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Abstract
Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that 
make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an ensemble of 
optimum-path forest (OPF) classifiers, which consists into combining different instances that compute a score-based confi-
dence level for each training sample in order to turn the classification process “smarter”, i.e., more reliable. Such confidence 
level encodes the level of effectiveness of each training sample, and it can be used to avoid ties during the OPF competition 
process. Experimental results over fifteen benchmarking datasets have shown the effectiveness and efficiency of the proposed 
approach for classification problems, with more accurate results in more than 67% of the datasets considered in this work. 
Additionally, we also considered a bagging strategy for comparison purposes, and we showed the proposed approach can 
lead to considerably better results.

Keywords  Optimum-path forest · Supervised learning · Classifier ensemble

1  Introduction

The study of systems that make use of multiple classifiers 
has become an area of great interest in pattern recognition. 
A large number of methods to combine classifiers have 
been proposed recently, thus allowing the fusion of differ-
ent strategies aiming at improving the effectiveness of the 
whole system [8, 12, 13]. Researchers have suggested that a 
combination of decisions provided by several classifiers can 
result in a better recognition rate than using a sole classifier, 
or even using the best classifier from a collection [16]. In 
fact, it is expected that each classifier of this collection may 
learn different aspects of the data. Thus, the deficiencies of 
each technique can be offset by the improvements of others. 

Among the different methods proposed in the literature [19], 
bagging [6], Boosting [18] and Random Subspaces [14] as 
the most widely used methods. The Random Subspaces 
technique creates multiple classifiers using different spaces 
of features, while bagging generates different learners by 
randomly selecting subsets of samples to train base classi-
fiers. Although Boosting also uses part of the data to train 
the classifiers, the most difficult samples to be classified have 
a higher probability of being selected to compose the final 
training set.

The output of the classification algorithms can be 
roughly categorized into three levels [1]: abstract, rankings 
and confidence. In the first level, the classifiers associate a 
single label to each dataset sample, while in ranking-based 
approaches the possible labels for a sample are stored in a 
priority queue according to some criterion. In confidence-
oriented techniques, the classifier computes some metric that 
will reflect the probability of each label being assigned to a 
particular sample.

Papa et al. [23, 24] introduced the optimum-path for-
est (OPF) classifier which is a graph-based supervised 
pattern recognition technique with interesting results in 
terms of efficiency and effectiveness, comparable to the 
ones obtained by Support Vector Machines (SVMs) [7, 
32] but faster for training. The idea of OPF is to model 
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the pattern recognition task as a graph partition problem 
where a set of key samples (prototypes) acts as rulers of 
this competition process. Such samples try to conquer 
the remaining ones offering to them optimum-path costs, 
and when a sample is conquered, it receives the label of 
its conqueror. A new variant of the OPF classifier that 
makes use of a k-nearest neighborhood (k-nn) graph named 
OPFknn was proposed by Papa and Falcão [21, 22, 25], and 
its semi-supervised version has been presented by Amorim 
et al. [4]. An interesting property stated by Souza et al. 
[29] concerns that OPF is equivalent to 1-NN when all 
training samples are used as prototypes. In addition, the 
same authors presented the k-OPF as a natural extension 
of the OPF classifier and showed that k-OPF and the well-
known k-nearest neighbors technique are similar to each 
other under some situations. This is interesting in light of 
a recent work by Amancio et al. [3], which showed that 
k-nearest neighbors may perform so as well as Support 
Vector Machines. Ponti and Papa [27] showed the training 
step of OPF classifier can be more efficient and effective 
when subsets of the original training set are used rather 
than the whole set. In the same year, Ponti et al. [28] pro-
posed the combination of OPF classifiers using Markov 
Random Fields model as a decision graph and Game The-
ory to compute the final decision, i.e., each classifier is 
seen as player and each classifier decision (class label) 
is modeled as a strategy. Fernandes et al. [10] showed an 
improved version of the naïve OPF classifier that computes 
a score-based confidence level for each training sample 
in order to turn the classification process “smarter”, i.e., 
more reliable. Ponti and Rossi [26] investigated differ-
ent data undersampling approaches and their influence 
in ensembles of OPF-based classifiers. Fernandes et al. 
[11] introduced meta-heuristic optimization techniques 
for pruning OPF-based classifiers in the context of land 
cover classification. However, there are very few studies 
on combining OPF classifiers to improve effectiveness in 
the classification process.

In this paper, an ensemble of OPF score-based confi-
dence classifiers is proposed, which consider not only the 
optimum-path value from a given sample in the classifi-
cation process, but also its confidence value measured by 
means of a score index computed over a validating set. In 
a nutshell, the idea is to exploit the combination of OPF 
using bag-of-classifiers by using optimum-path costs that 
consider confidence values coming from different classi-
fiers. It is shown this approach can overcome traditional 
OPF in several datasets, i.e., providing a refinement of 
OPF classification process, even when learn on smaller 
training sets, as well as it can perform training faster than 
its standard version when using the same amount of data. 
The proposed approach also improves the recent results 

presented by Fernandes et al. [10] and also extends such 
approach in the context of OPFknn classifier.

The remainder of the paper is organized as follows. Sec-
tions 2 and 3 present the OPF background theory and the 
proposed approach for ensemble-oriented classification with 
score-based confidence computation, respectively. Section 4 
describes the methodology and the experimental results. 
Finally, conclusions and future works are stated in Sect. 5.

2 � Optimum‑path forest

In this section, the theoretical foundation of the naïve OPF 
is discussed. Given some key nodes (prototypes), they 
will compete among themselves aiming at conquering the 
remaining nodes. Thus, the algorithm outputs an optimum-
path forest, which is a collection of optimum-path trees 
(OPTs) rooted at each prototype. This work employs the 
OPF classifier proposed by Papa et al. [23, 24], which is 
explained in more details as follows.

Let � = �1 ∪�2 be a labeled dataset, such that �1 and 
�2 stand for the training and test sets, respectively. Let 
� ⊂ �1 be a set of prototypes of all classes (i.e., key samples 
that best represent the classes). Let ( �1,� ) be a complete 
graph whose nodes are the samples in �1 , and any pair of 
samples defines an edges in � = �1×�1 . Additionally, let �s 
be a path in (�1,�) with terminus at sample � ∈ �1.

The OPF algorithm proposed by Papa et al. [23, 24] 
employs the path-cost function fmax due to its theoretical 
properties for estimating prototypes (Sect. 2.1 gives further 
details about this procedure):

where d(s, t) stands for a distance between nodes s and t, 
such that s, t ∈ �1 . Therefore, fmax(�s) computes the maxi-
mum distance between adjacent samples in �s , when �s is not 
a trivial path. In short, the OPF algorithm tries to minimize 
fmax(�t),∀t ∈ �1.

2.1 � Training phase

Say that �∗ is an optimum set of prototypes when OPF 
algorithm minimizes the classification errors for every 
� ∈ �1 . Given that �∗ can be found by exploiting the 
theoretical relation between the minimum-spanning tree 
and the optimum-path tree for fmax [2], the training essen-
tially consists in finding �∗ and an OPF classifier rooted 
at �∗ . By computing a minimum-spanning tree (MST) in 
the complete graph ( �1,� ) obtains a connected acyclic 

(1)
fmax(⟨s⟩) =

�
0 if s ∈ 𝒮

+∞ otherwise,

fmax(�s ⋅ ⟨s, t⟩) =max{fmax(�s), d(s, t)},
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graph whose nodes are all samples of �1 and the edges 
are undirected and weighted by the distances d between 
adjacent samples. In the MST, every pair of samples is 
connected by a single path, which is optimum according 
to fmax . Hence, the minimum-spanning tree contains one 
optimum-path tree for any selected root node.

The optimum prototypes are the closest elements of the 
MST with different labels in �1 (i.e., elements that fall in 
the frontier of the classes). By removing the edges between 
different classes, their adjacent samples become prototypes 
in �∗ , and OPF algorithm can define an optimum-path for-
est with minimum classification errors in �1.

2.2 � Classification phase

For any sample � ∈ �2 , we consider all edges connecting 
� with samples � ∈ �1 , as though � were part of the train-
ing graph. Considering all possible paths from �∗ to � , 
we find the optimum-path �∗(�) from �∗ and label � with 
the class �(ℛ(�)) of its most strongly connected prototype 
ℛ(�) ∈ 𝒮∗ . This path can be identified incrementally, by 
evaluating the optimum cost �(�) as follows:

Let the node s∗ ∈ �1 be the one that satisfies Eq. 2 (i.e., 
the predecessor �(�) in the optimum-path �∗(�) ). Given 
that L(s∗) = �(ℛ(�)) , the classification simply assigns L(s∗) 
as the class of � . An error occurs when L(�∗) ≠ �(�) . An 
interesting point to be considered concerns with the rela-
tion between OPF and the nearest neighbor classifier (NN). 
Although OPF uses the distance between samples to com-
pose the cost to be offered to them, the path-cost function 
encodes the power of connectivity of the samples that fall 
in the same path, being much more powerful than the sole 
distance. Therefore, this means OPF is not a distance-based 
classifier. Additionally, Papa et al. [24] showed that OPF is 
quite different than NN, being those techniques exactly the 
same only when all training samples become prototypes.

3 � Ensemble of classifiers with score‑based 
confidence levels

In this section, the confidence level proposed by Fernandes 
et al. [10] is first introduced in Sect. 3.1, followed by the 
proposed approach based on ensemble of classifiers to 
improve the OPF learning process using that confidence 
levels in Sect. 3.2.

(2)
�(�) = min

∀� ∈ �1

{max{�(�), d(�, �)}}.

3.1 � Score‑based confidence levels

In order to extract the confidence level, the dataset � is 
partitioned into three subsets, say that � = �1 ∪�v ∪�2 
where �1 , �v and �2 stand for the training, validating and 
testing sets, respectively. It is worth nothing to say all sub-
sets have their respective graph representation as being 
( �1,� ), ( �v,� ) and ( �2,� ), as defined in Sect. 2. There-
fore, the same definition applied for �1 and �2 can also be 
adopted for �v.

The approach proposed by Fernandes et al. [10] to cal-
culate scores aims at training OPF classifier over �1 for 
further classification of �v using the same methodology 
described in Sect. 2. The main difference is that each train-
ing sample receives a reliability level �(⋅) , which is com-
puted by means of its individual performance (recognition 
rate) over the validating set. The training samples � ∈ �1 
start with �(�) = 0 , and if � classifies some validating sam-
ple, then �(�) = �(�) + 1 ; if misclassification occurs, then 
�(�) = �(�) − 1 . Later on, the final �(�) is computed based 
on the average of hits and errors for each sample � ∈ �v con-
quered by � . Also, considering the aforementioned approach, 
a sample � ∈ �1 that did not participate from any classifi-
cation process would be scored as �(�) = 0 , and thus may 
be penalized, since the higher the score the most reliable 
that sample is. Therefore, for such samples are assigned 
�(�) → +1 to give them a chance to perform a classification 
process over the unseen (test) data without any disadvantage. 
Thus, at the end of the classification process over the vali-
dating set �v have a score measure �(�) ∈ [0, 1],∀� ∈ �1 , 
which can be used as a confidence level of that sample. In 
short, there are three possible confidence levels:

–	 �(�) = 0 : it means sample � did not perform a good work 
on classifying samples, since it has misclassified all sam-
ples. Therefore, samples with score equal to 0 may not be 
reliable;

–	 0 < 𝜙(�) < 1 : it means sample � has misclassified some 
samples, as well as it has also assigned correct labels to 
some of them. Notice the larger the errors, the lower is 
the sample’s reliability. Samples with scores that fall in 
this range may be reliable; and

–	 �(�) = 1 : it means either sample � did not participate in 
any classification process or � assigned the correct label 
to all its conquered samples, which means � is a reliable 
sample according to our definition.

Algorithm 1 implements the procedure described above. 
Lines 1–4 initialize the score of each training sample, and 
Line 5 performs the OPF training step over (�1,�) . The 
core of the algorithm is performed in Lines 6–15: the clas-
sification process of a validation sample � is performed in 
Line 7 using traditional OPF classification procedure. Let 
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�
∗ ∈ �1 be the sample that has conquered � : in this case, the 

counter n(⋅) of samples classified by �∗ is then increased in 
Line 8. Additionally, if � is misclassified, the counter e(⋅) is 
decreased for that training sample �∗ in Line 10. The loop in 
Lines 11–15 is responsible for computing the final score for 
each training sample. Lines 12–13 set the score of a sample 
that did not participate in any classification process to 1, as 
mentioned above.

After calculating the confidence levels for each training 
sample, one needs to modify the naïve OPF classification 
procedure in order to consider such information during the 
label assignment. In order to fulfill this purpose, Fernandes 
et al. [10] proposed a modification in the OPF classification 
procedure (Eq. 2) as follows:

where � = 10−4 is employed to avoid numerical instabilities. 
Therefore, the idea of the first term in the Eq. 3 is to penalize 
samples with low confidence values by increasing their costs. 
In short, the amount of penalty is inversely proportional to 
the sample’s confidence level. For the sake of explanation, 
we provided a graphic illustration of the working mechanism 
considering the confidence level-based optimum-path forest 
classifier proposed by Fernandes et al. [10]. Let OPF∗ be 
the classifier trained on �1 ∪�v , and OPFc the confidence-
based approach proposed by Fernandes et al. [10]. The idea 
is to show the situations in which the approach that uses 

(3)

�
�(�) = min

∀� ∈ �1

{(
1

�(�) + �

)
∗ max{�(�), d(�, �)}

}
,

confidence levels may overcome standard OPF by making 
use of the reliability of a given training sample when clas-
sifying others. Figure 1 depicts the training (hexagon) and 
validating (remaining samples) sets with respect to “Syn-
thetic1” dataset (Table 1), which comprises two classes 
(squares and circles) with a high amount of data overlapping. 
Now, let us consider the highlighted zone displayed in Fig. 1, 
which is zoomed and represented in Figs. 2a–c, correspond-
ing to the same set of samples for OPF, OPF∗ and OPFc , 
respectively. Samples ‘A’, ‘B’ and ‘C’ are part of the train-
ing set, while sample ’D’ belongs to the validating set; and 
the “circle” is a test sample that can be classified by either 
‘A’, ‘B’ or ‘C’ (we showed the competition process between 
‘A’ and ‘B’ only). Considering standard OPF (Fig. 2a), we 
can observe sample ‘B’ (solid edge) has provided a better 
path-cost than sample ’A’ (dashed edge), thus conquering the 
test sample and also misclassifying it, since its true label is 
“circle”, i.e., the same label as ‘A’. The same situation can 
be observed for OPF∗ in Fig. 2b, meaning that larger train-
ing sets may not be helpful for learning patterns in highly 
overlapped regions (as aforementioned, OPF∗ is trained over 
�1 ∪�v ). However, if we consider the confidence values 
in OPFc (Fig. 2c), we can notice that sample ‘B’ has been 
penalized with a lower confidence level than sample ‘A’, 
thus reflecting in the cost provided to the test sample, which 
is more suitable considering now sample ‘A’ (solid edge), 
since it has a better confidence level. Therefore, the classifi-
cation based on the training samples’ reliability allows OPFc 
to be more accurate in some situations, mainly in highly 
overlapped datasets. Finally, Fig. 2d depicts the regions of 
the training space according to the domain of confidence 
value through the natural neighbor interpolation [15]. We 
can observe the “darkest regions” (confidence value close 
to zero) stand for the ones with high levels of overlapping 

Fig. 1   Graphic representation of each training sample of “Synthetic1” 
(Table 1) dataset according to its confidence level
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in Fig. 1, supporting the idea that training samples that fall 
in such regions may not be reliable enough for classifying 
others, as well as training samples that are located nearby to 
outliers, which have a high probability to be misclassified 
in traditional pattern recognition techniques. Therefore, if a 
training sample misclassifies an outlier from the validating 
set in the OPFc , its confidence level will drop, thus raising 
its classification cost over the test samples.

3.2 � Ensemble‑based confidence levels

In this section, a new approach is presented based on bag-
of-classifiers and confidence measures to improve OPF 
effectiveness. Since OPF classifier uses the abstract output 
method only, i.e., the output of the classifier is a single label, 
the OPF based on confidence levels also returns the very 
same output. Xu et al. [31] defined an interesting approach to 
combine the outputs of L classifiers in an ensemble depend-
ing on the information obtained from the individual mem-
bers. Such approach considers that each classifier assigns 
a class label to every sample in the dataset. Therefore, the 

(a) (b)

(c) (d)

Fig. 2   Example of a classification process in the test set for a OPF, b OPF∗ and c OPFc , and the d graphic representation for the dispersion 
zones of each training sample of “Synthetic1” (Table 1) dataset

Table 1   Description of the datasets

Dataset # samples # features # classes

aflw 8193 4096 2
Pima-Indians-Diabetes 768 8 2
Statlog-Australian 690 14 2
Statlog-dna 5186 180 3
Statlog-Heart 270 13 2
Synthetic1 500 2 2
Synthetic2 1000 2 2
Synthetic3 200 2 2
Synthetic4 100,000 4 4
UCI-a1a 32,561 123 2
UCI-Ionosphere 351 34 2
UCI-Liver-disorders 345 6 2
usps 9298 256 10
w1a 49,749 300 4
yahoo-web-directory-topics 1106 10,629 4
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ensemble of classifiers generates a collection of L possible 
outputs to each sample.

Let ℳ = {ℳ1,ℳ2,… ,ℳL} be a set of L classifiers, and 
� = {�1,�2,… ,�K} be a set of K class labels. Roughly 
speaking, each classifier takes an n-dimensional input vec-
tor and associates it to a class label, i.e., Mi ∶ ℜn

→ � , 
i = 1, 2,… , L . Therefore, for any sample � to be classi-
fied, the ensemble of classifiers generates a collection 
�
�
= [�

�
(ℳ1),… ,�

�
(ℳL)] of possible outputs, where 

�
�
(ℳi) stands for the output of classifier ℳi considering 

sample �.
The idea is to partition the training set �1 into L subsets 

�
j

1
 , i.e., 𝒟1 = 𝒟

1

1
∪𝒟

2

1
∪⋯ ∪𝒟

L
1

 , such that each classi-
fier ℳi will be trained over �i

1
 , i = 1, 2,…L . The proposed 

approach employs the confidence-based procedure presented 
in Sect. 3.1 for each trained classifier ℳi using the validat-
ing set �v , i.e., this means we shall associate a score level 
for each sample from the different training folds. After cal-
culating the score levels in the validating phase, the clas-
sification takes place using Eq. 3, and the possible outputs 
are assigned to each sample � ∈ �2 . The classification of 
that sample is performed through the majority vote. We also 
evaluated the proposed approach using ensembles composed 
of two distinct OPF versions: OPF with complete graph [24] 
and with a k-NN graph, i.e., OPFknn [21]. Additionally, we 
apply the same idea of confidence levels in OPFknn classifi-
cation step as well, since the work by Fernandes et al. [10] 
used OPF with complete graph only.

4 � Methodology and experimental results

The proposed ensemble confidence-based OPF classifier is 
compared with standard OPF using fifteen real and synthetic 
different benchmark classification problems.1 ,2 The datasets 
were normalized as follows:

where � denotes the mean, and � stands for its standard 
deviation. Also, � and �′ correspond to the original and nor-
malized features, respectively. Table 1 presents the main 
characteristics of each dataset.

In regard to the methodology, each dataset was parti-
tioned into three subsets: training (40%), validating (20%) 
and testing sets (40%), hereinafter denoted as 40:20:40. 

(4)�
� =

� − �

�

For each range, training, validating and testing sets were 
selected randomly and the process was repeated twenty 
times (Stratified k-fold cross-validation).3 It is worth not-
ing the standard OPF was trained over �1 ∪�v considering 
the aforementioned subsets. In order to provide a consistent 
experimental evaluation, the following classifiers were com-
pared: (a) standard OPF; (b) the baseline classifier which 
uses the confidence-based OPF proposed by Fernandes et al. 
[10], ( OPFc ); and (c) the proposed work using three base 
OPFc classifiers and a combination of decisions provided by 
majority voting, defined as ensemble OPFc. Furthermore, to 
evaluate the impact with other OPF variants, we conducted 
two more experiments: (d) one that combines OPFknn and 
OPFc , i.e., an ensemble with two base OPFc classifiers and 
one OPFknn (hereinafter called OPFc + OPFknn ); and (e) one 
last approach composed of OPFknn using the very same con-
fidence-based idea of OPFc , but now adapted to this variant 
that uses a k-neighborhood graph (defined as OPFknnC ). In 
this case, the ensemble also contains three base classifiers, 
one OPFknnC and two OPFc . The pipeline of experimental 
evaluation using the bag-of-classifiers ensemble is illustrated 
in Fig. 3.

We used three base classifiers only, since we observed no 
significant gains using more classifiers. The rationale behind 
that is related to the numbers of samples available for the 
learning process of each base classifier, since the more clas-
sifiers we use, the smaller the training sets. The idea is to 
look for effectiveness by using the analysis of confidence 
levels in conjunction with efficiency by using disjoint sets to 
accelerate and improve the final decision-making process by 
combining decisions. In addition, we compared the proposed 
pipeline with the bagging strategy using an ensemble of 
three classifiers aggregated by using different bootstrapped 
samples of the original training data.

Table 2 presents the mean accuracies and standard devia-
tion over all datasets, being the recognition rates computed 
according to Papa et al. [24], and Table 3 presents the bag-
ging strategy concerning the very same group of datasets. In 
addition, the F-measure metric was calculated for the very 
same group of datasets concerning the proposed approach 
and bagging in Tables 4, 5, respectively. The most accurate 
techniques considering the Wilcoxon test [30] (with signifi-
cance of 0.05) are highlighted in bold.

We can observe the proposed ensemble-based OPF has 
obtained the best results in 10 out 15 datasets according to 
Table 2. It is worth noting that the bagging strategy allowed 
the best results in only 2 out the 15 datasets concerning the 
accuracy results (Table 3) of ensemble-based approaches 
and provided better results for only “UCI-Ionosphere”, 
“UCI-Liver-disorders”, “usps” and “yahoo-web-directory-
topics” datasets. In regard to Tables 4 and 5, the F-measure 
values showed a similar behavior to that observed in the 
accuracy. The main idea in computing confidence levels for 

1  http://archive.ics.uci.edu/ml.
2  http://lrs.icg.tugraz.at/research/aflw.
3  Notice the percentages have been empirically chosen, being more 
intuitive to provide a larger validating set for calculating the confi-
dence levels.

http://archive.ics.uci.edu/ml
http://lrs.icg.tugraz.at/research/aflw
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Fig. 3   Pipeline of the experi-
mental evaluation: a standard 
and b baseline approaches, c 
the proposed approach using 
three base OPFc classifiers, d 
using two base OPFc and one 
OPFknn classifier, and e one that 
combines OPFknnC ( OPFknn with 
confidence levels) and two OPFc

(a)

(b)

(c)

(d)

(e)
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each training sample and further applying Eq. 3 as the path-
cost function is to avoid ties during the competition process. 
Roughly speaking, a tie means we have two (at least) dif-
ferent samples that offer the same optimum cost to another 
sample. The problem occurs when such samples belong to 
different classes, which may lead OPF to a misclassification. 

Therefore, by considering the confidence level in the path-
cost function, we can rely on samples that are more “trust-
able” than others. However, by using bagging strategies, 
since the validating set is the same and we have ensembles 
composed of training samples that are sampled with reposi-
tion, we can also have training samples with the very same 

Table 2   Mean accuracy results (%) and standard deviation over all datasets for standard OPF, OPFc , and ensemble under different configuration

The most accurate techniques for the Wilcoxon test are highlighted in bold

Dataset OPF OPFc ensemble ensemble ensemble
OPFc OPFc + OPFc +

OPF
knn

OPF
knnC

aflw 89.9047 ± 0.5281 89.5206 ± 0.3943 ��.���� ± 0.4024 ��.���� ± 0.4628 ��.���� ± 0.4106

Pima-Indians-Diabetes 65.9111 ± 3.0189 66.2384 ± 2.0851 ��.���� ± 2.6485 ��.���� ± 2.7670 ��.���� ± 2.7670

Statlog-Australian 77.8525 ± 2.0016 79.4537 ± 2.4155 ��.���� ± 1.2958 82.8686 ± 1.5526 82.8686 ± 1.5526

Statlog-dna ��.���� ± 0.5335 87.3751 ± 0.6745 86.0323 ± 0.7358 85.9107 ± 0.6781 85.9793 ± 0.9693

Statlog-Heart 76.5104 ± 1.9464 76.2604 ± 6.4816 ��.���� ± 3.8658 ��.���� ± 4.3359 ��.���� ± 4.3359

Synthetic1 51.8000 ± 1.3910 52.8750 ± 1.3863 ��.���� ± 2.2106 ��.���� ± 2.3932 ��.���� ± 2.3932

Synthetic2 70.4500 ± 1.4374 74.2250 ± 1.7605 ��.���� ± 2.3907 ��.���� ± 1.7686 ��.���� ± 1.8104

Synthetic3 92.7790 ± 3.8120 93.4329 ± 1.5429 ��.���� ± 2.4503 ��.���� ± 1.5597 ��.���� ± 1.5597

Synthetic4 85.5993 ± 0.1442 86.7918 ± 0.1146 ��.���� ± 0.0970 88.5103 ± 0.0747 88.5173 ± 0.0789

UCI-a1a 67.5772 ± 0.8289 69.6517 ± 1.0403 72.2513 ± 0.4794 ��.���� ± 0.4591 ��.���� ± 0.6518

UCI-Ionosphere ��.���� ± 2.6531 ��.���� ± 3.0253 77.6144 ± 2.5317 75.3513 ± 4.3467 75.3513 ± 4.3467

UCI-Liver-disorders ��.���� ± 2.0933 ��.���� ± 2.1215 57.2144 ± 2.1227 57.1379 ± 3.8046 57.1379 ± 3.8046

usps ��.���� ± 0.1750 97.0480 ± 0.1811 96.4015 ± 0.1930 96.4647 ± 0.1698 96.4936 ± 0.1723

w1a 76.7155 ± 1.3150 78.3214 ± 1.2836 81.4666 ± 0.6995 ��.���� ± 0.7084 ��.���� ± 0.7421

yahoo-web-directory-topics 63.3961 ± 3.7948 ��.���� ± 3.4701 60.7265 ± 5.5222 60.1739 ± 6.4093 61.3214 ± 5.5594

Table 3   Mean accuracy results (%) and standard deviation over all datasets using bagging strategy for ensemble-based OPF under different con-
figurations

The most accurate techniques for the Wilcoxon test are highlighted in bold

Dataset OPF OPFc ensemble ensemble ensemble
OPFc OPFc + OPFc +

OPF
knn

OPF
knnC

aflw ��.���� ± 0.5281 89.5206 ± 0.3943 89.9325 ± 0.3935 ��.���� ± 0.3722 ��.���� ± 0.3722

Pima-Indians-Diabetes ��.���� ± 3.0189 ��.���� ± 2.0851 ��.���� ± 2.1528 ��.���� ± 2.3142 ��.���� ± 2.3142

Statlog-Australian 77.8525 ± 2.0016 ��.���� ± 2.4155 ��.���� ± 1.8472 ��.���� ± 1.6151 ��.���� ± 1.6151

Statlog-dna ��.���� ± 0.5335 87.3751 ± 0.6745 89.1084 ± 0.5769 88.9461 ± 0.5885 88.9461 ± 0.5885

Statlog-Heart ��.���� ± 1.9464 ��.���� ± 6.4816 ��.���� ± 3.8860 ��.���� ± 4.0239 ��.���� ± 4.0239

Synthetic1 51.8000 ± 1.3910 ��.���� ± 1.3863 ��.���� ± 2.4160 ��.���� ± 2.3292 ��.���� ± 2.3292

Synthetic2 70.4500 ± 1.4374 ��.���� ± 1.7605 ��.���� ± 1.6155 ��.���� ± 1.6573 ��.���� ± 1.6573

Synthetic3 ��.���� ± 3.8120 ��.���� ± 1.5429 ��.���� ± 2.0879 ��.���� ± 2.1973 ��.���� ± 2.1973

Synthetic4 85.5993 ± 0.1442 ��.���� ± 0.1146 ��.���� ± 0.1460 86.8229 ± 0.1435 86.8229 ± 0.1435

UCI-a1a 67.5772 ± 0.8289 69.6517 ± 1.0403 70.8360 ± 0.7138 ��.���� ± 0.4872 ��.���� ± 0.4872

UCI-Ionosphere 80.0997 ± 2.6531 80.0180 ± 3.0253 ��.���� ± 3.3906 ��.���� ± 3.0783 ��.���� ± 3.0783

UCI-Liver-disorders ��.���� ± 2.0933 ��.���� ± 2.1215 ��.���� ± 4.0186 ��.���� ± 4.3026 ��.���� ± 4.3026

usps ��.���� ± 0.1750 97.0480 ± 0.1811 97.2822 ± 0.1625 ��.���� ± 0.1700 ��.���� ± 0.1700

w1a 76.7155 ± 1.3150 78.3214 ± 1.2836 81.4666 ± 0.8151 ��.���� ± 1.1398 ��.���� ± 1.1398

yahoo-web-directory-topics 63.3961 ± 3.7948 ��.���� ± 3.4701 ��.���� ± 6.4529 ��.���� ± 6.1363 ��.���� ± 6.1363



711Pattern Analysis and Applications (2019) 22:703–716	

1 3

confidence level (such value is computed over the very same 
validating set for all training subsets). In this context, avoid-
ing ties will no longer be possible, degenerating to the origi-
nal OPF and thus affecting the results as we can observe in 
Tables 2 and 3. It was not possible to establish some specific 
situation considering the dataset configuration (e.g., number 
of classes and the number features) in which ensemble OPFc 

could be better than OPF and OPFc , although it seems the 
proposed approach has obtained the top results in situations 
with highly overlapped regions. Taking a look at Fig. 4a, b 
(“Synthetic1” and “Synthetic2” dataset, respectively), we 
can observe a considerable amount of overlapping among 
samples of different classes, thus being more useful to learn 
patterns with OPFc and, consequently, we can obtain more 

Table 4   Mean F-measure values over all datasets for standard OPF, OPFc , and ensemble under different configuration

The most accurate techniques for the Wilcoxon test are highlighted in bold

Dataset OPF OPFc ensemble ensemble ensemble
OPFc OPFc + OPFc +

OPF
knn

OPF
knnC

aflw 0.8937 ± 0.0057 0.8909 ± 0.0041 �.���� ± 0.0042 �.���� ± 0.0049 �.���� ± 0.0043

Pima-Indians-Diabetes 0.6925 ± 0.0244 0.6979 ± 0.0152 �.���� ± 0.0231 �.���� ± 0.0217 �.���� ± 0.0217

Statlog-Australian 0.7825 ± 0.0199 0.7973 ± 0.0234 �.���� ± 0.0124 0.8329 ± 0.0147 0.8329 ± 0.0147

Statlog-dna �.���� ± 0.0074 0.8150 ± 0.0097 0.8095 ± 0.0098 0.7993 ± 0.0094 0.8011 ± 0.0127

Statlog-Heart 0.7690 ± 0.0184 0.7662 ± 0.0647 �.���� ± 0.0383 �.���� ± 0.0423 �.���� ± 0.0423

Synthetic1 0.5180 ± 0.0139 0.5288 ± 0.0139 �.���� ± 0.0221 �.���� ± 0.0239 �.���� ± 0.0239

Synthetic2 0.7045 ± 0.0144 0.7423 ± 0.0176 �.���� ± 0.0239 �.���� ± 0.0177 �.���� ± 0.0181

Synthetic3 �.���� ± 0.0381 0.9340 ± 0.0157 �.���� ± 0.0248 �.���� ± 0.0158 �.���� ± 0.0158

Synthetic4 0.7840 ± 0.0022 0.8019 ± 0.0017 �.���� ± 0.0015 0.8277 ± 0.0011 0.8278 ± 0.0012

UCI-a1a 0.7312 ± 0.0134 0.7622 ± 0.0148 �.���� ± 0.0032 �.���� ± 0.0029 �.���� ± 0.0044

UCI-Ionosphere �.���� ± 0.0200 �.���� ± 0.0214 0.8319 ± 0.0172 0.8163 ± 0.0300 0.8163 ± 0.0300

UCI-Liver-disorders �.���� ± 0.0198 �.���� ± 0.0232 �.���� ± 0.0188 0.6014 ± 0.0369 0.6014 ± 0.0369

usps �.���� ± 0.0028 0.9526 ± 0.0031 0.9429 ± 0.0030 0.9439 ± 0.0026 0.9444 ± 0.0028

w1a 0.6650 ± 0.0659 0.7519 ± 0.0699 0.8865 ± 0.0318 �.���� ± 0.0357 �.���� ± 0.0446

yahoo-web-directory-topics �.���� ± 0.0166 �.���� ± 0.0243 �.���� ± 0.0644 �.���� ± 0.0617 �.���� ± 0.0667

Table 5   Mean F-measure values over all datasets using bagging strategy for ensemble-based OPF under different configurations

The most accurate techniques for the Wilcoxon test are highlighted in bold

Dataset OPF OPFc ensemble ensemble ensemble
OPFc OPFc + OPFc +

OPF
knn

OPF
knnC

aflw �.���� ± 0.0057 0.8909 ± 0.0041 0.8950 ± 0.0039 �.���� ± 0.0038 �.���� ± 0.0038

Pima-Indians-Diabetes �.���� ± 0.0244 �.���� ± 0.0152 �.���� ± 0.0168 �.���� ± 0.0187 �.���� ± 0.0187

Statlog-Australian 0.7825 ± 0.0199 �.���� ± 0.0234 �.���� ± 0.0180 �.���� ± 0.0153 �.���� ± 0.0153

Statlog-dna �.���� ± 0.0074 0.8150 ± 0.0097 0.8378 ± 0.0076 0.8362 ± 0.0087 0.8362 ± 0.0087

Statlog-Heart �.���� ± 0.0184 �.���� ± 0.0647 �.���� ± 0.0377 �.���� ± 0.0389 �.���� ± 0.0389

Synthetic1 0.5180 ± 0.0139 �.���� ± 0.0139 �.���� ± 0.0242 �.���� ± 0.0233 �.���� ± 0.0233

Synthetic2 0.7045 ± 0.0144 �.���� ± 0.0176 �.���� ± 0.0162 �.���� ± 0.0166 �.���� ± 0.0166

Synthetic3 �.���� ± 0.0381 �.���� ± 0.0157 �.���� ± 0.0209 �.���� ± 0.0220 �.���� ± 0.0220

Synthetic4 0.7840 ± 0.0022 �.���� ± 0.0017 �.���� ± 0.0022 0.8024 ± 0.0022 0.8024 ± 0.0022

UCI-a1a 0.7312 ± 0.0134 0.7622 ± 0.0148 0.7789 ± 0.0081 �.���� ± 0.0050 �.���� ± 0.0050

UCI-Ionosphere 0.8504 ± 0.0200 0.8482 ± 0.0214 �.���� ± 0.0258 �.���� ± 0.0231 �.���� ± 0.0231

UCI-Liver-disorders �.���� ± 0.0198 �.���� ± 0.0232 �.���� ± 0.0413 �.���� ± 0.0426 �.���� ± 0.0426

usps �.���� ± 0.0028 0.9526 ± 0.0031 0.9565 ± 0.0026 �.���� ± 0.0028 �.���� ± 0.0028

w1a 0.6650 ± 0.0659 0.7519 ± 0.0699 0.8700 ± 0.0485 �.���� ± 0.0577 �.���� ± 0.0577

yahoo-web-directory-topics �.���� ± 0.0166 �.���� ± 0.0243 �.���� ± 0.0299 �.���� ± 0.0308 �.���� ± 0.0308
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effective results with ensemble OPFc , since the feature space 
ends up being partitioned into different subregions.

However, the above situation usually does not occur in 
datasets that do not behave as “Synthetic1” or “Synthetic2” 
dataset, i.e., they do not have a considerable amount of over-
lapped regions. Well-behaved datasets seem to be better 
generalized by standard OPF approach. Therefore, for some 
situations it is more important to count with a larger dataset 
instead of an ensemble of classifiers.

Another aspect to be considered concerns the situations 
where the ensembles do not outperform OPF. If one takes 
a look at Table 2, the “UCI-Liver-disorders” and “Statlog-
Australian” datasets can be included in the aforementioned 
situation. In order to have some insight about the amount 
of overlapping on that datasets, we employed the Andrews 
curve method [5], which represents high-dimensional feature 
spaces by means of finite Fourier series. The transformation 

has to maintain some inherent properties of the data, thus 
making possible to identify some behaviors of the data [17]. 
Each line in this plot stands for a sample, and the color cor-
responds to a given class. Figure 5a, b depicts the Andrews 
plot considering “UCI-Liver-disorders” and “Statlog-Aus-
tralian” datasets, respectively.

Clearly, the datasets contain a considerable amount of 
overlapped regions, which is a strong indicator that ensem-
ble OPFc is more robust to such situations than OPF. Errors 
during the classification process are highly associated to the 
so-called tie-regions, which stand for regions in the feature 
space where a testing sample can be conquered by more than 
one training sample.

As mentioned above, OPF elects the prototype nodes 
as being the nearest samples from different classes, which 
can be found out through a MST computation over the 
training graph. Actually, if one has a unique MST, which 
means all edge-weights are different to each other, the OPF 
classification error on that graph would be zero, since the 

(a)

(b)

Fig. 4   Graphic representation containing all samples of a “Syn-
thetic1”, b “Synthetic2” dataset

(a)

(b)

Fig. 5   Andrews plot considering a “UCI-Liver-disorders” and b 
“Statlog-Australian” dataset in the range of −𝜋 < t < 𝜋
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optimum-paths from a prototype node to the remaining 
samples follow the shape of the MST. Therefore, as we are 
positioning the prototypes on the boundary of the classes, 
it is no longer possible for a sample from a given class to 
conquer a sample from another class. However, the above 
situation does not occur in practice, since there is a high 
probability of multiple MSTs in large datasets. In the stand-
ard OPF implementation, although the values of the possible 
optimum-paths that are going to be offered to a given graph 
node may be the same from samples from different classes, 
the one which reaches that node first will conquer it. In the 
ensemble OPFc , when subsets of the original training set 
are used rather than the whole set, multiple MSTs provide 
distinct conquering processes, that together with the con-
fidence level procedure improves the effectiveness of the 
classification phase.

In order to provide a robust statistical analysis, we per-
formed the nonparametric Friedman test, which is used to 

rank the algorithms for each dataset separately. In case of 
Friedman test provides meaningful results to reject the null-
hypothesis (i.e., all techniques are equivalent), we can per-
form a post hoc test further. For this purpose, we conducted 
the Nemenyi test [9, 20], which allows us to verify whether 
there is a critical difference (CD) among techniques or not. 
The results of the Nemenyi test can be represented in a sim-
ple diagram, in which the average ranks of the methods are 
plotted on the horizontal axis, where the lower the average 
rank is, the better the technique is. Moreover, the groups 
with no significant difference are connected with a horizon-
tal line. Figure 6 depicts the statistical analysis considering 
the average accuracy over the test set. As one can observe, 
the proposed ensemble OPFc and ensemble OPFc + OPFknnC 
can be considered the most accurate techniques. Lastly, 
in the second group, we have the standard OPF and OPFc 
approaches. Such test reflects the fact ensemble OPFc and 
ensemble OPFc + OPFknnC achieved the best accuracy rates 

Fig. 6   Comparison of all 
approaches against to each other 
according to the average accura-
cies for a proposed approach 
and b bagging, and F-measure 
values for c proposed approach 
and d bagging concerning the 
Nemenyi test. Groups that are 
not significantly different (at 
p = 0.05 ) are connected to each 
other

(a) (b)

(c) (d)

Table 6   Computational load (in seconds) and standard deviation over all datasets concerning standard OPF, OPFc , and ensemble under different 
configuration with respect to the training time (training + calculating scores when using confidence levels)

Dataset OPF OPFc ensemble ensemble ensemble
OPFc OPFc + OPFc +

OPF
knn

OPF
knnC

aflw 104.21 ± 0.9067 61.05 ± 0.6330 30.46 ± 0.4904 35.54 ± 0.5175 43.22 ± 0.5387

Pima-Indians-Diabetes 0.0111 ± 0.0001 0.0069 ± 0.0005 0.0035 ± 0.0000 0.0040 ± 0.0000 0.0048 ± 0.0000

Statlog-Australian 0.0105 ± 0.0011 0.0061 ± 0.0004 0.0030 ± 0.0002 0.0037 ± 0.0004 0.0042 ± 0.0000

Statlog-dna 2.1375 ± 0.1125 1.2724 ± 0.0960 0.6276 ± 0.0371 0.7118 ± 0.0065 0.8628 ± 0.0082

Statlog-Heart 0.0016 ± 0.0001 0.0010 ± 0.0001 0.0005 ± 0.0001 0.0006 ± 0.0001 0.0008 ± 0.0001

Synthetic1 0.0041 ± 0.0003 0.0026 ± 0.0003 0.0014 ± 0.0001 0.0017 ± 0.0002 0.0021 ± 0.0003

Synthetic2 0.0187 ± 0.0016 0.0105 ± 0.0001 0.0052 ± 0.0001 0.0060 ± 0.0001 0.0072 ± 0.0001

Synthetic3 0.0009 ± 0.0001 0.0005 ± 0.0000 0.0003 ± 0.0000 0.0003 ± 0.0001 0.0004 ± 0.0000

Synthetic4 225.15 ± 2.7878 186.18 ± 9.6521 73.11 ± 4.3084 72.50 ± 3.8332 85.44 ± 4.8247

UCI-a1a 80.54 ± 2.3472 60.24 ± 2.8357 25.92 ± 6.0696 27.19 ± 4.4609 32.02 ± 4.6964

UCI-Ionosphere 0.0036 ± 0.0002 0.0021 ± 0.0002 0.0011 ± 0.0001 0.0013 ± 0.0001 0.0016 ± 0.0001

UCI-Liver-disorders 0.0022 ± 0.0003 0.0015 ± 0.0002 0.0009 ± 0.0001 0.0009 ± 0.0001 0.0011 ± 0.0002

usps 11.46 ± 0.1212 7.6728 ± 0.1381 2.6886 ± 0.0414 3.0855 ± 0.0371 3.7447 ± 0.0413

w1a 382.12 ± 3.1877 260.08 ± 5.1479 141.95 ± 1.9616 141.64 ± 0.9371 164.72 ± 1.9294

yahoo-web-directory-topics 3.8479 ± 0.4005 2.4794 ± 0.2286 1.5434 ± 0.0626 1.7210 ± 0.0224 2.0890 ± 0.0244
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in the majority of datasets. In fact, the statistical test did not 
point out a CD between each pair of ensemble-based OPF 
variants, which means they performed similarly in some 
problems.

In regard to the computational load, Tables 6 and 7 
show the mean computational load considering the train-
ing (training + calculating scores when using confidence 
levels) phase concerning to the proposed approach and 
bagging approach, respectively. As expected, ensemble-
based OPF is faster than standard OPF and OPFc , since 
training into smaller subregions (disjoint training sets) 
is faster than training in all training data [27]. On aver-
age, i.e., considering all 15 datasets, ensemble OPFc has 
been about 2.929 times faster than standard OPF, and 
2.095 times faster than OPFc . Concerning the bagging 

strategy (Table 7), the ensemble approach was the slow-
est than standard OPF and OPFc , since it is generated L 
training sets �L

1
 by sampling from �1 uniformly and with 

replacement.
The statistical analysis for training (training + calculat-

ing scores) and testing phases is shown in Figs. 7 and 8, 
respectively. Figure 7a emphasizes the ensemble OPFc as 
the fastest approach in the training phase. Then, ensemble 
OPFc + OPFknnC showed intermediate performance, and 
lastly the standard OPF as the slowest one for training phase. 
In regard to the bagging training phase, as expected, the 
ensemble method was the slowest one, being OPFc the fast-
est approach, since it trains into smaller training sets (notice 
that the standard OPF was trained over �1 ∪�v , and OPFc 
was trained over �1).

Table 7   Computational load (in 
seconds) and standard deviation 
over all datasets using bagging 
strategy concerning ensemble-
based OPF under different 
configurations with respect to 
the training time (training + 
validating)

Dataset ensemble ensemble ensemble
OPFc OPFc + OPFc +

OPF
knn

OPF
knnC

aflw 110.45 ± 0.7817 161.96 ± 1.2288 172.91 ± 0.9507

Pima-Indians-Diabetes 0.0122 ± 0.0001 0.0174 ± 0.0001 0.0185 ± 0.0001

Statlog-Australian 0.0112 ± 0.0007 0.0157 ± 0.0001 0.0167 ± 0.0001

Statlog-dna 2.1733 ± 0.0503 3.2010 ± 0.0440 3.4121 ± 0.0434

Statlog-Heart 0.0018 ± 0.0001 0.0025 ± 0.0000 0.0027 ± 0.0000

Synthetic1 0.0046 ± 0.0003 0.0068 ± 0.0005 0.0072 ± 0.0004

Synthetic2 0.0192 ± 0.0001 0.0271 ± 0.0001 0.0288 ± 0.0001

Synthetic3 0.0010 ± 0.0001 0.0014 ± 0.0002 0.0015 ± 0.0002

Synthetic4 213.13 ± 21.84 276.71 ± 9.7410 294.53 ± 10.05

UCI-a1a 101.67 ± 2.2934 123.66 ± 1.4978 131.40 ± 2.1094

UCI-Ionosphere 0.0038 ± 0.0000 0.0056 ± 0.0001 0.0060 ± 0.0000

UCI-Liver-disorders 0.0025 ± 0.0002 0.0036 ± 0.0003 0.0038 ± 0.0003

usps 9.4173 ± 0.0705 13.57 ± 0.0835 14.56 ± 0.3095

w1a 412.36 ± 1.5981 532.65 ± 2.2717 563.87 ± 3.3816

yahoo-web-directory-topics 3.9878 ± 0.2614 6.6294 ± 0.1824 7.1195 ± 0.1768

(b)

(a)

Fig. 7   Nemenyi statistical test regarding the computational load con-
cerning to the training (training + calculating scores) phase for a pro-
posed approach and b bagging strategy. Groups that are not signifi-
cantly different (at p = 0.05 ) are connected to each other

(a)

(b)

Fig. 8   Nemenyi statistical test regarding the computational load con-
cerning to the testing phase for a proposed approach and b bagging 
strategy. Groups that are not significantly different (at p = 0.05 ) are 
connected to each other
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In regard to the testing phase, we can stand out three 
groups in Fig. 8a: the first one composed of two ensemble-
based: one with OPFc + OPFknnC and another with OPFknn 
(the fastest ones), wherewith there is no CD between 
them; then, the standard OPF showed intermediate per-
formance; and the other group with ensemble OPFc and 
OPFc (the slowest ones). On average, the standard OPF 
has been about 1.190 times faster than ensemble OPFc in 
the testing phase, since there is more than one classifier in 
ensemble-based OPF. However, the ensemble-based with 
OPFknn and OPFknnC appeared as the fastest approaches for 
the testing phase, being OPFknn less expensive concerning 
the computational load for the testing phase. Regarding the 
testing phase using bagging strategy (Fig. 8b), its expected 
that the ensemble using bagging with replacement can 
result in a slower test phase. In short, we can drawn some 
conclusions:

–	 the proposed approach can improve standard OPF and 
OPFc classification results by ensemble-based OPF using 
a confidence levels for each training sample;

–	 the proposed approach provides a faster training phase; 
and

–	 bagging-based design of ensembles does not seem to help 
the proposed approaches, since it can lead to a number of 
samples with the very same confidence level.

5 � Conclusions and future works

In this work, we introduced the idea of using OPF such as 
a bag-of-classifiers with a confidence measures to improve 
OPF recognition rate. The idea is to build an ensemble of 
classifiers using OPF with confidence-based approach pro-
posed by Fernandes et al. [10], i.e., we want to exploit the 
combination of classifiers by majority votes while using 
confidence values and a modified formulation for OPF clas-
sification. We also validated the proposed approach in two 
different variants of the OPF classifier and with a bagging 
strategy for designing ensembles of classifiers.

Experiments over 15 datasets showed the robustness of 
the proposed approaches, which obtained the best results in 
10 datasets and a less costly training phase when using dis-
joint sets compared to the bagging approach. The proposed 
approach also obtain better results in highly overlapped 
datasets, which may occur in practice. Additionally, the 
techniques introduced in this work are usually faster in the 
training phase when compared to traditional OPF (trained 
over �1 ∪�v ) and OPFc (approximately 2.929 times faster 
than standard OPF). Future works will be guided to explore 
ensemble pruning strategies for the OPF classifier consider-
ing meta-and hyper-heuristics.
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