Skip to main content
Log in

Two density-based k-means initialization algorithms for non-metric data clustering

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a density-based clusters’ representatives selection algorithm that identifies the most central patterns from the dense regions in the dataset. The method, which has been implemented using two different strategies, is applicable to input spaces with no trivial geometry. Our approach exploits a probability density function built through the Parzen estimator, which relies on a (not necessarily metric) dissimilarity measure. Being a representatives extractor a general-purpose algorithm, our method is obviously applicable in different contexts. However, to test the proposed procedure, we specifically consider the problem of initializing the k-means algorithm. We face problems defined on standard real-valued vectors, labeled graphs, and finally sequences of real-valued vectors and sequences of characters. The obtained results demonstrate the effectiveness of the proposed representative selection method with respect to other state-of-the-art solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://libspare.org/

References

  1. Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms., SODA ’07Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp 1027–1035

  2. Bache K, Lichman M (2013) UCI Machine learning repository. http://archive.ics.uci.edu/ml

  3. Bardaji I, Ferrer M, Sanfeliu A (2010) A comparison between two representatives of a set of graphs: median vs. barycenter graph. In: Proceedings of the 2010 joint IAPR international conference on Structural, syntactic, and statistical pattern recognition, SSPR&SPR’10. Springer, Berlin, pp 149–158

  4. Bianchi FM, Livi L, Rizzi A, Sadeghian A (2014) A Granular Computing approach to the design of optimized graph classification systems. Soft Comput 18(2):393–412. doi:10.1007/s00500-013-1065-z

    Article  Google Scholar 

  5. Bulò SR, Pelillo M (2013) A game-theoretic approach to hypergraph clustering. IEEE Trans Pattern Anal Machine Intell 35(6):1312–1327

    Article  Google Scholar 

  6. Cilibrasi R, Vitányi PMB (2005) Clustering by compression. IEEE Trans Inf Theory 51(4):1523–1545

    Article  MathSciNet  MATH  Google Scholar 

  7. Del Vescovo G, Livi L, Frattale Mascioli FM, Rizzi A (2014) On the problem of modeling structured data with the MinSOD representative. Int J Comput Theory Eng 6(1):9–14. doi:10.7763/IJCTE.2014.V6.827

  8. Duin RPW, Fred ALN, Loog M, Pękalska E (2012) Mode seeking clustering by KNN and mean shift evaluated. In: Gimel’farb G, Hancock E, Imiya A, Kuijper A, Kudo M, Omachi S, Windeatt T, Yamada K (eds) Structural, syntactic, and statistical pattern recognition, LNCS, vol. 7626. Springer, Berlin, pp 51–59. doi:10.1007/978-3-642-34166-3\_6

  9. Duin RPW, Pękalska E (2010) Non-Euclidean dissimilarities: causes and informativeness. In: Proceedings of the 2010 joint IAPR international conference on structural, syntactic, and statistical pattern recognition. Springer, Berlin, pp 324–333

  10. Duin RPW, Pękalska E, Harol A, Lee WJ, Bunke H (2008) On Euclidean corrections for non-Euclidean dissimilarities. In: Vitoria Lobo N, Kasparis T, Roli F, Kwok J, Georgiopoulos M, Anagnostopoulos G, Loog M (eds) Structural, syntactic, and statistical pattern recognition, vol. 5342, LNCS. Springer, Berlin, pp 551–561. doi:10.1007/978-3-540-89689-0\_59

  11. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96:226–231

    Google Scholar 

  12. Filippone M (2009) Dealing with non-metric dissimilarities in Fuzzy central clustering algorithms. Int J Approx Reas 50(2):363–384. doi:10.1016/j.ijar.2008.08.006

    Article  MATH  Google Scholar 

  13. Filippone M, Camastra F, Masulli F, Rovetta S (2008) A survey of kernel and spectral methods for clustering. Pattern Recognit 41(1):176–190

    Article  MATH  Google Scholar 

  14. Mascioli Frattale FM, Rizzi A, Panella M, Martinelli G (2000) Scale-based approach to hierarchical fuzzy clustering. Signal Process 80(6):1001–1016. doi:10.1016/S0165-1684(00)00016-5

  15. Hinneburg A, Gabriel HH (2007) Denclue 2.0: fast clustering based on kernel density estimation. In: Advances in intelligent data analysis VII. Springer, Berlin, pp 70–80

  16. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31(8):651–666. doi:10.1016/j.patrec.2009.09.011

    Article  Google Scholar 

  17. Jiang X, Müunger A, Bunke H (2001) On median graphs: properties, algorithms, and applications. IEEE Trans Pattern Anal Mach Intell 23:1144–1151. doi:10.1109/34.954604

    Article  Google Scholar 

  18. Kannan R, Vempala S, Vetta A (2004) On clusterings: Good, bad, and spectral. J ACM (JACM) 51:497–515

    Article  MathSciNet  MATH  Google Scholar 

  19. Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Dis Data 3(1):1:1–1:58. doi:10.1145/1497577.1497578

  20. Livi L, Bianchi FM, Rizzi A, Sadeghian A (2013) Dissimilarity space embedding of labeled graphs by a clustering-based compression procedure. In: Proceedings of the 2013 international joint conference on neural networks, pp 1646–1653. doi:10.1109/IJCNN.2013.6706937

  21. Livi L, Del Vescovo G, Rizzi A (2012) Graph Recognition by Seriation and Frequent Substructures Mining. Proc First Int Conf Pattern Recognit Appl Methods 1:186–191. doi:10.5220/0003733201860191

    Google Scholar 

  22. Livi L, Del Vescovo G, Rizzi A (2013) Combining graph seriation and substructures mining for graph recognition. In: Latorre Carmona P, Sánchez JS, Fred ALN (eds) Pattern recognition—applications and methods. Advances in intelligent and soft computing, vol 204. Springer, Berlin, pp 79–91. doi:10.1007/978-3-642-36530-0\_7

  23. Livi L, Rizzi A (2013) Graph ambiguity. Fuzzy Sets Syst 221:24–47. doi:10.1016/j.fss.2013.01.001

    Article  MathSciNet  MATH  Google Scholar 

  24. Livi L, Rizzi A (2013) The graph matching problem. Pattern Anal Appl 16(3):253–283. doi:10.1007/s10044-012-0284-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Livi L, Del Vescovo G, Rizzi A, Frattale Mascioli FM (2014) Building pattern recognition applications with the SPARE library. arXiv:1410.5263

  26. Livi L, Rizzi A, Sadeghian A (2014) Optimized dissimilarity space embedding for labeled graphs. Inf Sci 266:47–64. doi:10.1016/j.ins.2014.01.005

    Article  MathSciNet  Google Scholar 

  27. Livi L, Tahayori H, Sadeghian A, Rizzi A (2013) Aggregating \(\alpha\)-planes for Type-2 fuzzy set matching. In: 2013 Joint IFSA World Congress and NAFIPS annual meeting (IFSA/NAFIPS), pp 860–865 (2013). doi:10.1109/IFSA-NAFIPS.2013.6608513

  28. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137. doi:10.1109/TIT.1982.1056489

    Article  MathSciNet  MATH  Google Scholar 

  29. Lozano MA, Escolano F (2013) Graph matching and clustering using kernel attributes. Neurocomputing 113:177–194. doi:10.1016/j.neucom.2013.01.015

    Article  Google Scholar 

  30. Ostrovsky R, Rabani Y, Schulman L, Swamy C (2006) The effectiveness of Lloyd-type methods for the k-means problem. In: FOCS ’06. 47th annual IEEE symposium on foundations of computer science, pp 165–176. doi:10.1109/FOCS.2006.75

  31. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076

    Article  MathSciNet  MATH  Google Scholar 

  32. Pekalska E, Duin RPW (2005) The dissimilarity representation for pattern recognition: foundations and applications. In: Series in machine perception and artificial intelligence. World Scientific, Singapore

  33. Pekalska E, Harol A, Duin RPW, Spillmann B, Bunke H (2006) Non-Euclidean or non-metric measures can be informative. In: Yeung DY, Kwok J, Fred ALN, Roli F, Ridder D (eds) Structural, syntactic, and statistical pattern recognition, LNCS, vol 4109. Springer, Berlin, pp 871–880. doi:10.1007/11815921\_96

  34. Riesen K, Bunke H (2008) IAM graph database repository for graph based pattern recognition and machine learning. In: Proceedings of the 2008 joint IAPR international workshop on structural, syntactic, and statistical pattern recognition. Springer, Berlin, pp 287–297. doi:10.1007/978-3-540-89689-0\_33

  35. Rizzi A, Del Vescovo G, Livi L, Frattale Mascioli FM (2012) A new granular computing approach for sequences representation and classification. In: Proceedings of the 2012 international joint conference on neural networks, pp 2268–2275. doi:10.1109/IJCNN.2012.6252680

  36. Rizzi A, Livi L, Tahayori H, Sadeghian A (2013) Matching general type-2 fuzzy sets by comparing the vertical slices. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp 866–871. doi:10.1109/IFSA-NAFIPS.2013.6608514

  37. Roth V, Laub J, Kawanabe M, Buhmann J (2003) Optimal cluster preserving embedding of nonmetric proximity data. IEEE Trans Pattern Anal Mach Intell 25(12):1540–1551. doi:10.1109/TPAMI.2003.1251147

    Article  Google Scholar 

  38. Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65. doi:10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  39. Theodoridis S, Koutroumbas K (2008) Pattern recognition, 4th edn. Elsevier/Academic Press, Amsterdam

  40. Topchy A, Jain AK, Punch W (2005) Clustering ensembles: models of consensus and weak partitions. IEEE Trans Pattern Anal Mach Intell 27(12):1866–1881. doi:10.1109/TPAMI.2005.237

    Article  Google Scholar 

  41. Vendramin L, Campello RJGB, Hruschka ER (2010) Relative clustering validity criteria: a comparative overview. Stat Anal Data Min 3(4):209–235. doi:10.1002/sam.v3:4

    MathSciNet  Google Scholar 

  42. Yager RR, Filev DP (1994) Approximate clustering via the mountain method. IEEE Trans Syst Man Cybern 24(8):1279–1284

    Article  Google Scholar 

  43. Yu XG, Jian Y (2005) A new clustering algorithm based on knn and denclue. In: Proceedings of 2005 international conference on machine learning and cybernetics, vol 4. IEEE, New York, pp 2033–2038

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Livi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchi, F.M., Livi, L. & Rizzi, A. Two density-based k-means initialization algorithms for non-metric data clustering. Pattern Anal Applic 19, 745–763 (2016). https://doi.org/10.1007/s10044-014-0440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-014-0440-4

Keywords

Navigation