Skip to main content
Log in

Sparse multilinear Laplacian discriminant analysis for gait recognition

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Distinct and unique ways of walking have attracted the attention of researchers for identification of different individuals. The Gait; the walking video sequence offers unique advantages like the capability of capturing from a distance in a non-cooperative environment and providing recognition without being obtrusive. These advantages has demonstrated applications of gait recognition during intelligent video surveillance. The paper presents new discriminative feature extraction and dimensionality reduction scheme called as Sparse Multilinear Laplacian Discriminant Analysis (SMLDA) for gait recognition. SMLDA exploits the benefits of Laplacian weighted scatter difference instead of simple scatter difference and sparsity constraint as a class separability measure. The performance of the proposed scheme has been evaluated experimentally on CASIA, USF and OU-ISIR datasets. The experimental results show the competitive performance in comparison with conventional gait recognition schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bashir K (2010) Robust gait recognition under variable covariate conditions. Ph.D. thesis, Queen Mary University of London, London

  2. Bashir K, Xiang T, Gong S (2009) Gait recognition using gait entropy image. In: International conference on crime detection and prevention. London, UK

  3. BenAbdelkader C (2002) Gait as a biometric for person identification in video. Ph.D. thesis, University of Maryland

  4. Bodor R, Drenner A, Fehr D, Masoud O, Papanikolopoulos N (2009) View-independent human motion classification using image-based reconstruction. Image Vis Comput 27(8):1194–1206. doi:10.1016/j.imavis.2008.11.008

    Article  Google Scholar 

  5. Boulgouris NV, Plataniotis KN, Hatzinakos D (2004) An angular transform of gait sequences for gait assisted recognition. In: 2004 International conference on image processing, ICIP’04, vol 2. IEEE, pp 857–860

  6. El-Alfy H, Mitsugami I, Yagi Y (2014) A new gait-based identification method using local gauss maps. In: Asian conference on computer vision. Springer, pp 3–18

  7. Guan Y, Li CT, Roli F (2015) On reducing the effect of covariate factors in gait recognition: a classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 37(7):1521–1528

    Article  Google Scholar 

  8. Lan TH, Cheung KH, Liu JN (2011) Gait flow image: a silhouette-based gait representation for human identification. Pattern Recognit 44:973–987

    Article  MATH  Google Scholar 

  9. Han J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28:316–322

    Article  Google Scholar 

  10. Hofmann M, Bachmann S, Rigoll G (2012) 2.5 d gait biometrics using the depth gradient histogram energy image. In: 2012 IEEE fifth international conference on biometrics: theory, applications and systems (BTAS). IEEE, pp 399–403

  11. Hu RX, Jia W, Huang DS, Lei YK (2010) Maximum margin criterion with tensor representation. Neurocomputing 73(10):1541–1549

    Article  Google Scholar 

  12. Huang X, Boulgouris NV (2012) Gait recognition with shifted energy image and structural feature extraction. IEEE Trans Image Process 21:2256–2268

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang Y, Xu D, Cham TJ (2010) Face and human gait recognition using image-to-class distance. IEEE Trans Circuits Syst Video Technol 20(3):431–438

    Article  Google Scholar 

  14. Iwama H, Okumura M, Makihara Y, Yagi Y (2012) The ou-isir gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans Inf Forensics Secur 7(5):1511–1521

    Article  Google Scholar 

  15. Lai Z, Xu Y, Chen Q, Yang J, Zhang D (2014) Multilinear sparse principal component analysis. IEEE Trans Neural Netw Learn Syst 25(10):1942–1950

    Article  Google Scholar 

  16. Lai Z, Xu Y, Jin Z, Zhang D (2014) Human gait recognition via sparse discriminant projection learning. IEEE Trans Circuits Syst Video Technol 24(10):1651–1662

    Article  Google Scholar 

  17. Lai Z, Xu Y, Yang J, Tang J, Zhang D (2013) Sparse tensor discriminant analysis. IEEE Trans Image Process 22:3904–3915

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu Y, Collins R, Lee S (2007) Shape variation-based frieze pattern for robust gait recognition. In: CVPR, pp 1–8

  19. Liu Z, Sarkar S (2005) Effect of silhouette quality on hard problems in gait recognition. IEEE Trans Systems Man Cybern Part B Cybern 35(2):170–183

    Article  Google Scholar 

  20. Lu H, Plataniotis KN, Venetsanopoulos AN (2008) MPCA: multilinear principal component analysis of tensor objects. IEEE Trans Neural Netw 19:18–39

    Article  Google Scholar 

  21. Lu H, Plataniotis KN, Venetsanopoulos AN (2009) Uncorrelated multilinear discriminant analysis with regularization and aggregation for tensor object recognition. IEEE Trans Neural Netw 20:103–123

    Article  Google Scholar 

  22. Lu H, Plataniotis KN, Venetsanopoulos AN (2009) Uncorrelated multilinear principal component analysis for unsupervised multilinear subspace learning. IEEE Trans Neural Netw 20:1820–1836

    Article  Google Scholar 

  23. Lu H, Plataniotis KN, Venetsanopoulos AN (2011) A survey of multilinear subspace learning for tensor data. Pattern Recognit 44:1540–1551

    Article  MATH  Google Scholar 

  24. Makihara Y, Matovski DS, Nixon MS, Carter JN, Yagi Y (2015) Gait recognition: databases, representations, and applications. Wiley Encycl Electr Electron Eng

  25. Makihara Y, Sagawa R, Mukaigawa Y, Echigo T, Yagi Y (2006) Gait recognition using a view transformation model in the frequency domain. In: Computer vision—ECCV 2006. Springer, pp 151–163

  26. Mowbray SD, Nixon MS (2003) Automatic gait recognition via fourier descriptors of deformable objects. In: Audio and video based biometric person authentication, pp 566–573

  27. Nie F, Xiang S, Song Y, Zhang C (2009) Extracting the optimal dimensionality for local tensor discriminant analysis. Pattern Recognit 42(1):105–114

    Article  MATH  Google Scholar 

  28. Nixon M, Carter J (2006) Automatic recognition by gait. IEEE Trans Image Video Process 94:2013–2024

    Google Scholar 

  29. Sarkar S, Phillips P, Liu Z, Vega IR, Grother P, Bowyer K (2005) The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans Pattern Anal Mach Intell 27:166–177

    Google Scholar 

  30. Sun J, Tao D, Papadimitriou S, Yu PS, Faloutsos C (2008) Incremental tensor analysis: theory and applications. ACM Trans Knowl Discov Data TKDD 2(3):11

    Google Scholar 

  31. Tao D, Li X, Wu X, Maybank S (2007) General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell 29:1700–1715

    Article  Google Scholar 

  32. Tao D, Li X, Wu X, Maybank S (2008) Tensor rank one discriminant analysis a convergent method for discriminative multilinear subspace selection. Neurocomputing 71(10):1866–1882

    Article  Google Scholar 

  33. Wang C, Zhang J, Pu J, Yuan X, Wang L (2010) Chrono-gait image: a novel temporal template for gait recognition. Comput Vis ECCV 2010(6311):257–270

    Google Scholar 

  34. Wang C, Zhang J, Pu J, Yuan X, Wang L (2010) Chrono-gait image: a novel temporal template for gait recognition. In: European Conference on Computer Vision. Springer, pp 257–270

  35. Wang L, Tan T, Hu W, Ning H (2003) Automatic gait recognition based on statistical shape analysis. IEEE Trans Image Process 12:1120–1131

    Article  MathSciNet  Google Scholar 

  36. Xu D, Huang Y, Zeng Z, Xu X (2012) Human gait recognition using patch distribution feature and locality-constrained group sparse representation. IEEE Trans Image Process 21(1):316–326

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu D, Yan S, Tao D, Lin S, Zhang HJ (2007) Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval. IEEE Trans Image Process 16(11):2811–2821

    Article  MathSciNet  Google Scholar 

  38. Xu D, Yan S, Tao D, Zhang L, Li X, Zhang HJ (2006) Human gait recognition with matrix representation. IEEE Trans Circuits Syst Video Technol 16(7):896–903

    Article  Google Scholar 

  39. Xu D, Yan S, Zhang L, Zhang HJ, Liu Z, Shum HY (2005) Concurrent subspaces analysis. In: IEEE computer society conference on computer vision and pattern recognition, vol 2. IEEE, pp 203–208

  40. Xu R, Chen YW (2009) Generalized N-dimensional principal component analysis (GND-PCA) and its application on construction of statistical appearance models for medical volumes with fewer samples. Neurocomputing 72(10):2276–2287

    Article  Google Scholar 

  41. Yan S, Xu D, Yang Q, Zhang L, Tang X, Zhang HJ (2005) Discriminant analysis with tensor representation. In: IEEE computer society conference on computer vision and pattern recognition, pp 526–532

  42. Yang W, Wang J, Ren M, Yang J, Zhang L, Liu G (2009) Feature extraction based on Laplacian bidirectional maximum margin criterion. Pattern Recognit 42(11):2327–2334

    Article  MATH  Google Scholar 

  43. Ye J (2005) Generalized low rank approximations of matrices. Mach Learn 61(1–3):167–191

    Article  MATH  Google Scholar 

  44. Yu S, Tan D, Tan T (2006) A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: International Conference on Pattern Recognition, pp 441–444

  45. Zhang W, Lin Z, Tang X (2009) Tensor linear Laplacian discrimination (TLLD) for feature extraction. Pattern Recognit 42:1941–1948

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risil Chhatrala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhatrala, R., Patil, S., Lahudkar, S. et al. Sparse multilinear Laplacian discriminant analysis for gait recognition. Pattern Anal Applic 22, 505–518 (2019). https://doi.org/10.1007/s10044-017-0648-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-017-0648-1

Keywords

Navigation