Skip to main content
Log in

Neuro-probabilistic model for object tracking

  • Industrial and commercial application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Occlusion is one of the major challenges for object tracking in real-life scenario. Various techniques in particle filter framework have been developed to solve this problem. This framework depends on two issues, namely motion model and observation (i.e., likelihood) model. Due to the lack of effective observation model and efficient motion model, problem of occlusion still remains unsolvable in the tracking task. In this article, an effective observation model is proposed based on confidence (classification) score provided by the developing online probabilistic neural network-based discriminative appearance model. The appearance model is trained with the prior knowledge of two classes (i.e., object and background) and tries to discriminate between three classes, namely object, background and occluded part of the object. The considered composite motion model can handle both the object motion and scale change in the object. The proposed update mechanism is able to adapt the appearance change in an object during tracking. We show a realization of the proposed method and demonstrate its performance (both quantitatively and qualitatively) with respect to state-of-the-art techniques on several challenging sequences. Analysis of the results concludes that the proposed technique can track fully (or partially) occluded object as well as object in various complex environments in a better way as compared to the existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In this article, target candidate, test, tth and current frame are used interchangeably.

  2. http://cvlab.hanyang.ac.kr/tracker_benchmark/index.html.

  3. http://crcv.ucf.edu/data/ALOV++/.

  4. http://www.reefvid.org/.

  5. http://www.votchallenge.net/vot2015/dataset.html.

  6. http://cs-people.bu.edu/jmzhang/MEEM/MEEM.html.

  7. http://www.cvl.isy.liu.se/en/research/objrec/visualtracking/scalvistrack/index.html.

  8. http://www.cvl.isy.liu.se/research/objrec/visualtracking/colvistrack/index.html.

  9. http://www.dabi.temple.edu/~hbling/code/TGPR.htm.

  10. http://winsty.net/dlt.html.

  11. http://faculty.ucmerced.edu/mhyang/project/cvpr12_jia_project.htm.

  12. http://faculty.ucmerced.edu/mhyang/project/cvpr12_scm.htm.

  13. http://sites.google.com/site/zhangtianzhu2012/publications.

  14. http://github.com/zk00006/OpenTLD.

  15. http://www.cs.cityu.edu.hk/~shengfehe2/visual-tracking-via-locality-sensitive-histograms.html.

  16. http://www.umiacs.umd.edu/~fyang/spt.html.

  17. http://home.isr.uc.pt/~henriques/circulant/.

  18. http://www.eng.tau.ac.il/~oron/LOT/LOT.html.

References

  1. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  2. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: IEEE conference on Computer vision and pattern recognition (CVPR), vol 1. pp 798–805

  3. Akhloufi MA, Bendada A (2010) Locally adaptive texture features for multispectral face recognition. In: IEEE international conference on systems man and cybernetics (SMC). IEEE, pp 3308–3314

  4. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  5. Babenko B, Yang M, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  6. Belagiannis V, Schubert F, Navab N, Ilic S (2012) Segmentation based particle filtering for real-time 2d object tracking. In: European conference on computer vision (ECCV). pp 842–855

  7. Brasnett P, Mihaylova L, Bull D, Canagarajah N (2007) Sequential Monte Carlo tracking by fusing multiple cues in video sequences. Image Vis Comput 25(8):1217–1227

    Article  Google Scholar 

  8. Chen Y, Yang X, Zhong B, Pan S, Chen D, Zhang H (2016) CNNTracker: Online discriminative object tracking via deep convolutional neural network. Appl Soft Comput 38:1088–1098

    Article  Google Scholar 

  9. Cheng X, Li N, Zhou T, Zhou L, Wu Z (2015) Object tracking via collaborative multi-task learning and appearance model updating. Appl Soft Comput 31:81–90

    Article  Google Scholar 

  10. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: Proceedings of IEEE conference on computer vision and pattern recognition, vol 2. pp 142–149

  11. Danelljan M, Häger G, Khan F, Felsberg M (2014) Accurate scale estimation for robust visual tracking. In: British machine vision conference (BMVA). BMVA Press, pp 1–11

  12. Danelljan M, Shahbaz Khan F, Felsberg M, Van de Weijer J (2014) Adaptive color attributes for real-time visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 1090–1097

  13. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 248–255

  14. Gao J, Ling H, Hu W, Xing J (2014) Transfer learning based visual tracking with Gaussian processes regression. In: European conference on computer vision (ECCV). Springer, pp 188–203

  15. Grabner H, Bischof H (2006) On-line boosting and vision. In: Proceedings of IEEE conference on computer vision and pattern recognition, vol 1. pp 260–267

  16. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: European conference on computer vision (ECCV). pp 234–247

  17. Hare S, Saffari A, Torr PH (2011) Struck: structured output tracking with kernels. In: IEEE international conference on computer vision (ICCV). pp 263–270

  18. Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596

    Article  Google Scholar 

  19. He S, Yang Q, Lau R, Wang J, Yang MH (2013) Visual tracking via locality sensitive histograms. In: IEEE conference on computer vision and pattern recognition (CVPR). pp 2427–2434

  20. Nenavath H, Jatoth KR (2018) Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comput 62:1019–1043

    Article  Google Scholar 

  21. Isard M, Blake A (1998) Condensation conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28

    Article  Google Scholar 

  22. Jepson AD, Fleet DJ, El-Maraghi TF (2003) Robust online appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25(10):1296–1311

    Article  Google Scholar 

  23. Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: IEEE conference on computer vision and pattern recognition (CVPR). Curran Associates, Inc, pp 1822–1829

  24. Jiang N, Liu W, Wu Y (2011) Adaptive and discriminative metric differential tracking. In: IEEE conference on computer vision and pattern recognition (CVPR). pp 1161–1168

  25. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  26. Kasturi R, Goldgof D, Soundararajan P, Manohar V, Garofolo J, Bowers R, Boonstra M, Korzhova V, Zhang J (2009) Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics and protocol. IEEE Trans Pattern Anal Mach Intell 31(2):319–336

    Article  Google Scholar 

  27. Khan SS, Madden MG (2009) A survey of recent trends in one class classification. In: Irish conference on artificial intelligence and cognitive science, pp 188–197

  28. Khan SS, Madden MG (2014) One-class classification: taxonomy of study and review of techniques. Knowl Eng Rev 29(03):345–374

    Article  Google Scholar 

  29. Khan Z, Balch T, Dellaert F (2004) A Rao-Blackwellized particle filter for eigentracking. In: IEEE conference on computer vision and pattern recognition (CVPR), vol 2. pp 974–980

  30. Kwon J, Lee KM (2010) Visual tracking decomposition. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR). pp 1269–1276

  31. Kwon J, Lee KM (2011) Tracking by sampling trackers. In: IEEE international conference on computer vision (ICCV). pp 1195–1202

  32. Leistner C, Godec M, Saffari A, Bischof H (2010) On-line multi-view forests for tracking. In: Pattern recognition. pp 493–502

  33. Levinshtein A, Stere A, Kutulakos KN, Fleet DJ, Dickinson SJ, Siddiqi K (2009) Turbopixels: fast superpixels using geometric flows. IEEE Trans Pattern Anal Mach Intell 31(12):2290–2297

    Article  Google Scholar 

  34. Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel AVD (2013) A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol 4(4):1–58

    Article  Google Scholar 

  35. Li Z, Chen J (2015) Superpixel segmentation using linear spectral clustering. In: IEEE conference on computer vision and pattern recognition (CVPR). pp 1356–1363

  36. Liu MY, Tuzel O, Ramalingam S, Chellappa R (2011) Entropy rate superpixel segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR). pp 2097–2104

  37. Liu B, Hu H, Wang H, Wang K, Liu X, Yu W (2013) Superpixel-based classification with an adaptive number of classes for polarimetric SAR images. IEEE Trans Geosci Remote Sens 51(2):907–924

    Article  Google Scholar 

  38. Liu R, Cheng J, Lu H (2009) A robust boosting tracker with minimum error bound in a co-training framework. In: IEEE international conference on computer vision (ICCV). pp 1459–1466

  39. Li Z, Wu XM, Chang SF (2012) Segmentation using superpixels: a bipartite graph partitioning approach. In: IEEE conference on computer vision and pattern recognition (CVPR). pp 789–796

  40. Maggio E, Cavallaro A (2011) Video tracking: theory and practice. Wiley, West Sussex

    Book  MATH  Google Scholar 

  41. Ma C, Huang JB, Yang X, Yang MH (2015) Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE international conference on computer vision (ICCV). IEEE, pp 3074–3082

  42. Mazhelis O (2006) One-class classifiers: a review and analysis of suitability in the context of mobile-masquerader detection. S Afr Comput J 36:29–48

    Google Scholar 

  43. Mondal A, Ghosh A, Ghosh S (2016) Prototypes based discriminative appearance model for object tracking. In: Proceedings of the tenth Indian conference on computer vision, graphics and image processing. ACM, pp 1–8

  44. Oron S, Bar-Hillel A, Levi D, Avidan S (2015) Locally orderless tracking. Int J Comput Vis 111(2):213–228

    Article  MathSciNet  MATH  Google Scholar 

  45. Pinho RR, Tavares JMR (2009) Tracking features in image sequences with Kalman filtering, global optimization, mahalanobis distance and a management model. Comput Model Eng Sci 46(1):51–75

    MATH  Google Scholar 

  46. Pinho RR, da Silva Tavares JMR, Correia MFPV (2007) An improved management model for tracking missing features in computer vision long image sequences. WSEAS Trans Inf Sci Appl 1(4):196–203

    Google Scholar 

  47. Pinho R, Tavares J, Correia M (2005) A movement tracking management model with Kalman filtering, global optimization techniques and mahalanobis distance. In: Lecture series on computer and computational sciences, vol 4A. Brill Academic Publishers, pp 463–466

  48. Ren X, Malik J (2003) Learning a classification model for segmentation. In: IEEE international conference on computer vision (ICCV). pp 10–17

  49. Roscher R, Waske B (2014) Superpixel-based classification of hyperspectral data using sparse representation and conditional random fields. In: IEEE international geoscience and remote sensing symposium (IGARSS). pp 3674–3677

  50. Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141

    Article  Google Scholar 

  51. Santner J, Leistner C, Saffari A, Pock T, Bischof H (2010) PROST: parallel robust online simple tracking. In: IEEE conference on computer vision and pattern recognition (CVPR). pp 723–730

  52. Sardari F, Moghaddam ME (2017) A hybrid occlusion free object tracking method using particle filter and modified galaxy based search meta-heuristic algorithm. Appl Soft Comput 50:280–299

    Article  Google Scholar 

  53. Sevilla-Lara L, Learned-Miller E (2012) Distribution fields for tracking. In: IEEE conference on computer vision and pattern recognition (CVPR). pp 1910–1917

  54. Smeulders AW, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell 36(7):1442–1468

    Article  Google Scholar 

  55. Specht DF (1990) Probabilistic neural networks. Neural Netw 3(1):109–118

    Article  Google Scholar 

  56. Tawab AMA, Abdelhalim MB, Habib SE-D (2014) Efficient multi-feature PSO for fast gray level object-tracking. Appl Soft Comput 14:317–337

    Article  Google Scholar 

  57. Torralba A, Fergus R, Freeman WT (2008) 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans Pattern Anal Mach Intell 30(11):1958–1970

    Article  Google Scholar 

  58. Wang N, Li S, Gupta A, Yeung DY (2015) Transferring rich feature hierarchies for robust visual tracking. arXiv:1501.04587

  59. Wang L, Ouyang W, Wang X, Lu H (2015) Visual tracking with fully convolutional networks. In: Proceedings of the IEEE international conference on computer vision (ICCV). IEEE, pp 3119–3127

  60. Wang N, Yeung DY (2013) Learning a deep compact image representation for visual tracking. In: Advances in neural information processing systems (NIPS). Curran Associates, Inc, pp 809–817

  61. Wu Y, Huang TS (2004) Robust visual tracking by integrating multiple cues based on co-inference learning. Int J Comput Vis 58(1):55–71

    Article  Google Scholar 

  62. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: IEEE conference on computer vision and pattern recognition (CVPR). pp 2411–2418

  63. Xu Y, Dong J, Zhang B, Xu D (2016) Background modeling methods in video analysis: a review and comparative evaluation. CAAI Trans Intell Technol 1(1):43–60

    Article  Google Scholar 

  64. Yang B, Nevatia R (2014) Multi-target tracking by online learning a CRF model of appearance and motion patterns. Int J Comput Vis 107(2):203–217

    Article  MathSciNet  MATH  Google Scholar 

  65. Yang M, Wu Y, Hua G (2009) Context-aware visual tracking. IEEE Trans Pattern Anal Mach Intell 31(7):1195–1209

    Article  Google Scholar 

  66. Yang F, Lu H, Yang MH (2014) Robust superpixel tracking. IEEE Trans Image Process 23(4):1639–1651

    Article  MathSciNet  MATH  Google Scholar 

  67. Yang C, Duraiswami R, Davis L (2005) Fast multiple object tracking via a hierarchical particle filter. In: IEEE international conference on computer vision (ICCV), vol 1. pp 212–219

  68. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):1264–1291

    Article  Google Scholar 

  69. Zhang T, Ghanem B, Liu S, Ahuja N (2013) Robust visual tracking via structured multi-task sparse learning. Int J Comput Vis 101(2):367–383

    Article  MathSciNet  Google Scholar 

  70. Zhang X, Hu W, Xie N, Bao H, Maybank S (2015) A robust tracking system for low frame rate video. Int J Comput Vis 115(3):279–304

    Article  MathSciNet  Google Scholar 

  71. Zhang L, Koch R, Line matching using appearance similarities and geometric constraints. In: 7th Portuguese conference on pattern recognition

  72. Zhang J, Ma S, Sclaroff S (2014) MEEM: robust tracking via multiple experts using entropy minimization. In: European conference on computer vision (ECCV). Springer, pp 188–203

  73. Zhong W, Lu H, Yang MH (2014) Robust object tracking via sparse collaborative appearance model. IEEE Trans Image Process 23(5):2356–2368

    Article  MathSciNet  MATH  Google Scholar 

  74. Zhong Z, Xu Y, Li Z, Zhao Y (2017) Background modelling using discriminative motion representation. IET Comput Vis 11(6):463–470

    Article  Google Scholar 

  75. Zhou SK, Chellappa R, Moghaddam B (2004) Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans Image Process 13(11):1491–1506

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. CV Jawahar, CVIT, International Institute of Information Technology, Hyderabad, India, for his support during revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajoy Mondal.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does no contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, A. Neuro-probabilistic model for object tracking. Pattern Anal Applic 22, 1609–1628 (2019). https://doi.org/10.1007/s10044-019-00791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-019-00791-6

Keywords

Navigation