Skip to main content
Log in

DSD: document sparse-based denoising algorithm

  • Short Paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a sparse-based denoising algorithm for scanned documents. This method can be applied to any kind of scanned documents with satisfactory results. Unlike other approaches, the proposed approach encodes noise documents through sparse representation and visual dictionary learning techniques without any prior noise model. Moreover, we propose a precision parameter estimator. Experiments on several datasets demonstrate the robustness of the proposed approach compared to the state-of-the-art methods on document denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aharon M, Elad M, Bruckstein A (2006) K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. Sig Process 54(11):4311–4322

    Article  MATH  Google Scholar 

  2. Barney E (2008) Modeling image degradations for improving OCR. In: Proceedings of the 16th European signal processing conference (EUSIPCO), pp 1–5

  3. Candés EJ, Donoho DL (2000) Curvelets: a surprisingly effective nonadaptive representation for objects with edges. In: Rabut C, Cohen A, Schumaker L (eds) Curve and Surface Fitting: Saint-Malo 1999 (Innovations in Applied Mathematics), Vanderbilt University Press,  pp 105–120

  4. Chatterjee P, Milanfar P (2010) Is denoising dead? Trans Image Process 19(4):895–911

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20(1):33–61

    Article  MathSciNet  MATH  Google Scholar 

  6. Daubechies I, Devore R, Fornasier M, Gunturk CS (2009) Iteratively reweighted least squares minimization for sparse recovery. Commun Pure Appl Math 63(1):1–38

    Article  MathSciNet  MATH  Google Scholar 

  7. Do M, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. Image Process 14(12):2091–2106

    Article  Google Scholar 

  8. Do TH (2014) Sparse representations over learned dictionary for document analysis. PhD thesis, Université de Lorraine

  9. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630

    Article  MathSciNet  MATH  Google Scholar 

  10. Donoho D, Elad M (2003) Optimally sparse representation in general (nonorthogonal) dictionaries via \(\ell\)1 minimization. PNAS 100(5):2197–2202

    Article  MathSciNet  MATH  Google Scholar 

  11. Donoho DL (1999) Wedgelets: nearly minimax estimation of edges. Ann Stat 27(3):782–1117

    Article  MathSciNet  MATH  Google Scholar 

  12. Dosch P, Valveny P (2005) Report on the second symbol recognition contest. In: Liu W, Lladós J (ed) Graphics recognition. Ten years review and future perspectives, volume 3926 of Lecture notes in computer science, Springer, pp 381–397

  13. Eksioglu EM (2014) Online dictionary learning algorithm with periodic updates and its application to image denoising. Expert Syst Appl 41:3682–3690

    Article  Google Scholar 

  14. Elad M (2010) Sparse and redundant representation: from theory to applications in signal and images processing. Springer, New York

    Book  MATH  Google Scholar 

  15. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. Image Process 54(12):3736–3745

    Article  MathSciNet  Google Scholar 

  16. Engan K, Skretting K, Husoy JH (2007) Family of iterative LS-based dictionary learning algorithm, ITS-DLA, for sparse signal representation. Digit Signal Proc 17(1):32–49

    Article  Google Scholar 

  17. Eslami R, Radha H (2003) The contourlet transform for image de-noising using cycle spinning. In: Proceedings of Asilomar conference on signals, systems, and computers, pp 1982–1986

  18. Gatos B, Ntirogiannis K, Pratikakis I (2011) DIBCO 2009: document image binarization contest. Int J Doc Anal Recognit 14(1):35–44

    Article  Google Scholar 

  19. Gonzalez I, Rao B (1997) Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm. Sig Process 45(3):600–616

    Article  Google Scholar 

  20. Hamza AB, Luque P, Martinez J, Roman R (1999) Removing noise and preserving details with relaxed median filters. Math Imag Vis 11(2):161–177

    Article  MathSciNet  Google Scholar 

  21. Hardie RC, Barner KE (1994) Rank conditioned rank selection filters for signal restoration. Image Process 3:192–206

    Article  Google Scholar 

  22. Hernandez-Sabate A, Gil D, Roche D, Matsumoto M, Furuie S (2012) Inferring the performance of medical imaging algorithms. In: 14th International conference on computer analysis of images and patterns, vol 6854. pp 520–528

  23. Hoang T, Barney E, Tabbone S (2011) Edge noise removal in bilevel graphical document images using sparse representation. In: Proceedings of the international conference on image processing, pp 3610–3613

  24. Hoang TV, Smith EHB, Tabbone S (2014) Sparsity-based edge noise removal from bilevel graphical document images. IJDAR 17(2):161–179

    Article  Google Scholar 

  25. Jain AK (1989) Fundamentals of digital image processing. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  26. Kanungo T, Haralick RM, Phillips IT (1993) Global and local document degradation models. In: Proceedings of the second international conference on document analysis and recognition, pp 730–734

  27. Kuang Y, Zhang L, Yi Z (2014) An adaptive rank-sparsity K-SVD algorithm for image sequence denoising. Pattern Recogn Lett 45:46–54

    Article  Google Scholar 

  28. Lewis D, Agam G, Argamon S, Frieder O, Grossman D, Heard J (2006) Building a test collection for complex document information processing. In: Proceedings of 29th annual international ACM SIGIR conference, pp 665–666

  29. Liu J, Wang Y, Su K, He W (2016) Image denoising with multidirectional shrinkage in directionlet domain. Sig Process 125:64–78

    Article  Google Scholar 

  30. Mallat S (2009) A wavelet tour of signal processing: The sparse way, third edn. Academic Press, Cambridge

    MATH  Google Scholar 

  31. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. Sig Process 41(12):3397–3415

    Article  MATH  Google Scholar 

  32. Marial J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. In: 26th Annual international conference on machine learning, pp 689–696

  33. Om H, Biswas M (2014) MMSE based map estimation for image denoising. Opt Laser Technol 57:252–264

    Article  Google Scholar 

  34. Pati Y, Rezaiifar R, Krishnaprasad P (1993) Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: 27th Annual Asilomar conference on signals, systems, and computers, pp 40–44

  35. Le Pennec E, Mallat S (2005) Sparse geometric image representations with bandelets. Image Process 14(4):423–438

    Article  MathSciNet  Google Scholar 

  36. Peyré G, Mallat S (2007) A review of bandlet methods for geometrical image representation. Numer Algorithms 44(3):205–234

    Article  MathSciNet  MATH  Google Scholar 

  37. Sadreazami H, Omair Ahmad M, Swamy MNS (2016) A study on image denoising in contourlet domain using the alpha-stable family of distributions. Sig Process 128:459–473

    Article  Google Scholar 

  38. Skretting K, Engan K (2010) Recursive least squares dictionary learning algorithm. Sig Process 58(4):2121–2130

    Article  MathSciNet  MATH  Google Scholar 

  39. Starck J-L, Candés EJ, Donoho DL (2002) The curvelet transform for image denoising. Image Process 11(6):670–684

    Article  MathSciNet  MATH  Google Scholar 

  40. Sun D, Gao Q, Lu Y, Huang Z, Li T (2014) A novel image denoising algorithm using linear Bayesian map estimation based on sparse representation. Sig Process 100:132–145

    Article  Google Scholar 

  41. Temlyakov VN (2000) Weak greedy algorithms. Adv Comput Math 12(2–3):213–227

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang R, Yin L, Gabbouj M, Astola J, Neuvo Y (1995) Optimal weighted median filters under structural constraints. Sig Process 43:591–604

    Article  Google Scholar 

  43. Zha Z, Zhang X, Wang Q, Bai Y, Chen Y, Tang L, Liu X (2018) Group sparsity residual constraint for image denoising with external nonlocal self-similarity prior. Neurocomputing 275:2294–2306

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the European project SCANPLAN (A0806017L), the Spanish ConCORDIA Project (TIN2015-70924-C2-2-R) and the Vietnam National University, Hanoi (VNU) under project number QG.18.04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ramos Terrades.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, T.H., Ramos Terrades, O. & Tabbone, S. DSD: document sparse-based denoising algorithm. Pattern Anal Applic 22, 177–186 (2019). https://doi.org/10.1007/s10044-018-0714-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-018-0714-3

Keywords

Navigation