Skip to main content
Log in

A semi-supervised domain adaptation assembling approach for image classification

  • Short Paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Automatic annotation of images is one of the fundamental problems in computer vision applications. With the increasing amount of freely available images, it is quite possible that the training data used to learn a classifier has different distribution from the data which is used for testing. This results in degradation of the classifier performance and highlights the problem known as domain adaptation. Framework for domain adaptation typically requires a classification model which can utilize several classifiers by combining their results to get the desired accuracy. This work proposes depth-based and iterative depth-based fusion methods which are basically rank-based fusion methods and utilize rank of the predicted labels from different classifiers. Two frameworks are also proposed for domain adaptation. The first framework uses traditional machine learning algorithms, while the other works with metric learning as well as transfer learning algorithm. Motivated from ImageCLEF’s 2014 domain adaptation task, these frameworks with the proposed fusion methods are validated and verified by conducting experiments on the images from five domains having varied distributions. Bing, Caltech, ImageNet, and PASCAL are used as source domains and the target domain is SUN. Twelve object categories are chosen from these domains. The experimental results show the performance improvement not only over the baseline system, but also over the winner of the ImageCLEF’s 2014 domain adaptation challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. http://www.imageclef.org/2014/adaptation

  2. Bade S (2013) Random serial dictatorship: the one and only. In: Unpublished manuscript. Available from http://www.coll.mpg.de/sites/www.coll.mpg.de/files/workshop/newproof5.pdf

  3. Bai B, Weston J, Grangier D, Collobert R, Sadamasa K, Qi Y, Chapelle O, Weinberger K (2010) Learning to rank with (a lot of) word features. Inf Retr 13(3):291–314

    Article  Google Scholar 

  4. Baldwin JM (1926) The technique of the nanson preferential majority system of election. Proc R Soc Vic 39:42–52

    MATH  Google Scholar 

  5. Bergamo A, Torresani L (2010) Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In: Advances in neural information processing systems, pp 181–189

  6. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  7. Boiman O, Shechtman E, Irani M (2008) In defense of nearest-neighbor based image classification. In: IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008. IEEE, pp 1–8

  8. Borda JC (1784) Memoire sur les elections au scrutin. Histoire de l’Academie Royale des Science

  9. Camps R, Mora X, Saumell L (2012) A continuous rating method for preferential voting: the complete case. Soc Choice Welf 39(1):141–170

    Article  MathSciNet  MATH  Google Scholar 

  10. Caputo B, Patricia N (2014) Overview of the imageclef 2014 domain adaptation task. In: ImageCLEF 2014: overview and analysis of the results

  11. Cha SH, An YJ (2012) Taxonomy and nomenclature of preferential voting methods. In: Proceedings of the world congress on engineering and computer science, vol 1

  12. Chai J, Liu H, Chen B, Bao Z (2010) Large margin nearest local mean classifier. Signal Process 90(1):236–248

    Article  MATH  Google Scholar 

  13. Chen M, Weinberger KQ, Blitzer J (2011) Co-training for domain adaptation. In: Advances in neural information processing systems, pp 2456–2464

  14. Chidlovskii B, Csurka G, Gangwar S (2014) Assembling heterogeneous domain adaptation methods for image classification. In: ImageCLEF Domain Adaptation Challenge, pp 1–14

  15. Dai W, Yang Q, Xue GR, Yu Y (2007) Boosting for transfer learning. In: Proceedings of the 24th international conference on machine learning ACM, pp 193–200. doi:10.1145/1273496.1273521

  16. Daumé III H, Kumar A, Saha A (2010) Frustratingly easy semi-supervised domain adaptation. In: Proceedings of the 2010 workshop on domain adaptation for natural language processing. Association for Computational Linguistics, pp 53–59

  17. Daume H III, Marcu D (2006) Domain adaptation for statistical classifiers. J Artif Intell Res 26:101–126

    MathSciNet  MATH  Google Scholar 

  18. Davis JV, Kulis B, Jain P, Sra S, Dhillon IS (2007) Information-theoretic metric learning. In: Proceedings of the 24th international conference on machine learning. ACM, pp 209–216

  19. De Condorcet N et al (2014) Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Cambridge University Press, Cambridge

    Google Scholar 

  20. Donahue J, Hoffman J, Rodner E, Saenko K, Darrell T (2013) Semi-supervised domain adaptation with instance constraints. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 668–675

  21. Duan L, Tsang IW, Xu D, Chua TS (2009) Domain adaptation from multiple sources via auxiliary classifiers. In: Proceedings of the 26th annual international conference on machine learning ACM, pp 289–296. doi:10.1145/1553374.1553411

  22. Duan L, Xu D, Tsang I (2012) Learning with augmented features for heterogeneous domain adaptation. arXiv preprint arXiv:1206.4660

  23. Durand F, Mathieu F, Noirie L (2013) On the manipulability of voting systems: application to multi-operator networks. In: 9th international conference on network and service management. IEEE, pp 292–297

  24. Erdélyi G, Piras L, Rothe J (2010) Bucklin voting is broadly resistant to control. arXiv preprint arXiv:1005.4115

  25. Rodner E, Hoffman J, JDTDaKS (2013) Towards adapting imagenet to reality: scalable domain adaptation with implicit low-rank transformations. arXiv preprint arXiv:1308.4200 pp 289–296

  26. Freund Y, Schapire R, Abe N (1999) A short introduction to boosting. J Jpn Soc Artif Intell 14(771–780):1612

    Google Scholar 

  27. Geng B, Tao D, Xu C (2011) Daml: domain adaptation metric learning. IEEE Trans Image Process 20:2980–2989. doi:10.1109/TIP.2011.2134107

    Article  MathSciNet  MATH  Google Scholar 

  28. Globerson A, Roweis ST (2005) Metric learning by collapsing classes. In: Advances in neural information processing systems, pp 451–458

  29. Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 2066–2073

  30. Gopalan R, Li R, Chellappa R (2011) Domain adaptation for object recognition: an unsupervised approach. In: IEEE international conference on computer vision. IEEE, pp 999–1006

  31. Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. California Institute of Technology, Pasadena, pp 1473–1480

    Google Scholar 

  32. Guillaumin M, Verbeek J, Schmid C (2009) Is that you? Metric learning approaches for face identification. In: IEEE 12th international conference on computer vision. IEEE, pp 498–505

  33. Hara T, Miyao Y, Tsujii JI (2005) Adapting a probabilistic disambiguation model of an HPSG parser to a new domain. In: IJCNLP, pp 199–210

    Google Scholar 

  34. Huang P, Wang G, Qin S (2012) Boosting for transfer learning from multiple data sources. Pattern Recognit Lett 33(5):568–579

    Article  Google Scholar 

  35. Jacob Goldberger Sam Roweis GH, Salakhutdinov R (2004) Neighbourhood components analysis. In: Advances in neural information processing systems, pp 513–520

  36. Jiang J (2008) A literature survey on domain adaptation of statistical classifiers. URL: http://sifaka.cs.uiuc.edu/jiang4/domainadaptation/survey

  37. Hoffman J, Guadarrama S, Tzeng ES, Hu R, Donahue J, Girshick R, Darrell T, Saenko K (2014) Lsda: Large scale detection through adaptation. In: Advances in neural information processing systems, pp 3536–3544

  38. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    Article  MathSciNet  Google Scholar 

  39. Kranjc J, Smailović J, Podpečan V, Grčar M, Žnidaršič M, Lavrač N (2015) Active learning for sentiment analysis on data streams: methodology and workflow implementation in the clowdflows platform. Inf Process Manag 51(2):187–203

    Article  Google Scholar 

  40. Kulis B, Saenko K, Darrell T (2011) What you saw is not what you get: domain adaptation using asymmetric kernel transforms. In: IEEE conference on computer vision and pattern recognition (CVPR 2011), vol 24. pp 1785–1792. doi:10.1109/CVPR.2011.5995702

  41. Kumar A, Shekhar S (2011) Personal identification using multibiometrics rank-level fusion. IEEE Trans Syst Man Cybern Part C Appl Rev 41(5):743–752

    Article  Google Scholar 

  42. Long M, Wang J, Ding G, Pan SJ, Yu PS (2014) Adaptation regularization: A general framework for transfer learning. IEEE Trans Knowl Data Eng 26(5):1076–1089

    Article  Google Scholar 

  43. Everingham M, Van Gool L, Williams C, Winn J, Zisserman A (2005) Pascal visual object classes challenge results, vol 1, p 7. Available from http://www.pascal-network.org/

  44. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18

    Article  Google Scholar 

  45. Matasci G, Volpi M, Kanevski M, Bruzzone L, Tuia D (2015) Semisupervised transfer component analysis for domain adaptation in remote sensing image classification. IEEE Trans Geosci Remote Sens 53(7):3550–3564

    Article  Google Scholar 

  46. Guillaumin M, Mensink T, Verbeek J, Schmid C (2009) Tagprop: discriminative metric learning in nearest neighbor models for image auto-annotation. In: IEEE 12th international conference on computer vision. IEEE, pp 309–316

  47. Molina-González MD, Martínez-Cámara E, Martín-Valdivia MT, Ureña-López LA (2015) A spanish semantic orientation approach to domain adaptation for polarity classification. Inf Process Manag 51(4):520–531

    Article  Google Scholar 

  48. Morais DC, de Almeida AT (2012) Group decision making on water resources based on analysis of individual rankings. Omega 40(1):42–52

    Article  Google Scholar 

  49. Nowak E, Jurie F (2007) Learning visual similarity measures for comparing never seen objects. In: IEEE conference on computer vision and pattern recognition, 2007. CVPR’07. IEEE, pp 1–8

  50. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  51. Patel VM, Gopalan R, Li R, Chellappa R (2015) Visual domain adaptation: a survey of recent advances. IEEE Signal Process Mag 32(3):53–69

    Article  Google Scholar 

  52. Patricia N, Caputo B (2014) Learning to learn, from transfer learning to domain adaptation: a unifying perspective. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1442–1449

  53. Rai P, Khanna P (2014) A gender classification system robust to occlusion using gabor features based (2d) 2 pca. J Vis Commun Image Represent 25(5):1118–1129

    Article  Google Scholar 

  54. Saenko K, Kulis B, Fritz M, Darrell T (2010) Adapting visual category models to new domains. In: Computer vision–ECCV 2010. Springer, pp 213–226

  55. Mensink T, Verbeek J, Perronnin F, Csurka G (2013) Distance-based image classification: generalizing to new classes at near-zero cost. IEEE Trans Pattern Anal Mach Intell 35(11):2624–2637

    Article  Google Scholar 

  56. Tommasi T, Caputo B (2013) Frustratingly easy nbnn domain adaptation. In: 2013 IEEE international conference on computer vision (ICCV). IEEE, pp 897–904

  57. Torralba A, Murphy KP, Freeman WT (2007) Sharing visual features for multiclass and multiview object detection. IEEE Trans Pattern Anal Mach Intell 29(5):854–869

    Article  Google Scholar 

  58. Van Erp M, Vuurpijl L, Schomaker L (2002) An overview and comparison of voting methods for pattern recognition. In: Proceedings of eighth international workshop on frontiers in handwriting recognition. IEEE, pp 195–200

  59. Wang Z, Hu Y, Chia LT (2010) Image-to-class distance metric learning for image classification. In: Computer vision–ECCV 2010. Springer, pp 706–719

  60. Xiao J, Ehinger KA, Hays J, Torralba A, Oliva A (2016) Sun database: exploring a large collection of scene categories. Int J Comput Vis 119(1):3–22

    Article  MathSciNet  Google Scholar 

  61. Xu J, Ramos S, Vazquez D, Lopez AM (2014) Domain adaptation of deformable part-based models. IEEE Trans Pattern Anal Mach Intell 36(12):2367–2380

    Article  Google Scholar 

  62. Yao T, Pan Y, Ngo CW, Li H, Mei T (2015) Semi-supervised domain adaptation with subspace learning for visual recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2142–2150

  63. Yao Y, Doretto G (2010) Boosting for transfer learning with multiple sources. In: IEEE conference on computer vision and pattern recognition, pp 1855–1862

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritee Khanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, S., Pandey, S. & Khanna, P. A semi-supervised domain adaptation assembling approach for image classification. Pattern Anal Applic 21, 813–827 (2018). https://doi.org/10.1007/s10044-017-0664-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-017-0664-1

Keywords

Navigation