

0
jr} or more simply {λ1, ..., λr}. As a consequence of (21), the
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estimates σ̂2
j associated to the scales in Λ0\Λ are much lower than those in Λ, and even

close to 0. This selection achieves a pruning of non-significant scales.

• Statistical Multi-scale Decomposition. This task concerns the estimation of the

r components X
(j) of the multi-scale decomposition of X. Component estimation is

closely linked to the scale selection problem. Denote K̃U = UDν the spectral equation of

the previous diagonalization, where Dν is the diagonal matrix of the r largest eigenvalues

Λ of K̃ . Because of (21), assume that the eigenvalues λ0 \ λ are approximately equal to

zero. This is especially true when ǫ is very small. Beyond r0, the eigenvalues νr0+1 ≥
... ≥ νn are smaller and we can consider they are all close to 0. In this case, one can write

X̃ = UB where B are the coordinates of X̃ on the eigenvectors U . To estimate the scale

components, we take into account the importance of each eigenvalue, and this, using a

Bayesian estimation with a prior distribution related on these eigenvalues.

Proposition 1 Given an observation x and the prior distribution B ∼ N(0, Dν) the

Bayesian estimation provides the scale components :

x̂
(j)

= KjUD−1
ν b̂ , ∀j = 1, ..., r (22)

b̂ = (σ2
0D

−1
ν + Ir)

−1U ′x . (23)

The proof is given in Appendix 5.1. In this proof, if we replace the spectral equation

relative to Λ by the equation relative to Λ0 : K̃U0 = U0D0
ν , then Proposition 1 is still

valid. This is useful when we do not assume that all eigenvalues Λ0 \Λ are negligible. In

this case, the Bayesian estimation is more justified because of the high difference between

the values of Λ and Λ0 \ Λ.

2.3 Module Detection

Given an undirected graph G and an observation x of the random field, we first compute

the estimated scales {λj , j = 1, ..., r} and the associated decomposition (22) {x(j), j =
1, ..., r} as presented in the previous section. Rather than considering directly the compo-

nents, we consider their spatial variations with respect to the graph Laplacian L :

(Lx(j))v =
∑

i: i∼v

(x(j)
v − x

(j)
i ), ∀v ∈ V

= dvx
(j)
v −

∑

i: i∼v

x
(j)
i .

(24)

This specifies the regularity of each component. Lx(j) is all the more great positively

(resp. negatively) than the expression x
(j)
v of the node v is strongly increasing (resp.

decreasing) with respect to its neighbors. Therefore we look for nodes that are most

differentially expressed with respect to L, and this by examining the expression of the

components at different scales. Since the amplitude of variations of Lx̃
(j)

decreases when
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the scale increases, a specific normalization is required. As in the case of blob detection

(8) on a lattice L, an efficient normalization is λjLx̃
(j)

. A scale λj for which λj(Lx(j))v
is a local extremum with respect to scale and space, is seen as reflecting a module at

position v and scale λj . This implies the following procedure.

For any node v ∈ V , we denote by Nk
v ⊂ V the relative nodes of v of order k,

(k = 1, ..., κ). k = 1 means the nearest neighbors (NN), k = 2 means the nearest

neighbors of v to which their NN are added, etc... The module detection consists in

searching local optima of the components with respect to the neighborhoods as follows3 :

∀ v ∈ V : (j(v), k(v), v′(v)) = argopt
j,k,v′∈Nk

v

λj(Lx(j))v′ ;

if v′(v) = v, then v is a module center at scale λj(v) .

(25)

When a module center is detected at v, its area Mv is defined by the subgraph {v,N
k(v)
v }.

In the next section, we denote
◦

V the nodes corresponding to the detected module centers,

and therefore the set of detected areas is written as :

{Mv, v ∈
◦

V } . (26)

3 Experiments

Recall that a module is an active subgraph denoted xM where M is a subgraph of G. A

regular lattices L do not show particular structure like stars or clusters, unlike the case of

irregular graphs G. Let us give an example of graph showing a particular structure. The

graph structure is organized around known subgraphs {Rk = (Vk, Ek)} called regulons

(or hubs). A regulon is a set of nodes Vk ⊂ V connected to one or several common nodes,

called regulators. A regulon can be connected to several regulators and a regulator can be

connected to several regulons. Fig.5 shows a graph with four regulons and four regulators.

In practice, such regulons can be used a posteriori for interpreting the detected mod-

ules or inferring semantic modules. Depending on the profile of x, the area M of a

module can be simply a regulon, a subregulon or the union of several regulons. Fig.6

shows a short time-series {x(1), x(2), x(3)} of a random field X observed on the graph

of Fig.5. The colors depict the output of the scale-space module detection performed on

every x(t). Successively, 3, 3 and 2 modules were detected, while the graph is composed

of 4 regulons.

3.1 Evaluation on Simulated Data

3.1.1 Simulation Procedure

For phenomena of high complexity, simulated data are an important preliminary support

for modeling when we do not have data with sufficient knowledge of the "ground truth".

3v′(v) also depends on k, what is omitted to simplify the writing.
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The simulation of the random field X requires to give the ground truth, consisting of a

graph G = (V,E) and the parameters (Λ, σ). In our procedure, G is organized in regu-

lons : G = ⊎m
k=1Rk. Here, we assume for simplicity that each regulon Rk is associated

to only one regulator rk. The symbol + in ⊎ indicates that the regulons are mutually con-

nected. This high-level of connection is equivalent to a graph GB between the regulators :

GB = ({rk}, Er).
The simulation is done in two steps. First, the simulation of a graph G consisting of m

regulons is done as described in Appendix 5.2. Second, a sample x of X ∼ N (0, K̄Λ,σ) is

drawn. To do that, we simply simulate α ∼ N (0, In) since the diagonalization K̄Λ,σ =
V DV ′ implies V D1/2

α ∼ N (0, K̄Λ,σ).

3.1.2 Simulated Data

Fig.8(a) shows the inter-regulon graph GB and Fig.8(b) the graph G. Each regulon has its

own color. Fig.8(c) displays an observation x of the random field X onG, and Fig.9 shows

its 1-D profile. In this experiment, each regulon is a potential module since the simulation

procedure is based on a regulon structure. x was simulated using the multi-scale kernel

(16) with 3 scales : λ1 = 8, λ2 = 14, λ3 = 24 and σ1 = σ2 = σ3 = 1.

Although the theoretical mean of X is zero, the mean of each observed regulon in

Fig.9 is not zero. However, due to the correlation between regulators, two regulons may

have similar mean levels. This situation is favorable to the concept of module. This is

consistent with Fig. 6 wherein there are 3 detected modules for 4 regulons. Note that in

the absence of observation x, the spectral partitioning as recalled in Introduction, detects

4 modules corresponding to the 4 regulons.

3.1.3 Data Analysis

The estimation and detection tasks are illustrated in the figures 8, 9, 10 and 11. The max-

imum likelihood estimation (19) was performed using the scale domain Λ0 = {2k, k =
0, 1, ..., 15}. Fig.10 displays the statistical multi-scale decomposition. The continuous

black line connecting the data points is the sum
∑15

k=1 x̂
(2k)

of all the components ex-

cept the noise component x̂
(0)

. Since this line interpolates the data points, this means

that the estimated noise component is very low. The selected Λ is computed from this

decomposition using (21) with ǫ = 0.1. The three main components associated to

{λ1 = 8, λ2 = 10, λ3 = 30} are shown in Fig.9. It is interesting to compare this sta-

tistical decomposition with the ordinary scale-space decomposition (12) shown in Fig.11.

The statistical decomposition has the ability to focus more clearly on the spectral content

of x. λ3 = 30 reflects low frequencies whereas λ2 = 10 contributes to high frequen-

cies. But above all, it remedies the redundancy of ordinary scale-space representation,

and therefore favors the identification of the right scales. The detected modules shown in

Fig.8(d) correspond to the rule (25). In Fig.9, the locations of the detected extrema are

indicated by red circles. There is exactly one detected module per regulon.

This procedure is statistically assessed by Monte Carlo simulation. The random field

X is simulated 200 times under the same conditions as above. From the obtained samples
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Figure 1: (a) Histogram of the empirical probabilities {P̂ (|Λ| = k)}8k=1 of the number

of selected scales , (b) Histogram of the empirical probabilities {P̂ (|
◦

V | = k)}5k=1 of the

number of detected modules.

{x(ℓ), ℓ = 1, ..., 200}, the probability of the number of selected scales {P (|Λ| = k)}8k=1

were estimated for ǫ = 0.01, as well as the probability of the number of detected module

centers {P (|
◦

V | = k)}5k=1, as shown in Fig. 1. The number of detected modules is ran-

dom, with a main mode at
◦

V = 5. In fact, as noted above, the mean levels of two regulons

may be substantially close and therefore be recognized as belonging to the same module

if they are connected.

Above, we have mentioned the prominent role of the term log |K̄σ,Λ| in the likelihood.

This is confirmed experimentally. Without this term, the estimation-detection procedure

was repeated on the same data as previously. The results are shown in Fig.12. The multi-

scale decomposition is then quite inaccurate. All weights are very high and the scale

components are close to zero.

3.2 Bacillus Subtilis Data

Fig.4 illustrates the multi-scale decomposition of a field x that represents gene expres-

sions of Bacillus Subtilis. The underlying graph G = (V,E) comes from the regulatory

network of the bacterium. V denotes genes, E connections between genes and x gene

expressions on V (Fig.4-a) 4. The entire graph contains 1607 genes, 2345 edges and 132

regulons. Fig.5 displays four connected regulons extracted from this network. In steady-

state, gene expressions are assumed to be governed by the model (17). In Fig.4 we see

the structuring effects of the method in terms of gene grouping as this had already been

shown for other regulatory networks [11].

In many applications, one is interested in studying the change of modules across dif-

ferent conditions [22]. In our example, the expression of the regulons depends on the

nutritional environment of the bacteria over time, some of them are over-expressed and

4The biological network has been simplified by removing the protein level network and therefore in G the

regulatory protein-encoding genes and their proteins are confused. Furthermore, the edge directions in E have

been deleted. Consequently, we cannot speak strictly of regulation in the sense of regulatory networks. .
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Figure 2: A toy example with three active regulons : two over-expressed and one under-

expressed. (a) µ̂ in blue. Confidence band : {µ+
Rk

}3k=1 in green, {µ−

Rk
}3k=1 in red. (b) A

particular configuration x
′(ℓ) = {µ+

R1
, µ−

R2
, µ+

R3
}.

other ones are under-expressed. With the module detection, we search to identify regions

of the graph that are particularly expressed through time. Fig.6 illustrates this detection on

a short time series of the random field observed at 3 time points. The detection has been

done at every time t, independently of the others. Every detected module is composed of

one or several regulons. For instance, at time t = 1, there are 3 detected modules, which

are respectively depicted in green, yellow and pink. The green module is composed of

two regulons, what can favor the semantic interpretation of the module from properties of

the regulons.

The validation is primarily based on biological aspects. In the considered experience,

one examines nutrient change effects : an experimental population of cells grows first

in Glucose and then Malate is injected at time t0 such that 1 ≤ t0 ≤ 11. The detected

modules should reflect this change. A further biological analysis is beyond the scope of

our article, [4, 7]. However, a diagnostic tool is now proposed to help with this analysis.

The idea is to generate configurations of X using a confidence band around the obtained

decomposition

µ̂ =
∑

j∈Λ

x̂
(j) ,

in order to quantify the stability of the detected modules. We start with the bootstrap

confidence interval described in [38] that we recall. As a result of the decomposition, the

estimated residuals are : x̂
(0) = x − µ̂ , whose empirical variance is σ̂2

0 = ‖x̂(0)‖2/n.

Derived from (15), a generative model based on µ̂ is written as :

X = µ̂+X
(0),

where X
(0)
i are independent Gaussian random variables LG(0, σ̂2

0). Generate X(0) allows

to simulate X, which is now distributed according to N (µ̂, σ̂2
0In). Pretending that µ̂ is the

"true" µ, generate N bootstrap samples {x(ℓ)}Nℓ=1, and compute their respective smooth

profiles {µ̂(ℓ)}Nℓ=1. Using these samples, for every node i ∈ V , and for a given confidence
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γ close to one, a confidence interval of µi denoted [µ−

i , µ
+
i ] is estimated, which provide

a confidence band [µ−, µ+] as detailed in [38].

Our validation uses this confidence band to generate configurations. Denote {µ−

Rk
}

and {µ+
Rk

} the two confidence profiles viewed from the regulons. For generating a new

configuration x
′, we draw randomly for each regulon Rk between µ−

Rk
and µ+

Rk
, as illus-

trated in Fig. 2. Repeating this process N ′ times, we obtain new samples {x′(ℓ)}N
′

ℓ=1, on

which module detection is performed. Finally, among theN ′ detected fields {{Mv(ℓ), v ∈
◦

V (ℓ)}, ℓ = 1 . . .N ′}, we compute the proportion of fields that fit with the field {Mv, v ∈
◦

V } obtained on the original x, cf. (26). This proportion is associated to the confidence γ,

providing a quantitative diagnostic tool.

The experiments show that module detection puts into light the activated modules and

therefore provides a mean to study dynamic random fields. However, module detection

on time series has been performed without taking into account time dependence. At every

time t, the observation of the random field has been treated independently of the others.

Nevertheless, it is well known that Markovian dependence can improve the sensitivity

of the detection of isolated low signal. In the related paper [6], we present a Marko-

vian spatio-temporal modeling that generalizes the present model. Doing so, in Fig.1 the

probability P̂ (|
◦

V | = 5)} should be higher.

4 Conclusion

This paper proposes and implements a multi-scale graphical modeling for univariate ran-

dom vectors observed on an undirected graph. The result is a multi-scale decomposition

of the random field which provides an analysis tool to deal with specific treatments be-

cause it allows to select relevant scales. This tool is especially used for module detection.

With hindsight, this detector seems relatively simple. However, emphasis has been put on

a coherent modeling without heuristics and with very few tunable parameters.

5 Appendix

5.1 Proof of Proposition 1

Let X̃ = X − X
(0) =

∑r0

j=1 X
(j), and recall the spectral equation K̃U = UDν where

K̃ =
∑r0

j=1 Kj . First, since the columns of U are independent, we can write X̃ = UB

where B is a r-random vector. Then, the spectral equation allows to rewrite

X̃ = UB = K̃UD−1
ν B =

r0∑

j=1

KjUD−1
ν B =

r0∑

j=1

X
(j),

where X
(j) = KjUD−1

ν B , (27)
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which provides the components (22). Second, X̃ = UB implies the covariance matrix

Cov(B) = UK̃U ′ = Dν . (28)

For a given observation x, the Bayesian estimation of the occurrence of B consists in

maximizing the log-likelihood log p(b | x) = log p(x | b) + log p(b) + Cte. Given the

Gaussian laws B ∼ N (0, Dν) and X
(0) ∼ N (0, σ2

0In), this amounts to compute

b̂ = argmax
b

−
1

σ2
0

‖x − Ub‖2 − b
′D−1

ν b , (29)

which provides the expression b̂ in (23). Note that (29) is similar to the criterion of the

Ridge regression [15].

5.2 Graph simulation

The simulation of a graph G consisting of m regulons : G = ⊎m
k=1Rk, is done in three

steps.

1. For each set of nodes Vk making up a regulon, a regulon graph Rk = (Vk, Ek) is

simulated.

2. At a larger scale, the m regulons are considered as m nodes of a graph, and thus an

inter-regulon graph GB is simulated.

3. The global graph G is obtained on the basis of these m+ 1 graphs, as follows. For

each regulon Rk, a regulator rk is drawn uniformly at random in this regulon. This

regulator regulates the regulon(s) Rk′ such that k ∼ k′ in GB , 5 . The weight of

the connections between rk and nodes v in Rk′ are given by the probabilities of the

Binomial law B(|Rk′ |, p) where 0 < p < 1. When a weight is below a threshold

τ , for example 0.05, the weight is set to zero, then the probability distribution is

renormalized. By ruling p and τ , one can modulate the number of edges between

the regulator and the regulated unit. In this case, rk regulates a subset of nodes in

Rk′ .
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Figure 4: Multi-scale decomposition of gene expression network of Bacillus subtilis (from

[7]). (a) Original data. b) Multi-scale decomposition profiles (1-D display). (c-d) Scale

components for λ = 2 and λ = 16, respectively. The decomposition has a structuring

effect in terms of gene grouping. Despite the use of false colors, it is difficult to distinguish

modules, unlike the case of an ordinary image as in Fig. 3.
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Figure 5: Graph partioning of G : this graph shows four regulons and four regulators.
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Figure 6: Module detection at three time points. This treatment was done without taking

into account time dependence. Module detection yields respectively 3, 3 and 2 modules

depending on x(t), t = 1, 2, 3.
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Figure 7: Same configuration {x, G} as in Fig. 8(c) but with two different displays : (a)

"Edge weighted spring embedded" layout, (b) Hierarchical layout.
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Figure 8: Experiment on simulated data. (a) The regulator graph GB (between regulons).

(b) The entire regulon graph G. (c) The observed random field x (displayed with "Force

directed" layout). (d) Module detection outcome: there is one detected module per reg-

ulon. Given the knowledge of the regulons, we can associate a regulon to each detected

module.
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Figure 9: Module detection based on the multi-scale decomposition in Fig.10 restricted

to Λ. The pink crosses show the 1-D profile of x. The color curves display the three

main components for scales {8, 10, 30}. The red circles are the locations of the detected

module centers. The color segments at the bottom of the figure locate regulons, their

colors are identical to those in Fig.8(a-b-d).
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Figure 10: Statistical multi-scale decomposition for Λ0 = {2, 4, ..., 28, 30}. Scale se-

lection with ǫ = 0.1 selects Λ = {8, 10, 24, 30}. The black curve is the sum of all

Λ0-components.
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Figure 11: Ordinary scale-space decomposition.
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Figure 12: Adverse effect of an estimation made without log |K̄σ,Λ|. All scales are nearly

equal contributions and without informative value.


