Skip to main content
Log in

Texture code matrix-based multi-instance iris recognition

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel texture feature for iris recognition. The iris recognition system consists of three major components: pre-processing, feature extraction and classification. During pre-processing, iris is segmented using constrained circular Hough transform, which reduces both time and space complexity. In this work, from normalized iris image, a novel texture code matrix is generated, which is then used to obtain a co-occurrence matrix. Finally, desired texture features are computed from this co-occurrence matrix. Here, a two-class classification technique is adopted to develop a multi-class multimodal biometric system using fusion. The performance of the proposed system is tested on four standard iris image databases, namely UPOL, CASIA-Iris V3 Interval, MMU1 and IITD, which shows the efficacy of the proposed feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ma L, Wang Y, Tan T (2002) Iris recognition using circular symmetric filters. In: Proceedings of 16th IEEE international conference on pattern recognition, Quebec

  2. Han M, Zickler L, Giese G, Walter M, Loesel FH, Bille JF (2004) Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation. J Biomed Opt 9(4):760–766

    Article  Google Scholar 

  3. Wildes RP (1997) Iris recognition: an emerging biometric technology. Proc IEEE 85(9):1348–1363

    Article  Google Scholar 

  4. Ross A, Jain A (2003) Information fusion in biometrics. Pattern Recogn Lett 24(13):2115–2125

    Article  Google Scholar 

  5. Ross AA, Nandakumar K, Jain AK (2006) Handbook of multibiometrics, vol 6. Springer, New York

    Google Scholar 

  6. Dhamala P (2012) Multibiometric systems. Ph.D. thesis, Norwegian University of Science and Technology

  7. Gomez-Barrero M, Galbally J, Fierrez J, Ortega-Garcia J (2013) Multimodal biometric fusion: a study on vulnerabilities to indirect attacks. In: Ruiz-Shulcloper J, Sanniti di Baja G (eds) Progress in pattern recognition, image analysis, computer vision, and applications. Springer, Heidelberg, pp 358–365

  8. Monwar M, Gavrilova ML (2009) Multimodal biometric system using rank-level fusion approach. IEEE Trans Syst Man Cybern Part B 39(4):867–878

    Article  Google Scholar 

  9. Ho TK, Hull JJ, Srihari SN (1994) Decision combination in multiple classifier systems. IEEE Trans Pattern Anal Mach Intell 16(1):66–75

    Article  Google Scholar 

  10. Van Erp M, Schomaker L (2000) Variants of the borda count method for combining ranked classifier hypotheses. In: Proceedings of the seventh international workshop on frontilers in handwriting recognition, Citeseer

  11. Lupu E, Emerich S (2010) An approach on bimodal biometric systems. Acta Tehnica Napocensis Electron Telecommun 51(3):45–52

    Google Scholar 

  12. Dobes M, Machala L (2007) Iris database. Palacky University in Olomouc, Czech Republic. http://www.inf.upol.cz/iris

  13. Casia iris image databases service team (2009) CAS Institute of Automation. http://www.biometrics.idealtest.org/

  14. Multimedia university iris database. http://www.pesona.mmu.edu.my/ccteo/

  15. Kumar A, Passi A (2010) Comparison and combination of iris matchers for reliable personal authentication. Pattern Recogn 43(3):1016–1026

    Article  MATH  Google Scholar 

  16. Daugman J (2003) The importance of being random: statistical principles of iris recognition. Pattern Recognit 36(2):279–291

    Article  Google Scholar 

  17. Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 15(11):1148–1161

    Article  Google Scholar 

  18. Ma L, Tan T, Wang Y, Zhang D (2004) Efficient iris recognition by characterizing key local variations. IEEE Trans Image Process 13(6):739–750

    Article  Google Scholar 

  19. Yu L, Zhang D, Wang K (2007) The relative distance of key point based iris recognition. Pattern Recogn 40(2):423–430

    Article  MATH  Google Scholar 

  20. Nabti M, Bouridane A (2008) An effective and fast iris recognition system based on a combined multiscale feature extraction technique. Pattern Recogn 41(3):868–879

    Article  MATH  Google Scholar 

  21. Tsai CC, Lin HY, Taur J, Tao CW (2012) Iris recognition using possibilistic fuzzy matching on local features. IEEE Trans Syst Man Cybern Part B 42(1):150–162

    Article  Google Scholar 

  22. Masek L (2003) Recognition of human iris patterns for biometric identification. Ph.D. thesis, Masters thesis, University of Western Australia

  23. Vatsa M, Singh R, Noore A (2008) Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE Trans Syst Man Cybern Part B 38(4):1021–1035

    Article  Google Scholar 

  24. Alonso-Fernandez F, Fierrez J, Ortega-Garcia J (2012) Quality measures in biometric systems. IEEE Secur Priv 10(6):52–62

    Google Scholar 

  25. Lim S, Lee K, Byeon O, Kim T (2001) Efficient iris recognition through improvement of feature vector and classifier. ETRI J 23(2):61–70

    Article  Google Scholar 

  26. Daouk C, El-Esber L, Kammoun F, Al Alaoui M (2002) Iris recognition. In: IEEE ISSPIT, pp 558–562

  27. Poursaberi A, Araabi BN (2005) A novel iris recognition system using morphological edge detector and wavelet phase features. Int J Graph Vis Image Process 5(6):9–15

    Google Scholar 

  28. Rahulkar AD, Holambe RS (2012) Half-iris feature extraction and recognition using a new class of biorthogonal triplet half-band filter bank and flexible k-out-of-n: a postclassifier. IEEE Trans Inf Forensics Secur 7(1):230–240

    Article  Google Scholar 

  29. Wang Y, Han JQ (2005) Iris recognition using independent component analysis. In: Proceedings of 2005 IEEE international conference on machine learning and cybernetics, vol 7, pp 4487–4492

  30. Ruiz-Albacete V, Tome-Gonzalez P, Alonso-Fernandez F, Galbally J, Fierrez J, Ortega-Garcia J (2008) Direct attacks using fake images in iris verification. In: Biometrics and identity management. Springer, New York, pp 181–190

  31. Sun Z, Wang Y, Tan T, Cu J (2004) Robust direction estimation of gradient vector field for iris recognition. In: Proceedings of the 17th IEEE international conference on pattern recognition (ICPR 2004), vol 2, pp 783–786

  32. Bowyer KW, Hollingsworth K, Flynn PJ (2008) Image understanding for iris biometrics: a survey. Comput Vis Image Underst 110(2):281–307

    Article  Google Scholar 

  33. Sundaram RM, Dhara BC, Chanda B (2011) A fast method for iris localization. In: Proceedings of second international conference on emerging applications of information technology (EAIT), pp 89–92

  34. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  35. Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms. In: Proceedings of IEEE conference on computer society computer vision and pattern recognition, pp 762–768

  36. Saha SK, Das AK, Chanda B (2004) Cbir using perception based texture and colour measures. In: Proceedings of IEEE international conference on pattern recognition (ICPR), vol 2, pp 985–988

  37. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  38. Jabid T, Hasanul Kabir M, Chae O (2010) Gender classification using local directional pattern (ldp). In: Proceedings of 20th IEEE international conference on pattern recognition (ICPR), pp 2162–2165

  39. Bergman R, Nachlieli H, Ruckenstein G (2007) Detection of textured areas in images using a disorganization indicator based on component counts. HP Laboratories Israel HPL-2005-175 (R. 1)

  40. Chanda B, Majumder DD (2004) Digital image processing and analysis. PHI Learning Pvt Ltd, New Delhi

    Google Scholar 

  41. Dhara BC, Chanda B (2004) Block truncation coding using pattern fitting. Pattern Recogn 37(11):2131–2139

    Article  Google Scholar 

  42. Dhara BC, Chanda B (2007) Color image compression based on block truncation coding using pattern fitting principle. Pattern Recogn 40(9):2408–2417

    Article  MATH  Google Scholar 

  43. Yang J, Jiang YG, Hauptmann AG, Ngo CW (2007) Evaluating bag-of-visual-words representations in scene classification. In: Proceedings of the international workshop on workshop on multimedia information retrieval. ACM, New York, pp 197–206

  44. Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

    Google Scholar 

  45. Bolle RM, Connell JH, Pankanti S, Ratha NK, Senior AW (2005) The relation between the roc curve and the cmc. In: Proceedings of fourth IEEE workshop on automatic identification advanced technologies, pp 15–20

  46. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  47. Tape TG (2006) Interpreting diagnostic tests. University of Nebraska Medical Center, http://www.gim.unmc.edu/dxtests

  48. Ahamed A, Bhuiyan MIH (2012) Low complexity iris recognition using curvelet transform. In: Proceedings of 2012 IEEE international conference on informatics, electronics & vision (ICIEV), pp 548–553

  49. Demirel H, Anbarjafari G (2008) Iris recognition system using combined histogram statistics. In: 23rd IEEE international symposium on computer and information sciences, 2008 (ISCIS’08), pp 1–4

  50. Ross A, Sunder MS (2010) Block based texture analysis for iris classification and matching. In: IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW), 2010 pp 30–37

  51. da Costa RM, Gonzaga A (2012) Dynamic features for iris recognition. IEEE Trans Syst Man Cybern Part B 42(4):1072–1082

    Article  Google Scholar 

  52. Monro DM, Rakshit S, Zhang D (2007) DCT-based iris recognition. IEEE Trans Pattern Anal Mach Intell 29(4):586–595

    Article  Google Scholar 

  53. Nabti M, Bouridane A (2013) New active contours approach and phase wavelet maxima to improve iris recognition system. In: Proceedings of the 4th IEEE European workshop on visual information processing (EUVIP), pp 238–244

  54. Harjoko A, Hartati S, Dwiyasa H (2009) A method for iris recognition based on 1D coiflet wavelet. World Acad Sci Eng Technol 56(24):126–129

    Google Scholar 

  55. Masood K, Javed D, Basit A (2007) Iris recognition using wavelet. In: IEEE international conference on emerging technologies (ICET 2007), Islamabad, pp 253–256

  56. Elgamal M, Al-Biqami N (2013) An efficient feature extraction method for iris recognition based on wavelet transformation. Int J Comput Inf Technol 2:521–527

    Google Scholar 

  57. Zhou Y, Kumar A (2010) Personal identification from iris images using localized radon transform. In: Proceedings of the 20th IEEE international conference on pattern recognition (ICPR), pp 2840–2843

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saiyed Umer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umer, S., Dhara, B.C. & Chanda, B. Texture code matrix-based multi-instance iris recognition. Pattern Anal Applic 19, 283–295 (2016). https://doi.org/10.1007/s10044-015-0482-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-015-0482-2

Keywords

Navigation