Skip to main content
Log in

Sparsity augmented discriminative sparse representation for face recognition

  • Short paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Sparse representation-based classification (SRC) has acquired prominent capability in fields of machine learning and pattern recognition. Collaborative representation-based classification (CRC) has achieved a comparable recognition performance with higher speed compared to SRC, which has attracted much attention because it enables to forgo the computationally quite expensive l1-norm sparsity constraint. However, the traditional CRC method neglects the discriminability of representation and recent study has claimed that the sparsity should not be completely neglected for computational costs. In this paper, we propose a sparsity-augmented discriminative sparse representation-based classification method which considers the discriminability and sparsity of representation via augmenting an l2-norm regularization discriminative sparse representation with a computationally inexpensive sparse representation. We utilize an efficient classification method to achieve better performance with a comparable classification time. Experimental results on four face databases show the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. Available at http://www.yongxu.org/code/SR%20survey-released.rar.

  2. Available at http://www.yongxu.org/code/TNN.zip.

  3. Available at http://www4.comp.polyu.edu.hk/~cslzhang/code/CRC.zip.

  4. Available at http://staffhome.ecm.uwa.edu.au/00053650/code.html.

References

  1. Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044

    Article  Google Scholar 

  2. Wright J, Yang AY, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  3. Zhang H, Zhang Y, Huang TS (2013) Pose-robust face recognition via sparse representation. Pattern Recognit 46(5):1511–1521

    Article  MATH  Google Scholar 

  4. Dornaika F, Traboulsi YE, Assoum A (2013). Adaptive two phase sparse representation classifier for face recognition. In: International conference on advanced concepts for intelligent vision systems, vol 8192, pp 182–191

  5. Yang J, Chu D, Zhang L, Xu Y, Yang J (2013) Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE Trans Neural Netw Learn Syst 24(7):1023

    Article  Google Scholar 

  6. Gao S, Chia LT, Tsang WH (2011) Multi-layer group sparse coding—for concurrent image classification and annotation. Comput Vis Pattern Recognit 42:2809–2816

    Google Scholar 

  7. Yin H, Li Y, Chai Y, Liu Z, Zhu Z (2016) A novel sparse-representation-based multi-focus image fusion approach. Neurocomputing 216:216–229

    Article  Google Scholar 

  8. Yin H, Li S, Fang L (2013) Simultaneous image fusion and super-resolution using sparse representation. Inf Fusion 14(3):229–240

    Article  Google Scholar 

  9. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang J, Wright J, Huang TS, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2008.4587647

  11. He Z, Yi S, Cheung YM, You X, Tang YY (2017) Robust object tracking via key patch sparse representation. IEEE Trans Cybern 47(2):354–364

    Google Scholar 

  12. Liu H, Li S, Fang L (2015) Robust object tracking based on principal component analysis and local sparse representation. IEEE Trans Instrum Meas 64(11):2863–2875

    Article  Google Scholar 

  13. Zhou Z, Wagner A, Mobahi H, Wright J, Ma Y (2009) Face recognition with contiguous occlusion using markov random fields. In: International conference on computer vision

  14. Wagner A, Wright J, Ganesh A, Zhou Z, Ma Y (2009) Towards a practical face recognition system: Robust registration and illumination by sparse representation. In: IEEE conference on computer vision and pattern recognition

  15. Yin HF, Wu XJ (2013) A new feature fusion approach based on LBP and sparse representation and its application to face recognition, vol 7872, pp 364–373

  16. Shao C, Song X, Feng Z-H, Wu X-J, Zheng Y (2017) Dynamic dictionary optimization for sparse-representation-based face classification using local difference images. Inf Sci 393:1–14

    Article  Google Scholar 

  17. Shu Z, Wu XJ, Hu C (2018) Structure preserving sparse coding for data representation. Neural Process Lett 4:1–15

    Google Scholar 

  18. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: International conference on computer vision

  19. Xu Y, Zhong Z, Yang J, You J, Zhang D (2017) A new discriminative sparse representation method for robust face recognition via l 2 regularization. IEEE Trans Neural Netw Learn Syst 28(10):2233–2242

    Article  MathSciNet  Google Scholar 

  20. Akhtar N, Shafait F, Mian A (2017) Efficient classification with sparsity augmented collaborative representation. Pattern Recognit 65:136–145

    Article  Google Scholar 

  21. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Technol 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  22. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415

    Article  MATH  Google Scholar 

  23. Donoho DL (2006) For most large underdetermined systems of linear equations the minimal l 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829

    Article  MathSciNet  MATH  Google Scholar 

  24. Candes EJ, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inf Theory 52(12):5406–5425

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang Z, Xu Y, Yang J, Li X, Zhang D (2015) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530

    Article  Google Scholar 

  26. Martinez AM, Benavente R (June 1998) The AR face database. Technical report, CVC

  27. Samaria F, Harter A (1994) Parameterisation of a stochastic model for human face identification. In: IEEE workshop on applications of computer vision, pp. 138–142

  28. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  29. Koh K, Kim S-J, Boyd S (2007) An interior-point method for large-scale l 1-regularized logistic regression. J Mach Learn Res 8:1519–1555

    MathSciNet  MATH  Google Scholar 

  30. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202

    Article  MathSciNet  MATH  Google Scholar 

  31. Gross R, Matthews I, Cohn J, Kanade T, Baker S (2010) Multi-PIE. Image Vis Comput 28:807–813

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the 111 Project of Chinese Ministry of Education under Grant B12018, the National Nature Science Foundation of China [Grants U1836218, 61672265 and 61603159] and the Natural Science Foundation of Jiangsu Province of China under Grant BK20160293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wu, XJ. & Shu, Z. Sparsity augmented discriminative sparse representation for face recognition. Pattern Anal Applic 22, 1527–1535 (2019). https://doi.org/10.1007/s10044-019-00792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-019-00792-5

Keywords

Navigation