Skip to main content
Log in

Deep learned Inter-Channel Colored Texture Pattern: a new chromatic-texture descriptor

  • Theoretical advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Texture is a dominant tool for feature extraction. Incorporation of inter-channel chromatic information along with the texture feature will improve the accuracy of feature extraction. This paper provides deep learned Inter-Channel Colored Texture Pattern which gives the inter-channel chromatic texture information of an image. The information is extracted individually from the co-occurrent pixel values of various channels. It affords the unique channel-wise information and its relation with neighboring pixel information of opponent space. Deep learning with convolutional neural network is applied for learning the feature based on color and texture. The experiments for content-based image retrieval are carried out on three different databases which vary in nature: CIFAR-10 dataset (DB1) (Krizhevsky in Learning multiple layers of features from tiny images, University of Toronto, 2009), Corel database (DB2) (Corel 1000 and Corel 10000 image database, http://wang.ist.psu.edu/docs/related.shtml) and Facescrub dataset (DB3) (Ng and Winkler in 2014 IEEE international conference on image processing (ICIP), pp 343–347, 2014). Facescrub dataset is used for face recognition. The experimental analysis by applying this descriptor provides considerable improvement from the previous works for content-based image retrieval and face recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Krizhevsky A (2009) Learning multiple layers of features from tiny images. Technical report 7(4), University of Toronto

  2. Corel 1000 and Corel 10000 image database. http://wang.ist.psu.edu/docs/related.shtml. Accessed 15 Feb 2016

  3. Ng HW, Winkler S (2014) A data-driven approach to cleaning large face datasets. In: 2014 IEEE international conference on image processing (ICIP), pp 343–347

  4. Su C-H, Chiu H-S, Hsieh T-M (2011) An efficient image retrieval based on HSV color space. In: International conference on electrical and control engineering, Yichang. IEEE, pp 5746–5749. http://dx.doi.org/10.1109/ICECENG.2011.6058026

  5. Ma J (2009) Content-based image retrieval with HSV color space and texture features. In: International conference on web information systems and mining, pp 61–63. http://dx.doi.org/10.1109/WISM.2009.20

  6. Scott GJ, Mathew Klaric M, Curt Davis D (2011) Entropy-balanced bitmap tree for shape-based object retrieval from large-scale satellite imagery databases. IEEE Trans Geosci Remote Sensing 49(5):1603–1616

    Google Scholar 

  7. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Machine Intell 24(4):509–522

    Google Scholar 

  8. Smith JR, Chang SF (1996) Automated binary texture feature sets for image retrieval. In: Proceedings of IEEE international conference on acoustics, speech and signal processing, Columbia University, New York, pp. 2239–2242

  9. Moghaddam HA, Saadatmand Tarzjan M (2006) Gabor wavelet correlogram algorithm for image indexing and retrieval. In: 18th international conference on pattern recognition. KN Toosi University of Technology, Tehran, Iran, pp 925–928

  10. Han J, Ma K (2002) Fuzzy color histogram and its use in color image retrieval. IEEE Trans Image Process 11:944–952

    Google Scholar 

  11. Pass G, Zabih R, Miller J (1997) Comparing images using color coherence vectors. In: Proceedings of 4th ACM multimedia conference, Boston, MA, USA, pp 65–73

  12. Huang J, Kumar SR, Mitra M (1997) Combining supervised learning with color correlograms for content-based image retrieval. In: Proceedings 5th ACM multimedia conference, pp 325–334

  13. Huang J, Kumar SR, Mitra M (1997) Image indexing using color correlograms. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 762–768

  14. Saad M (2008) Content based image retrieval literature survey. In: EE 381K: multi dimensional digital signal processing

  15. Vadivel A, Shamik S, Majumdar AK (2007) An integrated color and intensity co-occurrence matrix. Pattern Recognit Lett 28:974–983

    Google Scholar 

  16. Van KEA, Gevers T, Snoek M (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell 32(9):1582–1596

    Google Scholar 

  17. Jain A, Vailaya A (1995) Image retrieval using color and shape. Pattern Recogn 29(8):1233–1244

    Google Scholar 

  18. Smith JR, Chang F (1995) Automated image retrieval using color and texture. Technical report CU/CTR 408_95_14, Columbia University

  19. Kokare M, Biswas PK, Chatterji BN (2007) Texture image retrieval using rotated wavelet filters. Pattern Recognit Lett 28:1240–1249

    Google Scholar 

  20. Kokare M, Biswas PK, Chatterji BN (2005) Texture image retrieval using new rotated complex wavelet filters. IEEE Trans Syst Man Cybern 33(6):1168–1178

    Google Scholar 

  21. Kokare M, Biswas PK, Chatterji BN (2006) Rotation-invariant texture image retrieval using rotated complex wavelet filters. IEEE Trans Syst Man Cybern 36(6):1273–1282

    Google Scholar 

  22. Zhang J, Ye L (2010) Series feature aggregation for content-based image retrieval. Comput Electr Eng 36:691–701

    MATH  Google Scholar 

  23. Gonde AB, Maheshwari RP, Balasubramanian R (2010) Multi-scale ridgelet transform for content-based image retrieval. In: IEEE international advance computing conference, Patial, India, pp 139–144

  24. Çelik T, Tjahjadi T (2011) Multi-scale texture classification and retrieval based on magnitude and phase features of complex wavelet subbands. Comput Electr Eng 37:729–743

    Google Scholar 

  25. Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative deep feature learning approach for face recognition. In: European conference on computer vision

  26. Liu H, Wang R, Shan S, Chen X (2016) Deep supervised hashing for fast image retrieval. In: IEEE conference on computer vision and pattern recognition

  27. Paulin M, Douze M, Harchaoui Z, Mairal J, Perronin F, Schmid C (2015) Local convolutional features with unsupervised training for image retrieval. In: International conference on computer vision

  28. Babenko A, Lempitsky V (2015) Image retrieval using scene graphs. In: International conference on computer vision

  29. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110

    Google Scholar 

  30. Soyel H, Demirel H (2012) Localized discriminative scale invariant feature transform based facial expression recognition. Comput Electr Eng 38(5):1299–1309

    Google Scholar 

  31. Ke Y, Sukthankar K (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 506–513

  32. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Google Scholar 

  33. Bay H, Ess A, Tuytelaars T, Gool LV (2008) SURF: speeded up robust features. Comput Vis Image Underst 110(3):346–359

    Google Scholar 

  34. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distribution. Pattern Recognit 29:51–59

    Google Scholar 

  35. Heikkila M, Pietikainen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recognit 42(3):425–436

    MATH  Google Scholar 

  36. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    MATH  Google Scholar 

  37. Ojala T, Pietikainen M (1999) Unsupervised texture segmentation using feature distributions. Pattern Recogn 32(3):477–486

    Google Scholar 

  38. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28:2037–2041

    MATH  Google Scholar 

  39. Shan C, Gong S, McOwan PW (2005) Robust facial expression recognition using local binary patterns. In: Proceedings of international conference on image processing, pp 370–373

  40. Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance with global matching. Pattern Recognit 43(3):706–719

    MATH  Google Scholar 

  41. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    MathSciNet  MATH  Google Scholar 

  42. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    MathSciNet  MATH  Google Scholar 

  43. Zhu C, Bichot C-E, Chen L (2013) Color orthogonal local binary patterns combination for image region description. Technical report

  44. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    MathSciNet  MATH  Google Scholar 

  45. Zhang B, Gao Y, Zhao S (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    MathSciNet  MATH  Google Scholar 

  46. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    MathSciNet  MATH  Google Scholar 

  47. Jeena Jacob I, Srinivasagan KG, Jayapriya K (2014) Local oppugnant color texture pattern for image retrieval system. Pattern Recognit Lett 42:72–78

    Google Scholar 

  48. Levine M (1985) Vision in man and machine. McGraw-Hill, New York

    Google Scholar 

  49. Kaiser PK, Boynton RM (1996) Human color vision. Optical Society of America, Washington

    Google Scholar 

  50. Zhou N, Cheung WK, Qiu G, Xue X (2011) A hybrid probabilistic model for unified collaborative and content-based image tagging. IEEE Trans Pattern Anal Mach Intell 33(7):1281–1294

    Google Scholar 

  51. Harvey L, Gervais M (1981) Internal representation of visual texture as the basis for judgment of similarity. J Exp Psychol Hum Percept Perform 7:741–753

    Google Scholar 

  52. Jain A, Healey G (1998) A multiscale representation including opponent color features for texture recognition. IEEE Trans Image Process 7(1):124–128

    Google Scholar 

  53. Subrahmanyam M, Jonathan Wu QM, Maheshwari RP, Balasubramanian R (2013) Modified color motif co-occurrence matrix for image indexing and retrieval. Comput Electr Eng 39:762–774

    Google Scholar 

  54. Wang H, Cai Y, Zhang Y, Pan H, Lv W, Han H (2015) Deep learning for image retrieval: what works and what doesn’t. In: IEEE 15th international conference on data mining workshops

  55. Smeulders M, Worring S, Santini Gupta A, Jain R (2000) Content based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Google Scholar 

  56. Hirata K, Kato T (1992) Query by visual example—content-based image retrieval. In: Proceedings of third international conference on extending database technology, EDBT92, pp 56–71

    Google Scholar 

  57. Flickner M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom B, Gorkhani M, Hafner J, Lee D, Petkovic D, Steele D, Yanker P (1995) Query by image and video content: the QBIC system. IEEE Comput Mag 28(9):23–32

    Google Scholar 

  58. Barber R, Niblack W, Flickner M, Glasman E, Petkovic D, Yanker P, Faloutsos C, Taubin G (1993) The QBIC Project: querying images by content using color, texture, and shape. In: Proceedings of the IS&T SPIE storage and retrieval for image and video databases, San Jose, CA, USA, pp 173–187

  59. Pentland A, Picard RW, Sciaroff S (1996) Photobook: content-based manipulation of image databases. Int J Comput Vis 18(3):233–254

    Google Scholar 

  60. Bach JR, Fuller A, Gupta A, Hampapur B, Horowitz R, Humphrey R, Jam Shu CF (1996) The Virage search engine: an open framework for image management. In: Proceedings of the SPIE storage and retrieval for still image and video databases IV, pp 77–87

  61. Smith JR, Chang SF (1997) Querying by color regions using the VisualSEEk content-based visual query system. In: Maybury MT (ed) Intelligent multimedia information retrieval. AAAI Press, Menlo Park, pp 159–173

    Google Scholar 

  62. Smith JR, Chang SF (1997) An image and video search engine for the world-wide web. In: Proceedings of the SPIE storage and retrieval for image and video databases, vol 3022, San Jose, CA, USA, pp 85–95

  63. Carson C, Belongie S, Greenspan H, Malik J (2002) Blobworld: image segmentation using expectation-maximization and its application to image querying. IEEE Trans Pattern Anal Mach Intell 24(8):1026–1038

    Google Scholar 

  64. Kompatsiaris I, Triantafillou E, Strintzis MG (2001) Region-based color image indexing and retrieval. In: Proceedings of the international conference on image processing (ICIP2001), Thessaloniki, Greece, pp 658–661

  65. Scarlogg S, Taycher L, La Cascia M (1997) Image Rover: a content-based image browser for the World Wide Web. In: Proceedings of the IEEE workshop on content-based access of image and video libraries, Puerto Rico, pp 10–18

  66. Swain M, Frankel C, Athitsos V (1996) WebSeer: an image search engine for the world wide web. Technical report tr-96-14, University of Chicago

  67. Ma WY, Manjunath BS (1997) Netra: a toolbox for navigating large image databases. In: Proceedings of the IEEE international conference on image processing, Washington, DC, USA, pp 568–571

  68. Ma WY, Manjunath BS (1999) NeTra: a toolbox for navigating large image databases. Multimed Syst 7(3):184–198

    Google Scholar 

  69. Koskela M (2003) Interactive image retrieval using self-organizing maps. Ph.D. thesis, Helsinki University of Technology, Espoo, Finland

  70. Chen Y, Wang JZ, Krovetz R (2005) CLUE: cluster-based retrieval of images by unsupervised learning. IEEE Trans Image Process 14(8):1187–1201

    Google Scholar 

  71. Liu H, Wang R, Shan S, Chen X (2015) Deep supervised hashing for fast image retrieval. In: CVPR

  72. Wong YW, Seng KP, Ang L-M (2011) Audio-visual recognition system in compression domain. IEEE Trans Circuits Syst Video Technol 21(5):637–646

    Google Scholar 

  73. Li SZ, Chu R, Liao SC, Zhang L (2007) Illumination invariant face recognition using near-infrared images. IEEE Trans Pattern Anal Mach Intell 29(4):627–639

    Google Scholar 

  74. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Analysis and modeling of faces and gestures, Lecture notes in computer science, vol 4778, pp 168–182

  75. Hu W, Li X, Zhang Z, Wang H (2010) Heat kernel based local binary pattern for face representation. IEEE Signal Process Lett 17(3):308–311

    Google Scholar 

Download references

Acknowledgments

We extend our gratitude to Dr. S. Arulkrishnamoorthy for his linguistic consultancy. Also, we would like to thank the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Jeena Jacob.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeena Jacob, I., Srinivasagan, K.G., Ebby Darney, P. et al. Deep learned Inter-Channel Colored Texture Pattern: a new chromatic-texture descriptor. Pattern Anal Applic 23, 239–251 (2020). https://doi.org/10.1007/s10044-019-00780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-019-00780-9

Keywords

Navigation