Skip to main content
Log in

Dynamic protein–protein interaction networks construction using firefly algorithm

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Protein–protein interaction (PPI) networks are dynamic in the real world. That is, at different times and under different conditions, the interaction among proteins may or may not be active. In different dataset, PPI networks might be gathered as static or dynamic networks. For the conversion of static PPI networks to time graphs, i.e., dynamic PPI networks, additional information like gene expression and gene co-expression profiles is used. One of the challenges in system biology is to determine appropriate thresholds for converting static PPI networks to dynamic PPI networks based on active proteins. In the available methods, fixed thresholds are used for all genes. However, the purpose of this study is to determine an adaptive unique threshold for each gene. In this study, the available additional information at different times and conditions and gold-standard protein complexes was employed to determine fitting thresholds. By so doing, the problem is converted into an optimization problem. Thereafter, the problem is solved using the firefly meta-heuristic optimization algorithm. One of the most remarkable aspects of this study is determining the attractiveness function in the firefly algorithm. In this study, attraction is defined as a combination of standard complexes and gene co-expressions. Then, active proteins are specified utilizing the created thresholds. The MCL, ClusterOne, MCODE and Coach algorithms are used for final evaluation. The experimental results about BioGRID dataset and CYC2008 gold-standard protein complexes indicated that the produced dynamic PPI networks by the proposed method have better results than the earlier methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anthony T (2006) A brief history of systems biology. Pl Cell 18:2420–2430

    Article  Google Scholar 

  2. De Las Rivas J, Fontanillo C (2010) Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6):e1000807

    Article  Google Scholar 

  3. Taheri G, Habibi M, Wong L, Eslahchi C (2013) Disruption of protein complexes. J Bioinform Comput Biol 11(03):1341008

    Article  Google Scholar 

  4. Shen X, Yi L, Jiang X, He T, Hu X, Yang J (2016) Mining temporal protein complex based on the dynamic PIN weighted with connected affinity and gene co-expression. PLoS ONE 11(4):e0153967

    Article  Google Scholar 

  5. Zhang Y, Du N, Li K, Feng J, Jia K, Zhang A (2013) Critical protein detection in dynamic PPI networks with multi-source integrated deep belief nets. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 29–36

  6. Chen B, Fan W, Liu J, Wu FX (2014) Identifying protein complexes and functional modules—from static PPI networks to dynamic PPI networks. Br Bioinform 15(2):177–194

    Article  Google Scholar 

  7. Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125

    Article  Google Scholar 

  8. Wang J, Peng X, Li M, Luo Y, Pan Y (2011) Active protein interaction network and its application on protein complex detection. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 37–42

  9. Xu C, Tao D, Xu C (2013) A survey on multi-view learning. arXiv preprint arXiv:1304.5634

  10. Serra A, Fratello M, Greco D, Tagliaferri R (2016) Data integration in genomics and systems biology. In: IEEE congress on evolutionary computation (CEC), pp 1272–1279

  11. Xu C, Tao D, Li Y, Xu C (2013) Large-margin multi-view Gaussian process for image classification. In ACM proceedings of the fifth international conference on internet multimedia computing and service, pp 7–12

  12. Wang J, Peng X, Li M, Luo Y, Pan Y (2011) Active protein interaction network and its application on protein complex detection. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 37–42

  13. Tang X, Wang J, Liu B, Li M, Chen G, Pan Y (2011) A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinform 12(1):339

    Article  Google Scholar 

  14. Shen X, Yi L, Jiang X, Zhao Y, Hu X, He T, Yang J (2016) Neighbor affinity based algorithm for discovering temporal protein complex from dynamic PPI network. Methods 110:90–96

    Article  Google Scholar 

  15. Hanna EM, Zaki N, Amin A (2015) Detecting protein complexes in protein interaction networks modeled as gene expression biclusters. PLoS ONE 10(12):e0144163

    Article  Google Scholar 

  16. Shen X, LiY, Jiang X, Zhao Y, He T, Yang J (2015) Detecting temporal protein complexes based on neighbor closeness and time course protein interaction networks. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 109–112

  17. Lei X, Wang F, Wu FX, Zhang A, Pedrycz W (2016) Protein complex identification through Markov clustering with firefly algorithm on dynamic protein–protein interaction networks. Inf Sci 329:303–316

    Article  Google Scholar 

  18. Kakade SM, Foster DP (2007) Multi-view regression via canonical correlation analysis. In: International conference on computational learning theory. Springer, Berlin, pp 82–96

  19. Akaho S (2006) A kernel method for canonical correlation analysis. arXiv preprint arXiv:cs/0609071

  20. Xu C, Tao D, Xu C (2015) Multi-view learning with incomplete views. IEEE Trans Image Process 24(12):5812–5825

    Article  MathSciNet  Google Scholar 

  21. Parvin H, Alizadeh H, Fathy M, Minaei-Bidgoli B (2008) Improved face detection using spatial histogram features. In: International Conference on Image Processing, Computer Vision, & Pattern Recognition, IPCV 2008, July 14–17, 2008, Las Vegas Nevada, USA, pp 381–386. ISBN 1-60132-078-7IPCV

  22. Parvin H, Minaei-Bidgoli B (2015) A clustering ensemble framework based on selection of fuzzy weighted clusters in a locally adaptive clustering algorithm. Pattern Anal Appl 18(1):87–112

    Article  MathSciNet  Google Scholar 

  23. Lee CP, Lin WS (2016) Using the two-population genetic algorithm with distance-based k-nearest neighbour voting classifier for high-dimensional data. Int J Data Min Bioinform 14(4):315–331

    Article  MathSciNet  Google Scholar 

  24. Zhu M, Liu S, Jiang J (2016) A hybrid method for learning multi-dimensional Bayesian network classifiers based on an optimization model. Appl Intell 44(1):123–148

    Article  Google Scholar 

  25. Parvin H, Mohammadi M, Rezaei Z (2012) Face identification based on Gabor-wavelet features. Int J Digit Content Technol Appl 6(1):247–255

    Article  Google Scholar 

  26. Khan MA, Shahzad W, Baig AR (2016) Protein classification via an ant-inspired association rules-based classifier. Int J Bio-Inspired Comput 8(1):51–65

    Article  Google Scholar 

  27. Parvin H, Minaei-Bidgoli B, Alinejad-Rokny H (2013) A new imbalanced learning and dictions tree method for breast cancer diagnosis. J Bionanosci 7(6):673–678

    Article  Google Scholar 

  28. Sun J, Garibaldi JM, Hodgman C (2012) Parameter estimation using metaheuristics in systems biology: a comprehensive review. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 9(1):185–202

    Article  Google Scholar 

  29. Adewumi AO, Arasomwan MA (2016) On the performance of particle swarm optimisation with (out) some control parameters for global optimisation. Int J Bio-Inspired Comput 8(1):14–32

    Article  Google Scholar 

  30. Wang H, Wang W, Sun H, Rahnamayan S (2016) Firefly algorithm with random attraction. Int J Bio-Inspired Comput 8(1):33–41

    Article  Google Scholar 

  31. Castelli M, Vanneschi L, Popovič A (2016) Parameter evaluation of geometric semantic genetic programming in pharmacokinetics. Int J Bio-Inspired Comput 8(1):42–50

    Article  Google Scholar 

  32. Rao BS, Vaisakh K (2016) Multi-objective adaptive clonal selection algorithm for solving optimal power flow problem with load uncertainty. Int J Bio-Inspired Comput 8(2):67–83

    Article  Google Scholar 

  33. Cai Q, Ma L, Gong M, Tian D (2016) A survey on network community detection based on evolutionary computation. Int J Bio-Inspired Comput 8(2):84–98

    Article  Google Scholar 

  34. Junior LDRDSES, Nedjah N (2016) Distributed strategy for robots recruitment in swarm-based systems. Int J Bio-Inspired Comput 8(2):99–108

    Article  Google Scholar 

  35. Jia Z, Duan H, Shi Y (2016) Hybrid brain storm optimisation and simulated annealing algorithm for continuous optimisation problems. Int J Bio-Inspired Comput 8(2):109–121

    Article  Google Scholar 

  36. Srivastava PR (2016) Test case optimisation a nature inspired approach using bacteriologic algorithm. Int J Bio-Inspired Comput 8(2):122–131

    Article  Google Scholar 

  37. Xu Z, Unveren A, Acan A (2016) Probability collectives hybridised with differential evolution for global optimisation. Int J Bio-Inspired Comput 8(3):133–153

    Article  Google Scholar 

  38. Osuna Enciso V, Cuevas E, Oliva D, Sossa H, Pérez Cisneros M (2016) A bio-inspired evolutionary algorithm: allostatic optimization. Int J Bio-Inspired Comput 8(3):154–169

    Article  Google Scholar 

  39. Ahirwal MK, Kumar A, Singh GK (2016) Study of ABC and PSO algorithms as optimised adaptive noise canceller for EEG/ERP. Int J Bio-Inspired Comput 8(3):170–183

    Article  Google Scholar 

  40. Niknam T, Kavousi Fard A (2016) Optimal energy management of smart renewable micro-grids in the reconfigurable systems using adaptive harmony search algorithm. Int J Bio-Inspired Comput 8(3):184–194

    Article  Google Scholar 

  41. Gu X (2010) Systems biology approaches to the computational modelling of trypanothione metabolism in Trypanosoma brucei. Doctoral dissertation, University of Glasgow

  42. Fonseca R, Paluszewski M, Winter P (2010) Protein structure prediction using bee colony optimization metaheuristic. J Math Model Algorithms 9(2):181–194

    Article  MathSciNet  Google Scholar 

  43. Rodriguez-Fernandez M, Egea JA, Banga JR (2006) Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinform 7(1):483

    Article  Google Scholar 

  44. Abdullah A, Deris S, Anwar S, Arjunan SN (2013) An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters. PLoS ONE 8(3):e56310

    Article  Google Scholar 

  45. Maher B, Albrecht AA, Loomes M, Yang XS, Steinhöfel K (2014) A firefly-inspired method for protein structure prediction in lattice models. Biomolecules 4(1):56–75

    Article  Google Scholar 

  46. Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46

    Article  Google Scholar 

  47. Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinform 13(1):328

    Article  Google Scholar 

  48. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets. Nucl Acids Res 41:D991–D995

    Article  Google Scholar 

  49. http:// www.thebiogrid.org, Accessed 29 Oct 2014

  50. OuYang L, Dai DQ, Li XL, Wu M, Zhang XF, Yang P (2014) Detecting temporal protein complexes from dynamic protein–protein interaction networks. BMC Bioinform 15(1):335

    Article  Google Scholar 

  51. Pu S, Wong J, Turner B, Cho E, Wodak SJ (2009) Up-to-date catalogues of yeast protein complexes. Nucl Acids Res 37(3):825–831

    Article  Google Scholar 

  52. Van Dongen S M (2001) Graph clustering by flow simulation. Doctoral dissertation

  53. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4(1):2

    Article  Google Scholar 

  54. Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9(5):471–472

    Article  Google Scholar 

  55. Wu M, Li X, Ng SK (2009) A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform 10:169

    Article  Google Scholar 

  56. Wang J, Peng X, Li M, Pan Y (2013) Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 13(2):301–312

    Article  Google Scholar 

  57. Byrum S, Smart SK, Larson S, Tackett AJ (2012) Analysis of stable and transient protein–protein interactions. Methods Mol Biol 833:143–152. doi:10.1007/978-1-61779-477-3_10

    Google Scholar 

  58. http://www.ncbi.nlm.nih.gov/geo/, Accessed 29 Oct 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moslem Mohammadi Jenghara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi Jenghara, M., Ebrahimpour-Komleh, H. & Parvin, H. Dynamic protein–protein interaction networks construction using firefly algorithm. Pattern Anal Applic 21, 1067–1081 (2018). https://doi.org/10.1007/s10044-017-0626-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-017-0626-7

Keywords

Navigation