Skip to main content

Advertisement

Log in

Face detection based on evolutionary Haar filter

  • Theoretical advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Face detection is considered to be one of the principal techniques of biometrics. Several methods for face detection have been proposed and described in the literature, but the Viola and Jones method is one of the most prominent. This method is based on the principle of Haar filters. In this study, we propose a new type of Haar filter called a dispersed Haar filter. This new structure provides more flexibility for very complex geometry, such as the human face. To create the structure of the filter, we used three optimizations methods: differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO). To test our approaches rigorously, we performed two types of tests. The first test is facial detection on fixed images from three different databases (Caltech 10K, FDDB, and CMU-MIT), which presents a significant challenge. The second test is more efficient and involves the recognition of human faces from a video database. For our experiment, we used a YouTube celebrity dataset. This system consists of two stages:

  1. 1.

    Face detection using three detectors: Haar-DE, Haar-PSO, and Haar-GA.

  2. 2.

    Face recognition using three machine-learning algorithms: multilayer perceptron (MLP), support vector machine (SVM), and convolutional neural network (CNN) with multi-scale images.

The proposed Haar-DE algorithm demonstrates good detection performance on several databases compared with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Viola P, Jones M (2001) Rapid object detection using boosted cascade of simple features, In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001, vol 1, pp I-511–I-518. ISSN:1063-6919. https://doi.org/10.1109/CVPR.2001.990517

  2. Zafeiriou S, Zhang C, Zhang Z (2015) A survey on face detection in the wild: past, present and future. Comput Vis Image Underst 138:1–24. https://doi.org/10.1016/j.cviu.2015.03.015

    Article  Google Scholar 

  3. Ranjan R, Patel V, Chellappa R (2015) A deep pyramid deformable part model for face detection. In: 2015 IEEE 7th international conference on biometrics theory, applications and systems (BTAS), pp 1–8. https://doi.org/10.1109/BTAS.2015.7358755

  4. Yang S, Luo P, Loy C, Tang X (2015) From facial parts responses to face detection: a deep learning approach. In: 2015 IEEE international conference on computer vision (ICCV), pp 3676–3684. https://doi.org/10.1109/ICCV.2015.419

  5. Barbu A, Gramajo G (2014) Face detection using a 3D model on face keypoints. CoRR, vol arXiv:1404.3596

  6. Ranjan R, Patel VM, Chellappa R (2016) HyperFace: a deep multi-task learning framework for face detection, landmark localization, pose estimation and gender recognition. CoRR, vol arXiv:1603.01249

  7. Li Y, Sun B, Wu T, Wang Y, Gao W (2016) Face detection with end-to-end integration of a ConvNet and a 3D model. CoRR, vol arXiv:1606.00850

  8. Jiang H, Learned-Miller E (2016) Face detection with the faster R-CNN. CoRR, vol arXiv:1606.03473

  9. Yu J, Jiang Y, Wang Z, Cao Z, Huang T (2016) UnitBox: an advanced object detection network. CoRR, vol arXiv:1608.01471

  10. Wan S, Chen Z, Tao Z, Zhang T, Zhang B, Wong K (2016) Bootstrapping face detection with hard negative examples. CoRR, vol arXiv:1608.02236

  11. Zhan S, Tao Q, Li X (2015) Face detection using representation learning. Neurocomputing 187:19–26. https://doi.org/10.1016/j.neucom.2015.07.130

    Article  Google Scholar 

  12. Wen J, Xiong Y, Wang S (2013) A novel two-stage weak classifier selection approach for adaptive boosting for cascade face detector. Neurocomputing 116:122–135. https://doi.org/10.1016/j.neucom.2011.12.060

    Article  Google Scholar 

  13. Yang B, Yan J, Lei Z, Li SZ (2015) Convolutional channel features. ArXiv e-prints arXiv:1504.07339

  14. Tao Q, Zhan S, Li X, Kurihara T (2016) Robust face detection using local CNN and SVM based on kernel combination. Neurocomputing 211:98–105. https://doi.org/10.1016/j.neucom.2015.10.139

    Article  Google Scholar 

  15. Kaipeng Z, Zhanpeng Z, Zhifeng L (2016) Joint face detection and alignment using multi-task cascaded convolutional networks. IEEE Signal Process Lett 23(10):1499–1503. https://doi.org/10.1109/LSP.2016.2603342

    Article  Google Scholar 

  16. Danai T, Anastasios T (2017) A fast deep convolutional neural network for face detection in big visual data. In: Advances in Big Data: Proceedings of the 2nd INNS conference on big data, 23–25 Oct 2016. Thessaloniki Greece Springer International Publishing, pp 61–70, ISBN:978-3-319-47898-2. https://doi.org/10.1007/978-3-319-47898-2_7

    Google Scholar 

  17. Zhou S, Yin J (2014) Face detection using multi-block local gradient patterns and support vector machine. J Comput Inf Syst 10:1767–1776

    Google Scholar 

  18. Chen YN, Han CC, Wang CT, Jeng BS, Fan KC (2015) A CNN-based face detector with a simple feature map and a coarse-to-fine classifier. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2007.70798

    Article  Google Scholar 

  19. Zhao X, Chai X, Niu Z, Heng C, Shan S (2012) Context modeling for facial landmark detection based on non-adjacent rectangle (NAR) Haar-like feature. Image Vis Comput 30(3):136–146. https://doi.org/10.1016/j.imavis.2011.12.004

    Article  Google Scholar 

  20. Zhang W, Tong R, Dong J (2009) Boosting 2-thresholded weak classifiers over scattered rectangle features for object detection. J Multimed 4(6):397–404. https://doi.org/10.4304/jmm.4.6.397-404

    Article  Google Scholar 

  21. Pavani S, Delgado D, Jie Y, Frangi AF (2010) Haar-like features with optimally weighted rectangles for rapid object detection. Pattern Recognit 43(1):160–172. https://doi.org/10.1016/j.patcog.2009.05.011

    Article  MATH  Google Scholar 

  22. Andrzej K, Adam S (2010) The architecture and performance of the face and eyes detection system based on the Haar cascade classifiers. Pattern Anal Appl 13:197–211. https://doi.org/10.1007/s10044-009-0150-5

    Article  MathSciNet  Google Scholar 

  23. Eiben A, Smith J (2003) Introduction to evolutionary computing. Springer, Berlin

    Book  Google Scholar 

  24. Sivanandam S, Deepa S (2007) Introduction to genetic algorithms. Springer, Berlin

    MATH  Google Scholar 

  25. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading

    MATH  Google Scholar 

  26. Neggaz N, Benyettou A (2009) Hybrid models based on biological approaches for speech recognition. Artif Intell Rev 32(1):45. https://doi.org/10.1007/s10462-009-9132-7

    Article  Google Scholar 

  27. Karaboga D, Okdem S (2014) A simple and global optimization algorithm for engineering problems: differential evolution algorithm. Turk J Electr Eng Comput Sci 12:53–60

    Google Scholar 

  28. Storn R, Kenneth P (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Image Vis Comput 11(4):341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  29. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132. https://doi.org/10.1016/j.amc.2009.03.090

    Article  MathSciNet  MATH  Google Scholar 

  30. Neggaz N, Besnassi M, Benyettou A (2010) Application of improved AAM and probabilistic neural network to facial expression recognition. J Appl Sci 10:1572–1579. https://doi.org/10.3923/jas.2010.1572.1579

    Article  Google Scholar 

  31. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science

  32. Ashok P, Singh S, Kusum D (2011) Use of particle swarm optimization algorithm for solving integer and mixed integer optimization problems. TECHNIA Int J Comput Sci Commun Technol 4(1):7–15

    Google Scholar 

  33. Rowley H, Baluja S, Kanade T (1998) Neural network-based face detection. IEEE Trans Pattern Anal Mach Intell 20(1):23–38. https://doi.org/10.1109/34.655647

    Article  Google Scholar 

  34. Angelova A, Abu-Mostafa Y, Perona P (2005) Pruning training sets for learning of object categories. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/. Accessed 02 Feb 2019

  35. Vidit J, Learned-Miller E (2010) BDD FDDB, a benchmark for face detection in unconstrained settings. Technical Report UM-CS-2010-009, Department of Computer Science University of Massachusetts Amherst

  36. Li J, Zhang Y (2013) Learning SURF cascade for fast and accurate object detection. In: Proceedings of the 2013 IEEE conference on computer vision and pattern recognition, pp 3468–3475, ISBN:978-0-7695-4989-7. https://doi.org/10.1109/CVPR.2013.445

  37. Lienhart R, Maydt J (2002) An extended set of Haar-like features for rapid object detection. IEEE ICIP 2002:900–903

    Google Scholar 

  38. Zhang G, Huang X, Li S, Wu X (2005) Boosting local binary pattern (LBP) based face recognition, vol 3338. Springer, Berlin, pp 179–186. https://doi.org/10.1007/978-3-540-30548-4_21

    Book  Google Scholar 

  39. Ai X, Wu Y (2008) Face detection in color images using AdaBoost algorithm based on skin color information. In: International workshop on knowledge discovery and data mining, pp 339–342. https://doi.org/10.1109/WKDD.2008.148

  40. Greenspan H, Goldberger J, Eshet I (2001) Mixture model for face-color modeling and segmentation. Pattern Recognit Lett 22(14):1525–1536. https://doi.org/10.1016/S0167-8655(01)00086-1

    Article  MATH  Google Scholar 

  41. Ge KB, Wen J, Fang B (2011) AdaBoost algorithm based on MB-LBP features with skin color segmentation for face detection. In: 2011 International conference on wavelet analysis and pattern recognition, pp 40–43, ISSN:2158-5695. https://doi.org/10.1109/ICWAPR.2011.6014477

  42. Ban Y, Kim S, Kim S, Toh K, Lee S (2014) Face detection based on skin color likelihood. Pattern Recognit 47(4):1573–1585. https://doi.org/10.1016/j.patcog.2013.11.005

    Article  Google Scholar 

  43. Li J, Wang T, Zhang Y (2011) Face detection using surf cascade. In: 2011 IEEE international conference on computer vision workshops (ICCV workshops), pp 2183–2190. https://doi.org/10.1109/ICCVW.2011.6130518

  44. Wolf L, Hassner T, Maoz I (2011) Face recognition in unconstrained videos with matched background similarity. In: Proceedings IEEE conference on computer and vision pattern recognition, pp 529–534

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloud Besnassi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besnassi, M., Neggaz, N. & Benyettou, A. Face detection based on evolutionary Haar filter. Pattern Anal Applic 23, 309–330 (2020). https://doi.org/10.1007/s10044-019-00784-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-019-00784-5

Keywords

Navigation