Skip to main content
Log in

Unsupervised joint face alignment with gradient correlation coefficient

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This work proposes an unsupervised joint alignment framework, referred to as “Gradient Correlation Congealing,” which aligns an image ensemble by maximizing a sum of gradient correlation coefficient function defined over all images. We, respectively, develop two different formulations to optimize the objective function regarding the role of “template.” While most existing face alignment methods suffer from outliers, e.g., occlusions, the proposed algorithms are able to align faces undergoing partial occlusions. Moreover, our algorithms can cope with nonuniform illumination changes (even extremely difficult ones), and also, they do not require any predefined templates. We test the novel approaches against four typical joint alignment methods including Least-Squares Congealing, Learned-Miller Congealing, Lucas–Kanade entropy Congealing, and RASL using three challenging face databases: AR, Yale B, and LFW. Experimental results prove the efficiency of our approaches under different conditions, especially when faces are partially occluded, and the proposed algorithms perform much better than all considered methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. C++ code of this algorithm can be found at http://vis-www.cs.umass.edu/code/congealingcomplex/.

  2. The MATLAB code of RASL is available at http://perception.csl.uiuc.edu/matrix-rank/rasl.html.

References

  1. Antonakos E, Zafeiriou S (2014) Automatic construction of deformable models in-the-wild. In: Proceedings of IEEE conference on computer vision and pattern recognition

  2. Ashraf A, Lucey S, Chen T (2010) Fast image alignment in the fourier domain. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 2480–2487

  3. Asthana A, Lucey S, Goecke R (2011) Regression based automatic face annotation for deformable model building. Pattern Recognit 44:2598–2613

    Article  MATH  Google Scholar 

  4. Baker S, Matthews I (2004) Lucas–Kanade 20 years on: a unifying framework. Int J Comput Vis 56(3):221–255

    Article  Google Scholar 

  5. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  6. Chen H, Belhumeur P, Jacobs D (2000) In search of illumination invariants. In: Proceedings of IEEE conference on computer vision and pattern recognition, Hilton Head, SC, USA, vol 1, pp 254–261

  7. Cootes T, Taylor C (2001) On representing edge structure for model matching. In: IEEE conference on computer vision and pattern recognition, Kauai, HI, USA

  8. Cootes T, Taylor C, Cooper D, Graham J et al (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  9. Cootes T, Edwards G, Taylor C (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685

    Article  Google Scholar 

  10. Cox M, Sridharan S, Lucey S, Cohn J (2008) Least squares congealing for unsupervised alignment of images. In: Proceedings of IEEE conference on computer vision and pattern recognition, Anchorage, Alaska, USA

  11. Cox M, Sridharan S, Lucey S, Cohn J (2009) Least-squares congealing for large numbers of images. In: International conference on computer vision, Kyoto, Japan

  12. Evangelidis G, Psarakis E (2008) Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans Pattern Anal Mach Intell 30(10):1858–1865

    Article  Google Scholar 

  13. Fischler M, Bolles R (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  14. Frey B, Jojic N (1999a) Estimating mixture models of images and inferring spatial transformations using the em algorithm. In: IEEE conference on computer vision and pattern recognition, Ft. Collins, CO, USA

  15. Frey B, Jojic N (1999b) Transformed component analysis: joint estimation of spatial transformations and image components. In: Proceedings of international conference on computer vision, Kerkyra, Greece, vol 2, pp 1190–1196

  16. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal and Mach Intell 23(6):643–660

    Article  Google Scholar 

  17. Hager G, Belhumeur P (1998) Efficient region tracking with parametric models of geometry and illumination. IEEE Trans Pattern Anal Mach Intell 20(10):1025–1039

    Article  Google Scholar 

  18. Hond D, Spacek L (1997) Distinctive descriptions for face processing. In: Proceedings of 8th British machine vision conference, vol 1, pp 320–329

  19. Huang G, Jain V, Learned-Miller E (2007) Unsupervised joint alignment of complex images. In: 11th international conference on computer vision, Rio de Janeiro, Brazil

  20. Huang G, Mattar M, Berg T, Learned-Miller E, et al. (2008) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on faces in ‘Real-Life’ images: detection, alignment, and recognition

  21. Jiao F, Li S, Shum H, Schuurmans D (2003) Face alignment using statistical models and wavelet features. In: Proceedings of IEEE conference on computer vision and pattern recognition, Madison, WI, USA

  22. Jones M, Viola P (2003) Fast multi-view face detection. Mitsubishi Electric Research Lab TR-20003-96

  23. Learned-Miller E (2006) Data driven image models through continuous joint alignment. IEEE Trans Pattern Anal Mach Intell 28:236–250

    Article  Google Scholar 

  24. Lemieux A, Parizeau M (2002) Experiments on eigenfaces robustness. In: Proceedings of 16th international conference on pattern recognition, Quebec, Canada

  25. Levi K, Weiss Y (2004) Learning object detection from a small number of examples: the importance of good features. In: Proceedings of IEEE conference on computer vision and pattern recognition, Washington, USA, vol 2, pp 53–60

  26. Liu X (2007) Generic face alignment using boosted appearance model. In: Proceedings of IEEE conference on computer vision and pattern recognition, Minneapolis, Minnesota, USA

  27. Liu X, Tong Y, Wheeler F (2009) Simultaneous alignment and clustering for an image ensemble. In: Proceedings of international conference on computer vision, Kyoto, Japan, pp 1327–1334

  28. Liu X, Tong Y, Wheeler F, Tu P (2010) Facial contour labeling via congealing. In: European conference on computer vision, Crete, Greece

  29. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  30. Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision. Int Jt Conf Artif Intell Citeseer 3:674–679

    Google Scholar 

  31. Martinez A, Benavente R (1998) The AR face database. Technical report, CVC

  32. Miller E, Matsakis N, Viola P (2000) Learning from one example through shared densities on transforms. In: Proceedings of IEEE conference on computer vision and pattern recognition, Hilton Head, SC, USA, vol 1, pp 464–471

  33. Ni W, Caplier A (2011) Newton optimization based congealing for facial image alignment. In: International conference on image processing, Brussels, Belgium

  34. Ni W, Caplier A (2012) Adaptive appearance face tracking with alignment feedbacks. In: International conference on image processing

  35. Ni W, Vu N, Caplier A (2011) An online three-stage method for facial point localization. In: 14th international conference on computer analysis of images and patterns, Seville, Spain

  36. Ni W, Vu N, Caplier A (2012) Lucas-Kanade based entropy congealing for joint face alignment. Image Vis Comput 30(12):954–965

    Article  Google Scholar 

  37. Peng Y, Ganesh A, Wright J, Xu W, Ma Y (2012) Rasl: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans Pattern Anal Mach Intell. doi:10.1109/TPAMI.2011.282

  38. Rentzeperis E, Stergiou A, Pnevmatikakis A, Polymenakos L (2006) Impact of face registration errors on recognition. In: Artificial intelligence applications and innovations: 3rd IFIP conference on artificial intelligence applications and innovations (AIAI), Athens, Greece

  39. Roh M, Oguri T, Kanade T (2011) Face alignment robust to occlusion. In: IEEE conference on automatic face and gesture recognition and workshops, Santa Barbara, CA, USA

  40. Saragih J, Lucey S, Cohn J (2011) Deformable model fitting by regularized landmark mean-shift. Int J Comput Vis 91(2):200–215

    Article  MathSciNet  MATH  Google Scholar 

  41. Shan S, Chang Y, Gao W, Cao B, Yang P (2004) Curse of mis-alignment in face recognition: problem and a novel mis-alignment learning solution. In: 6th IEEE conference on automatic face and gesture recognition, Seoul, Korea

  42. Storer M, Urschler M, Bischof H (2010) Intensity-based congealing for unsupervised joint image alignment. In: International conference on pattern recognition, Istanbul, Turkey

  43. Tong Y, Liu X, Wheeler F, Tu P (2009) Automatic facial landmark labeling with minimal supervision. In: IEEE conference on computer vision and pattern recognition, Miami, FL, USA

  44. Tzimiropoulos G, Zafeiriou S (2010) On the subspace of image gradient orientations. Arxiv preprint arXiv:10052715

  45. Tzimiropoulos G, Argyriou V, Zafeiriou S, Stathaki T (2010) Robust FFT-based scale-invariant image registration with image gradients. IEEE Trans Pattern Anal Mach Intell 32(10):1899–1906

    Article  Google Scholar 

  46. Tzimiropoulos G, Zafeiriou S, Pantic M (2011) Robust and efficient parametric face alignment. In: International conference on computer vision, Barcelona, Spain

  47. Tzimiropoulos G, Alabort-Medina J, Zafeiriou S, Pantic M (2012a) Generic active appearance models revisited. In: Proceedings of 11th Asian conference on computer vision (ACCV), pp 650–663

  48. Tzimiropoulos G, Zafeiriou S, Pantic M (2012b) Subspace learning from image gradient orientations. IEEE Trans Pattern Anal Mach Intell 34:2454–2466

    Article  Google Scholar 

  49. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: IEEE conference on computer vision and pattern recognition

  50. Viola P, Wells W III (1997) Alignment by maximization of mutual information. Int J Comput Vis 24(2):137–154

    Article  Google Scholar 

  51. Vu N, Caplier A (2010) Face recognition with patterns of oriented edge magnitudes. In: European conference on computer vision, Crete, Greece

  52. Vu N, Caplier A (2012) Enhanced patterns of oriented edge magnitudes for face recognition and image matching. IEEE Trans Image Process 21(3):1352–1365

    Article  MathSciNet  Google Scholar 

  53. Wang P, Green M, Ji Q, Wayman J (2005) Automatic eye detection and its validation. In: Proceedings of IEEE conference on computer vision and pattern recognition—workshops, San Diego, CA, USA

  54. Zhao C, Cham W, Wang X (2011) Joint face alignment with a generic deformable face model. In: Proceedings of IEEE conference on computer vision and pattern recognition, Colorado Springs, USA, pp 561–568

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyuan Ni.

Appendix

Appendix

Using the Lucas–Kanade algorithm [4], we assume that the current \(\varvec{p}\) is known, and then, \(\varvec{p}\) can be iteratively updated using \(\Delta \varvec{p}\):

$$\varvec{p}\leftarrow \varvec{p}+\Delta \varvec{p}$$
(21)

However, a first-order Taylor expansion of \(\widetilde{\varvec{g}}_i\) with respect to \(\Delta \varvec{p}\) yields a linear function of \(\Delta \varvec{p}\) which is maximized when \(\Delta \varvec{p}\rightarrow \infty\). To solve this problem, since \(\left\| \widetilde{\varvec{g}}_{i}(k)\right\| _{2} = 1\), Eq. (6) is exactly equal to:

$$\begin{aligned} \psi (\varvec{I}_i,\varvec{I}_j)=\frac{\sum _{k=1}^N\left[ \widetilde{\varvec{g}}_{i,x}(k)\widetilde{\varvec{g}}_{j,x}(k)+\widetilde{\varvec{g}}_{i,y}(k)\widetilde{\varvec{g}}_{j,y}(k)\right] }{\sqrt{\sum _{k=1}^N\left[ \widetilde{\varvec{g}}_{i,x}^2(k)+\widetilde{\varvec{g}}_{i,y}^2(k)\right] }} \end{aligned}$$
(22)

Equation (22) can also be written in a vector expression:

$$\begin{aligned} \psi (\varvec{I}_i,\varvec{I}_j)=\frac{\widetilde{\varvec{g}}_{i,x}^{\rm T}\widetilde{\varvec{g}}_{j,x}+\widetilde{\varvec{g}}_{i,y}^{\rm T}\widetilde{\varvec{g}}_{j,y}}{\sqrt{\widetilde{\varvec{g}}_{i,x}^{\rm T}\widetilde{\varvec{g}}_{i,x}+\widetilde{\varvec{g}}_{i,y}^{\rm T}\widetilde{\varvec{g}}_{i,y}}} \end{aligned}$$
(23)

In Lucas–Kanade framework, the objective function Eq. (7) becomes:

$$\begin{aligned} \psi (\varvec{I}_i(\varvec{W}(\varvec{x};\varvec{p+\Delta p})),\varvec{I}_j) = \frac{\widetilde{\varvec{g}}_{i,x}^{\rm T}\left[ \varvec{p+\Delta p}\right] \widetilde{\varvec{g}}_{j,x}+\widetilde{\varvec{g}}_{i,y}^{\rm T}\left[ \varvec{p+\Delta p}\right] \widetilde{\varvec{g}}_{j,y}}{\sqrt{\widetilde{\varvec{g}}_{i,x}^{\rm T}\left[ \varvec{p+\Delta p}\right] \widetilde{\varvec{g}}_{i,x}\left[ \varvec{p+\Delta p}\right] +\widetilde{\varvec{g}}_{i,y}^{\rm T}\left[ \varvec{p+\Delta p}\right] \widetilde{\varvec{g}}_{i,y}\left[ \varvec{p+\Delta p}\right] }} \end{aligned}$$
(24)

where the symbol \(\varvec{g}_{i,x}\left[ \varvec{p}\right]\) represents a vector obtained by writing \(\varvec{G}_{i,x}(\varvec{W}(\varvec{x};\varvec{p}))\) in lexicographic ordering.

As presented in [46], by maximizing Eq. (24), we can achieve Eq. (9).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, W., Vu, NS. & Caplier, A. Unsupervised joint face alignment with gradient correlation coefficient. Pattern Anal Applic 19, 447–462 (2016). https://doi.org/10.1007/s10044-015-0474-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-015-0474-2

Keywords

Navigation