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Abstract
This paper presents a workbench to get simple neural classification models based on product evolutionary networks via 
a prior data preparation at attribute level by means of filter-based feature selection. Therefore, the computation to build 
the classifier is shorter, compared to a full model without data pre-processing, which is of utmost importance since the 
evolu-tionary neural models are stochastic and different classifiers with different seeds are required to get reliable results. 
Feature selection is one of the most common techniques for pre-processing the data within any kind of learning task. Six 
filters have been tested to assess the proposal. Fourteen (binary and multi-class) difficult classification data sets from the 
University of California repository at Irvine have been established as the test bed. An empirical study between the 
evolutionary neural network models obtained with and without feature selection has been included. The results have been 
contrasted with non-parametric statistical tests and show that the current proposal improves the test accuracy of the previous 
models significantly. Moreover, the current proposal is much more efficient than the previous methodology; the time 
reduction percentage is above 40%, on average. Our approach has also been compared with several classifiers both with 
and without feature selection in order to illustrate the performance of the different filters considered. Lastly, a statistical 
analysis for each feature selector has been performed providing a pairwise comparison between machine learning 
algorithms.

Keywords Artificial neural networks · Feed-forward · Evolutionary programming · Classification · Feature selection · 
Filters

1  Introduction

Classification of data based on knowledge already gained or 
on statistical information extracted from patterns and/or their 
representations is often referred to as pattern recognition 
[52]. A possible taxonomy of classifiers [63] may distinguish 
among artificial neural networks, decision trees, rule-based 
classifiers, classifiers based on nearest neighbours and so 
on. There are many domains, such as medicine [22], atmos-
pheric sciences [39], computer vision, remote sensing [27], 
finance, molecular biology [68] and veterinary [43], where 
supervised learning has been successfully applied [35].

An ideal learning algorithm would use only attributes that 
lead to good generalisation so there would be no need for 
attribute selection methods. Unfortunately, many learning 
procedures have their own biases and weaknesses, and given 
excess attributes will often have detrimental consequences. 
Attribute selection procedures are one way of mitigating the 
inability of a learning procedure to properly deal with excess 
attributes [11].

Computational intelligence is the synergistic interplay of 
soft computing techniques such as neural networks, genetic 
algorithms, fuzzy logic and artificial life [21]. There is a 
widespread myth among most of the researchers that neural 
networks are capable of dealing with large amounts of noise 
and useless data. This is true to a certain extent, but it is 
also true that the cleaner and more descriptive the data is, 
the better the neural networks will perform [51]. The afore-
mentioned paper which shows that feature selection does 
increase the accuracy is very interesting. Thus, the sentence 
“less is more”, that gives title, in the feature selection con-
text, to the opening chapter by Liu and Motoda of the book 
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[46] written by themselves, is also true in the scope of neural 
classification. The current paper puts forth both ideas up for 
approval, and these are certainly fulfilled. Additionally, fea-
ture selection favours the scalability of the problem and new 
features could be measured in order to a get a more accurate 
neural network model [47].

The purpose of feature selection is to determine a subset 
from all input variables which could lead to an equal or, pref-
erably, better performance of the classifier compared with 
the model containing all the problem variables. Theoreti-
cally, having more features should give us more discriminat-
ing power. However, the real world provides us with many 
reasons as to why this is generally not the case [42]: (1) the 
induction algorithm complexity grows dramatically with the 
number of features and (2) the irrelevant and redundant fea-
tures also cause problems in the classification context as they 
may confuse the learning algorithm by helping to obscure 
the distributions of the small set of truly relevant features 
for the task at hand.

Our goal is to improve the accuracy and the simplicity 
of the classification models based on product unit neural 
networks trained with an evolutionary approach by means 
of filter-based feature selection methods and to determine 
the more proper methods to pre-process the data sets in 
order to obtain more accurate and more compact models. 
More concretely, we introduce a workbench to get simple 
neural classification models via a prior data preparation at 
the feature level applying feature selection. We have used, 
among others, filters based on correlation, consistency or 
information measures. The training of the neural network 
classifier, containing product units (PUs) as hidden neurons, 
is performed by means of an evolutionary programming 
algorithm (EPA).

This paper is organised as follows: Sect. 2 reviews some 
concepts about Product Unit Neural Networks (PUNNs), 
training algorithms for neural networks, the baseline EPA 
to train PUNN and FS; Sect.  3 describes our proposal; 
Sect. 4 details the experimentation process; Sect. 5 shows 
and analyses the results obtained; finally, Sect. 6 states the 
concluding remarks.

2  Foundations

2.1  Product unit neural networks

Depending on the architecture, artificial neural networks can 
be divided into two types: feed-forward and recurrent neu-
ral networks [36]. Among the huge amount of the literature 

related to neural networks, 95% of publications are con-
cerned with feed-forward ones [34]. According to the kind 
of unit or node, there are two feed-forward neural network 
models:

(a) Additive model. The network is composed of addi-
tive units. The output of each unit is function of the
weighted inputs including the weights plus the activa-
tion value or bias. This model is depicted in Fig. 1.

The mathematical equation of an additive unit is given by:

(b) Multiplicative model. This kind of neural net contains
units that multiply their inputs instead of adding them.
In this model, the more general approach is the product
unit, proposed by Durbin and Rumelhart [20]. Figure 2
shows a PU.

Mathematically, a PU is expressed as follows:

The kind of network used in this paper is a feed-forward 
PUNN whose structure is shown in Fig. 3, where a PUNN 
model with a k:m:1 architecture for a bi-classification prob-
lem is sketched out; this is a three-layer architecture, that is, 
k nodes in the input layer, m ones (product units) and a bias 
one in the hidden layer and one node in the output layer.

An identity function is utilised as a transfer function of 
each node in the hidden and output layers. Thus, the math-
ematical expression obtained by each of the nodes in the 
output layer with J classes is given by:
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Fig. 1   Representation of an additive unit

Fig. 2   Representation of a product unit



2.2 � Training algorithms for neural networks

There are several algorithms to train neural networks. 
Among these are the methods based on:

(a) Local optimisation: inside this group, we must observe
the gradient-descendent methods that use a fixed archi-
tecture and coefficient values which are calculated to
try to minimise a cost function that is evaluated with
the train data. The best-known example is the popular
back-propagation algorithm [10, 55, 61, 70].

(b) Global optimisation: this type of optimisation treats to
escape from local optima, exploring the search space
with greater efficiency. Any random component is usu-
ally added to the search in order to eventually jump
from a local optimum to another point. Among the
global search methods, several meta-heuristic algo-
rithms are found, which can be divided into two groups:

• Methods based on trajectories. The relevant approaches
are the simulated annealing algorithm [12, 38], that has
been employed, for instance, in [64] and [7], and the
taboo search [29] as in [5].

• Methods based on populations. In this category the
scatter search and all the techniques based on bio-
inspired computation such as the algorithms based on
evolutionary computing and/or Swarm intelligence
should be underlined. The scatter search [28] has
recently been applied in the work written by Larson and
Newman [45]. The neural networks trained by methods
based on evolutionary computation lead to the evolu-
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tionary neural networks that have been a key research 
area in the last decade of the twentieth century [62] and 
in the first of the twenty-first century [15], providing 
an improved platform to simultaneously optimise the 
network performance and the architecture (number of 
nodes in the hidden layer and the number of connec-
tions).

2.3 � Methodology to train evolutionary product unit 
neural networks

Evolutionary computing was proposed as a good candi-
date in looking for the architecture space [50]. Since then, 
many evolutionary programming (EP) approaches have 
been developed to evolve neural networks, such as [26, 54, 
72], whose main particularity is that the mutation and the 
recombination are the only two operators without any kind 
of crossover. We focus on feed-forward neural networks 
containing product units that are trained with an EPA to 
simultaneously learn about the architecture and the weights 
of the model. The baseline EPA can be found in some previ-
ous works [33, 49]. A deep explanation of the EPA including 
all the details can be found in Sect. 2.2 of [66], which we 
summarise next.

We are now going to briefly describe the applied EPA. 
As usual, it is based on a single population that is evolved 
throughout the full evolutionary cycle. This EPA is used 
to design the structure and learn the weights of PUNNs. 
The search begins with a random initial population, and, 
for each iteration, the population is modified using a popu-
lation-update algorithm. The population is subjected to the 
operations of replication and mutation. Crossover is not used 
due to its potential disadvantages in evolving artificial net-
works [3, 72]. As a general remark, the EPA is substantially 
a hybridisation between two stochastic or probabilistic tech-
niques such as an evolutionary algorithm and a simulated 
annealing procedure. Figure 4 depicts the pseudo-code of 
the EPA for a classification problem.

The basic foundations of the EPA are as follows:

• Error and fitness functions. We have considered a stand-
ard soft-max activation function [9], associated with the
g network model, given by:

where J is the number of classes in the problem, fj(�) is the 
output of node j for pattern � and gj(�) is the probability that 
this pattern belongs to class j. Taking this into account, a 
function of cross-entropy error is used to evaluate a network 

(4)gj(�) =
exp fj(�)

∑J

i=1
exp fi(�)

j = 1,… , J − 1

Fig. 3   Structure of a feed-forward PUNN model for a bi-classification 
problem. Source: Tallón-Ballesteros and Hervás-Martínez [66]



g with the instances of a problem, which is reflected in the 
following expression:

and substituting gj defined in (4),

where yi
j is the target value for class j with pattern �i (yi

j = 1 
if �i ∈ class j and yi

j = 0 otherwise), fj(�i) is the output value 
of the neural network for the output neuron j with pattern �i , 
N the number of patterns and J the number of classes. On 
the one hand, we can observe that soft-max transformation 
produces positive estimates that sum to one, and therefore, 
the outputs can be interpreted as the conditional probability 
of class membership. On the other hand, the probability of 
one of the classes does not need to be estimated because of 
the normalisation condition. One activation function is usu-
ally set to zero; in this work, fJ(�i) = 0 and we reduce the 
number of parameters to estimate. In this way, the number 
of nodes in the output layer is equal to the number of classes 
minus one in the problem.
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Since the EPA objective is to minimise the cho-
sen error function, a fitness function is used in the form 
A(g) = (1 + l(g))−1.

• Initialisation of the population and stop condition At the
beginning of the EPA, 10*N individuals are randomly
generated by means of a pseudo-random number gen-
erator, N being the population size; in the current paper,
it is equal to 1000 in all cases. Next, all individuals are
evaluated, sorted by decreasing fitness and the best N
ones will compose the initial population. The main loop
of the EPA is repeated until the maximum number of
generations (gen) is reached or until the best individual
or the population mean fitness does not improve during
gen-without-improving generations. Elitism [74] is a key
ingredient which means that the most fit individuals are
transferred to the next generation without alteration.

• Parametric and structural mutations. Parametric mutation
is accomplished for each exponent wji and coefficient βj

l

of the model with Gaussian noise, where the variance
depends on the temperature:

(7)
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Program: Evolutionary Programming Algorithm
Data: Training set
Input parameters: gen, neu
Output: Best PUNN model
1:   t 0
2:   P(t) {ind1, …, ind10000} // Random initialisation of the population 
3:   f(P(t) {ind1, …, ind10000}) fitness (P(t) {ind1, …, ind10000}) // Calculate fitness
4:   P(t) P(t) {ind1, …, ind10000} // Sort individuals by fitness: indi > indi+1
5:   P(t) P(t) {ind1,… ind1000} // Retain the 1000 best ones
6:   while stop criterion not met do // main loop
7:  P(t) {ind901,…ind1000} P(t) {ind1, …, ind100} // Best 10% replace the worst 10%
8:  P(t+1) P(t) {ind1, …, ind900}
9: P(t+1) pm (P(t+1) {ind1, …, ind90}) // Parametric mutation (10% P(t+1))
10: P(t+1) sm (P(t+1) {ind91, …, ind900}) // Structural mutation (90% P(t+1))
11: f(P(t+1) {ind1, .. ind900}) fitness (P(t+1) {ind1, …, ind900}) // Evaluate
12: P(t+1) P(t+1) (ind1, …, ind900) U P(t) {ind901, …, ind1000} 
13: P(t+1) P(t+1){ind1, …, ind1000} // Sort individuals
14: last_generation t
15: t t+1
16:  end while
17:  return best (P(last_generation) {ind1})

Fig. 4   EPA pseudo-code for a classification problem. Adapted from: Tallón-Ballesteros and Hervás-Martínez [66]



where ξk(t) ϵ N(0, αqT(g)) q = 1, 2, represents a one-dimen-
sional normally distributed random variable with mean 0 
and variance �q(t) ⋅ T(g) , t is the tth generation and T is 
the temperature of the g network model. Rechenberg’s 1/5 
success rule [58] has been applied as an evolutionary mecha-
nism to update α1 and α2 parameters. On the other hand, a 
structural mutation implies a modification in the structure 
of the model and allows different regions in the search space 
to be explored while helping to maintain the diversity of 
the population. There are five different structural mutations: 
node addition, node deletion, connection addition, connec-
tion deletion and node fusion.

• Parameters. The main parameters of the EPA are the
maximum number of generations (gen) and the maxi-
mum number of nodes in the hidden layer (neu). The
minimum number of nodes is a unit lower than neu.
The remaining parameters will be described further on.
At the end of the EPA, it returns the best PUNN model
with a number of nodes equal to the value of parameter
neu in the hidden layer. Table 1 describes the values of
the EPA general parameters.

Our attention is focused on the evolutionary PUNNs for
classification problems. The experimental design distribu-
tion (EDD), introduced in [65], is our starting point. This 
methodology consists of distributing some parameters, 
either of the network topology or of the EPA, as the maxi-
mum number of nodes in the hidden layer (neu), the maxi-
mum number of generations (gen) and the output-variance 
value (α2), over some computing nodes; each set of concrete 
values of previous parameters is called a configuration. To 
do this, an initial configuration, called the base configura-
tion, is defined and it is modified with new values in one or 
two parameters in each of the computing nodes. Therefore, 
once the changes have been made, each of the processing 
nodes will run the EPA with a different configuration. Our 
interest now lies in distributing two parameters, neu and α2; 
therefore, the gen parameter is fixed for the four considered 
configurations and depends only on the data set. Moreover, 

the first configuration is taken as the base one; therefore, 
we only mention four different configurations which are 
described in Table 2. Hence, the EPA is run for each data 
set with four configurations, that combine two different val-
ues for each of the parameters neu and α2. To sum up, in the 
current paper, EDD runs the EPA (depicted in Fig. 4) with 
four different configurations.

It should be noted that EDD is used to obtain classi-
fication models without applying any feature selection 
method. Therefore, it takes the original data set and gen-
erates models without any pre-processing related to feature 
selection.

2.4 � Feature selection

The goal of feature selection is to select a smaller attribute 
subset, composed of p attributes out of N attributes from a 
given set (p ≤ N) [25]. Feature selection is essentially a task 
to remove irrelevant and/or redundant features [46]. Irrel-
evant features can be removed without affecting learning 
performance [37]. Redundant features are a type of irrel-
evant feature [73]. The distinction is that a redundant feature 
implies the co-presence of another feature; individually, each 
feature is relevant, but the removal of one of them will not 
affect learning performance.

According to the survey published in 1997 by Dash and 
Liu [16], an FS method generates different candidates from 
the feature space and assesses them based on an evaluation 
criterion to find the best feature subset. Depending on the 
evaluation criterion, FS can be divided into filter, hybrid and 
wrapper methods. Filters assess the relevance of features 
by taking a look at intrinsic data properties only—such as 
distance, consistency, and correlation [16, 17, 31]—and are 
thus independent of any learning algorithm. Hybrid models 
are the intermediate approach and were presented to handle 
large data sets [71] without needing a huge amount of time 
although they require more computational effort than filters. 
Finally, the wrapper approach requires a predetermined data 
mining algorithm and their performance is used to evaluate 
and determine which features are selected [41]. Wrappers 
often select higher accuracy features; however, they have 
a major drawback in their high computational cost and low 
generality.

Table 1   EPA general parameters

Parameter Value

Population size (N) 1000
gen-without-improving 20
Interval for the exponents wji/coefficients βj

l [− 5, 5]
Initial value of α1 0.5
Initial value of α2 1
Normalisation of the input data [1, 2]
Number of nodes in node addition and node deletion opera-

tors
{1, 2}

Table 2   Description of the EDD configurations

Configuration Num. of neurons 
(neu)

Max. num. of genera-
tions (gen)

α2

1 neu gen 1
2 neu + 1 gen 1
3 neu gen 1.5
4 neu +1 gen 1.5



The selection of features can be achieved in two general 
ways: one is to rank features according to some criterion and 
select the top k features, and the other is to select a minimum 
subset of features without learning performance deteriora-
tion. In other words, feature subset selection (FSS) algo-
rithms can automatically determine the number of selected 
features, while feature ranking (FR) algorithms need to rely 
on some given threshold to select features [46]. In this con-
text, a hybrid model entitled BIRS (Best Incremental Ranked 
Subset), which is a mixture between FR and FSS (FR-FSS), 
was proposed by Ruiz et al. [60]; it operates in two stages; 
in the first one, features are evaluated individually, providing 
a ranking based on a criterion; in stage two, a feature subset 
evaluator is applied to a certain number of features in the 
previous ranking following a search strategy. Any evalua-
tor may be used in any BIRS stage. There is a great deal 
of criteria to group the feature selection algorithms based 
on filters; however, the described taxonomies are the most 
common in the literature.

We now comment on some concrete implementations of 
filters. Another interesting well-known option is the algo-
rithm fast correlation-based filter (FCBF) [73] that uses 
symmetrical uncertainty (SU) to obtain relevant features 
and to remove redundancy in two steps. The first step gen-
erates a ranking based on the SU between each feature and 
the class. The second step starts with a full set of features 
and begins eliminating some, that is, it finds the best subset 
using a backward selection technique with sequential search 
strategy, analysing whether a feature is discarded or not, 
depending on the feature–feature SU correlation. Informa-
tion gain (IG) [14] is a popular concept used to evaluate the 
relevance of an attribute. Another measure is SOAP (selec-
tion of attributes by projection) whose principle is to place 
the best attributes with the smallest number of label changes 
[59].

3 � Description of the proposal

The current paper presents a workbench to get simple mod-
els based on PUNNs via filter-based feature selection. The 
new methodology is a further step of EDD; more concretely, 
it is a mixture of some FS methods with EDD, and thus, we 
have called EDDFS methodology. First of all, some feature 
selectors based on filters are applied, in an independent way, 
to the training set of all data sets in order to obtain a list 
of attributes for each filter and data set. The list obtained 
for each data set and filter is considered for training and 
test phases. In this way, two reduced sets (reduced training 
and test sets) are generated, where only the most relevant 
features are included. It is important to point out that the 
feature selection is performed only with training data. Both 
reduced sets contain the same features. The reduced training 

set is taken as input to EDD and used to train the neural net-
work model. After that, the model is evaluated by means of 
the reduced test set. EDDFS operates with six independent 
filters as feature selectors. As a result of the FS stage, a list 
of relevant features is obtained with each of the FS meth-
ods for each data set. Figure 5 introduces the scheme of the 
proposed EDDFS methodology. EDDFS has two phases: (1) 
feature selection and (2) classification via EDD.

Gorunescu et al. [30] proposed a synergetic system with 
some similarities to our proposal in the sense that FS and 
evolutionary neural networks were integrated. More con-
cretely, they proposed a tandem feature selection mechanism 
and evolutionary-driven neural network for a medical prob-
lem by means of a system based on both specific statistical 
tools and the sensitivity analysis provided by neural net-
works for reducing the dimension of the database.

The EDDFS properties are as follows: (a) PUNNs have 
been utilised, with a number of neurons in the input layer 
equal to the number of variables in the problem; a hidden 
layer with a number of nodes that depends on the data set 

Data Set

Training Set Test Set

Feature Selection

Reduced Features Set

Reduced
Training Set

Reduced
Test Set

EDD
Neural 

network
model

Validation

Fig. 5   EDDFS scheme



over a minimal part of the feature space and follows a for-
ward search.

CFS guides the search assessing the quality of a feature 
subset bearing in mind the hypothesis that good feature sub-
sets include features highly correlated with the class label. 
CFS algorithm incorporates a heuristic to assess the worth 
or merit of a feature subset which takes into account the 
usefulness of individual features to predict the class label 
along with the level of inter-correlation among them. The 
hypothesis on which the heuristic is found is: good feature 
subsets contain features highly correlated with the class, 
yet uncorrelated with each other. It is expressed as follows:

where MeritS is the heuristic of a feature subset S contain-
ing k features, rcf the average feature-class correlation and 
rff the average feature–feature inter-correlation. For discrete 
class problems, CFS first discretises numerical features and 
then uses symmetrical uncertainty to estimate the degree of 
association between discrete features.

CNS makes use of a consistency metric to estimate, for 
a feature subset at hand, the number of sources with full 
coincidence but their class labels; the inconsistency rate 
is then used to evaluate its quality. The algorithm creates 
a random subset S from the number of attributes in every 
round; whether the number of features of S is lower than 
the current best, the data with the attributes included in S 
are computed against the inconsistency criteria; and if its 
inconsistency rate is below a predefined one, S becomes the 
new current best.

The operation rationale of SOAP is to count the label 
changes of samples projected onto each attribute. It associ-
ates each feature with the classification label. This value is 
calculated by projecting data set elements onto the respective 
axis of the attribute (ordering the samples by this attribute), 

(9)MeritS =
krcf

√

k + k(k − 1)rff

to be classified and the number of selected features; and the 
number of nodes in the output layer equal to the number 
of classes minus one because a soft-max-type probabilis-
tic approach has been used; (b) four experiments have been 
performed for each problem, where two different values 
have been used for α2—associated with the residual of the 
updating expression of the output-layer weights—and the 
number of neurons in the hidden layer; (c) it employs similar 
terminology to the aforementioned EDD; (d) four different 
configurations (1#, 2#, 3# and 4#) are applied to subsets 
obtained with each of the selectors, for each data set. The 
parameters of each configuration are neu#, gen# and α2. The 
first two take specific values depending on the data set, and 
the last one depends on the configuration number (1#, …). 
Table 3 shows the main aspects of EDDFS configurations.

The proposed framework could operate with any FS 
method although we have tried to encompass many types of 
filter-based FS approaches with different options of the filter 
taxonomy and also bearing in mind whether the filter follows 
a FR and/or FSS strategy. Figure 6 provides an overview of 
the methods.

Additionally, a complete description of the different 
methods and metrics is now given. CFS and FCBF are two 
classic and very well recognised which have been accepted 
by the data mining community as reference procedures to 
cope with feature selection. More recently, BIRS has been 
established as a versatile approach, which does a fast search 

Table 3  Description of the EDDFS configurations

Configuration Num. of neurons 
(neu#)

Max. num. of genera-
tions (gen#)

α2

1# neu2 gen2 1
2# neu2 + 1 gen2 1
3# neu2 gen2 1.5
4# neu2 +1 gen2 1.5

Fig. 6   Feature selection 
approaches within EDDFS
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then crossing the axis from the beginning to the largest 
attribute value and counting the number of label changes 
(NLC) produced. BIRS copes with the incremental ranked 
usefulness in order to develop an approach to explicitly iden-
tify relevant attributes and to discard the redundant ones. 
The idea is to pick a feature from a ranked list one by one in 
the following way: firstly, the attributes are ranked accord-
ing to some assessment measure (SOAP, CFS, CNS); and 
secondly, BIRS manages the list of features once, crossing 
the ranking from the beginning to the last ranked feature. 
Evaluation results are obtained using CFS or CNS with the 
first feature in the list, and it is marked as selected. Next, the 
result is again obtained with the first and second features; the 
second will be marked as selected depending on whether the 
evaluation obtained is statistically significantly better. The 
procedure is repeated until the last feature on the ranked 
list is reached. Finally, the algorithm returns the best subset 
found, and it can be stated that it will not contain irrelevant 
or redundant features.

Information measures or uncertainty measures determine 
the information gain from an attribute. The information gain 
from a feature is defined as difference between the prior 
uncertainty and expected posterior uncertainty using the fea-
ture. The ith attribute is preferred to the jth attribute whether 
the information gain from the ith attribute is greater than that 
from the jth attribute. The information gain of a given fea-
ture x with respect to the class label y is defined as the differ-
ence between the marginal entropy of y and the conditional 
entropy of y given x. The symmetrical uncertainty between 
the attributes x and y is defined as two times the quotient of 
the information gain of x provided by y divided by the sum 
of the individual entropies of x and y. FCBF is a feature sub-
set approach which is based on information measures and, 
specifically, in symmetrical uncertainty; moreover, FCBF is 
a very fast feature selection method whose results according 

to the bibliographical review are very competitive or even 
better for some problems compared to CFS.

4 � Experimentation

Experimentation is carried out with a good number of 
problems from the UCI repository [4] in order to evaluate 
the proposed methodology. We compare its results to the 
ones obtained with models without pre-processing the data 
sets by means of FS. After presenting the results with and 
without feature selection, there is a nonparametric analy-
sis to determine whether the performance of the solutions 
improves quality-wise with respect to the correct classifica-
tion rate (CCR), also known as accuracy, in the first case. 
Moreover, a computational cost comparison is performed 
to get an overview of the time reduction rate achieved with 
the new proposal. Other state-of-the-art classifiers have also 
been tested in order to ascertain whether there are significant 
differences between them applying the different FS methods. 
Lastly, an exhaustive statistical analysis is accomplished to 
determine the best classifier/s for each of the considered 
feature selectors.

4.1 � Data sets and cross‑validation

Table 4 summarises the binary and multi-class classifica-
tion data sets employed. All of them are publicly available 
at the UCI repository [4]. The following fourteen have been 
used: breast cancer, breast tissue (breast-t), cardiotocogra-
phy, statlog (heart), hepatitis, labour relations, lymphogra-
phy, Parkinson’s, pima Indians diabetes, steel plates faults, 
molecular biology (promoter gene sequences), waveform 
database generator (version 2), wine quality (winequality-
red) and yeast.

Table 4   Summary of the binary 
and multi-class classification 
data sets used

Data set Total patterns Training patterns Test patterns Features Inputs Classes

Breast 286 215 71 9 15 2
Breast-t 106 81 25 9 9 6
Cardiotocography 2126 1594 532 23 31 3
Heart 270 202 68 13 13 2
Hepatitis 155 117 38 19 19 2
Labour 57 43 14 16 29 2
Lymphography 148 111 37 18 38 4
Parkinson’s 195 146 49 23 22 2
Pima 768 576 192 8 8 2
Plates 1941 1457 484 27 27 7
Promoter 106 80 26 58 114 2
Waveform 5000 3750 1250 40 40 3
Winequality-red 1599 1196 403 11 11 6
Yeast 1484 1112 372 8 8 10



 

These data sets have in common that present error rates 
in test accuracy about 20% or above with reference classi-
fiers such as C4.5 [57] or 1-NN [1, 13]. The size of the data 
sets ranges from over fifty to five thousand. The number of 
features depends on the problem and varies between eight 
and forty, while the number of classes is between two and 
ten. There are seven multi-class classification problems, and 
the remaining are binary ones. The column labelled Inputs 
represents the number of input nodes in the PUNN model. 
Since we are using neural networks, all nominal variables 
have been converted to binary ones; due to this, sometimes 
the number of inputs is greater than the number of features. 
Regarding the number of inputs, it ranges between eight and 
one hundred and fourteen. The missing values have also 
been replaced in the case of nominal variables by the mode 
or, when concerning continuous variables, by the mean, tak-
ing into account the full data set.

The experimental design uses the cross-validation 
technique, called hold-out, which consists of splitting the 
data into two sets: a training and a test set. The former is 
employed to train the neural network, and the latter is used 
to test the training process and to measure neural network 
generalisation capability. In our case, the size of the training 
set is 3n/4 and that of the test set is approximately n/4, where 
n is the number of patterns in the problem; these percent-
ages are similar to those used in [56]. More specifically, we 
have employed a stratified hold-out where the two sets are 
stratified [40] so that the class distribution of the samples in 
each set is approximately the same as in the original data set.

4.2  Feature selection methods, parameters 
and dimensionality reduction analysis

On the one hand, according to the filter type, there are three 
variations, namely FR, FSS and FR-FSS. On the other 
hand, several kinds of measures can be used for evaluating 
data properties of the ranking or the feature subset, such 
as those based on information, dependency or correlation, 

consistency, projection and any combination of some of the 
previous ones such as symmetrical uncertainty (based on 
information and correlation). Sometimes, FS is performed 
using fuzzy entropy measures as in the work of Luukka [48] 
in the context of a similarity classifier.

We have chosen six filters with the purpose of exploring 
the performance of some combinations of the aforemen-
tioned concepts. In a preliminary paper, we have used four 
out of these six methods as a previous step to the training of 
evolutionary PUNN by means of a two-stage evolutionary 
algorithm [67] which evolves two populations of individu-
als at the beginning of the evolutionary cycle. Now, once 
the feature selection is performed, the classification model 
is obtained using a canonical EPA exclusively with only 
one population as the main core of EDD. Specifically, we 
have considered six filters and we have carried out a detailed 
experimentation followed by an analysis of computational 
cost for the PUNN. We aim at giving a broader view of the 
feature selection methods and their performance with a good 
number of classifiers belonging to different approaches and 
to provide the most appropriate machine learning algorithms 
for each one of the filters.

For the methods based on FSS, as a subset evaluation we 
have used correlation-based feature selection (CFS) [31] and 
FCBF. As FR-FSS, we have applied BIRS using different 
evaluation measures such as those based on SOAP or con-
sistency in the first phase as a ranking evaluator and for the 
subset evaluation in the second phase CFS or CNS (consist-
ency based measure) [17]. The FR filter computes as ranking 
method the ranker that is based on an information measure.

Table 5 illustrates the general outline of the methods tri-
alled in the experimentation containing six ones with and 
one without feature selection that belong to EDDFS (the 
current proposal) and EDD methodologies, respectively. All 
of them have been applied to each data set in an independ-
ent way. The feature selectors are implemented as filters. 
The third column defines an abbreviated name for each of 
them which is employed in the next sections. The details of 

Table 5   General outline of the seven methods trialled in experimentation both with and without feature selection

sp and BI stand for SOAP and BIRS, respectively

Feature selector name Methodology Denomination Ranking method Subset evaluation Measure kind Filter type References

– EDD FS0 None None – – [65]
spBI _CFS EDDFS FS1 spBI CFS Correlation FR-FSS [31, 59, 60]
BestFirst_CFS EDDFS FS2 BestFirst CFS Correlation FSS [31]
spBI _CNS EDDFS FS3 spBI CNS Consistency FR-FSS [17, 59, 60]
cnBI _CNS EDDFS FS4 cnBI CNS Consistency FR-FSS [17, 60]
InfoGain EDDFS FS5 Ranker – Information FR [14]
FCBF EDDFS FS6 Symmetrical uncertainty FCBF Information 

and correla-
tion

FSS [73]



each method are described from the fourth to the seventh 
columns. Last column provides some references of the fil-
ters, taking into account the ranking method, subset evalu-
ation, measure kind and filter type. The framework EDD 
performs no feature selection, so we have indicated this situ-
ation with the symbol “–” and the letters FS0 for the feature 
selector name and denomination, respectively. In the rows 
containing FS1, FS2… and FS6, different filters have been 
applied. Generally speaking, these feature selection methods 
are parameter-less with the exception of FS5 for the one in 
which we have tried 0.01 and 0.05 values as threshold. We 
carried out a preliminary experimental design that showed 
a better performance of the classifiers with the 0.01 value. 
Thus, we have held the threshold of FS5 to 0.01 for all the 
experiments.

Table 6 depicts for each data set the number of inputs of 
the original train set (see column labelled FS0) and those 
which have been obtained with the different feature selec-
tors (see columns labelled FS1–6) along with the reduction 
percentage in the inputs of each selector compared to the 
original data set. The last row shows the average of the num-
ber of inputs and the reduction percentage of the test bed 
for each experimented method on this paper. By rows, the 
maximum reduction percentage appears in bold.

The reduction percentage of the number of inputs is 
defined as:

where i is the FS method index and Inputs(j) represents the 
number of inputs of a given data set with method j.

(10)

Reduction_of_Inputs (%) =

(

1 −
Inputs (FSi)

Inputs (FS0)

)

100 i = 1,… , 6

In all cases, FS methods successfully decreased the data 
dimensionality by selecting, in mean, much less than the 
half of the original features. FS6 filter achieves a reduction 
percentage, on average, of 68.53% (from 27.43 to 5.93 fea-
tures in average), which is the highest overall average value 
obtained. Individually, promoter data set has the highest 
reduction rate, ranging from 88.60 to 93.86%, depending 
on the method.

4.3 � Choice of specific parameters depending 
on the data set

In relation to EDD methodology, the concrete values of neu 
and gen parameters for the base configuration depend on the 
data set and are shown in the first column of Table 7. The 
decision on the number of neurons in the hidden layer is a 
very difficult task in the scope of neural networks. The per-
formance of the classifier might be better with other values, 
although determining the optimal values is a challenge. With 
respect to the number of generations, we have defined three 
kinds of values: small (100–120), medium (300) and large 
(500). Again, the optimal number is unknown; however, the 
algorithm has a stop criterion to avoid evolving up to the 
maximum number of generations if there is no improve-
ment. We have performed a previous experimental design 
by means of a fivefold cross-validation with five repetitions 
on the training set for each data set in order to determine the 
values of both parameters. For this purpose, we have divided 
the data sets in two types: small and big problems. The for-
mer are those with less than one thousand of instances, and 
the latter have a number of instances greater than or equal 
to a thousand. Promoter data set has been submitted to the 

Table 6   Number of inputs and reduction percentage for the test bed with and without feature selection

Data set Inputs Reduction (%)

FS0 FS1 FS2 FS3 FS4 FS5 FS6 FS1 FS2 FS3 FS4 FS5 FS6

Breast 15 4 4 2 2 5 3 73.33 73.33 86.67 86.67 66.67 80.00
Breast-t 9 6 6 5 6 8 4 33.33 33.33 44.44 33.33 11.11 55.56
Cardiotocography 31 9 7 10 21 20 8 70.97 77.42 67.74 32.26 35.48 74.19
Heart 13 7 7 8 9 9 6 46.15 46.15 38.46 30.77 30.77 53.85
Hepatitis 19 10 10 11 5 12 6 47.37 47.37 42.11 73.68 36.84 68.42
Labour 29 7 8 5 5 11 8 75.86 72.41 82.76 82.76 62.07 72.41
Lymphography 38 11 12 9 9 15 8 71.05 68.42 76.32 76.32 60.53 78.95
Parkinson’s 22 5 6 7 6 21 4 77.27 72.73 68.18 72.73 4.55 81.82
Pima 8 3 4 4 5 6 4 62.50 50.00 50.00 37.50 25.00 50.00
Plates 27 16 10 19 21 27 6 40.74 62.96 29.63 22.22 0.00 77.78
Promoter 114 7 10 8 7 13 11 93.86 91.23 92.98 93.86 88.60 90.35
Waveform 40 14 14 15 15 19 5 65.00 65.00 62.50 62.50 52.50 87.50
Winequality-red 11 5 4 8 8 8 4 54.55 63.64 27.27 27.27 27.27 63.64
Yeast 8 5 7 7 7 7 6 37.50 12.50 12.50 12.50 12.50 25.00
Average 27.43 7.79 7.79 8.43 9.00 12.93 5.93 60.68 59.75 55.83 53.17 36.71 68.53



experimental design associated with big problems due to the 
high number of inputs. Regarding small data sets, the values 
of the parameters are: neu= {2, 3, 4, 5, 6, 7, 8, 9, 10} and 
gen= {100/120, 300, 500}. For big problems, the following 
values have been taken: neu= {3, 4, 5, 6, 7, 8, 9, 10, 11} and 
gen= {300, 500}. The chosen values of the parameters are 
specified in Table 7. The value for neu parameters deter-
mines the topology of the neural network model.

In EDDFS, again there are two parameters, neu# and 
gen#, whose value is defined for each data set. The two last 
columns of Table 7 present their values along with the ones 
of EDD to have a general view of the differences. In EDD, 
the assignment of values is not trivial, but now in EDDFS 
this decision is more difficult because there are six FS meth-
ods and the values are common for all of them. Kwak and 
Choi [44] have also considered this idea. In our opinion, 
this approach is applicable because the order of magnitude 
of the selected features, as can be seen in the next section, is 
approximately the same and there are not very large differ-
ences in their number in the great majority of the FS meth-
ods for each data set. Moreover, choosing different values 
may lead the comparison to wrong conclusions because the 
better or worse performance could be originated by values 
of the parameters and not by the method itself. The prob-
lem in finding the best architectures in neural networks that 
employ input feature selection remains unsolved. The values 
of EDDFS parameters are limited by the EDD ones. This 
means that we have made a previous experimental design as 
in EDD, although the maximum values for neu# and gen# 
are those determined in EDD (neu and gen). For Heart 
data set, the algorithm converges very fast (no more than 
30 generations for all filters) and the stop condition is soon 

fulfilled; thus, in EDDFS the gen# parameter value has been 
rounded to 25. It is crucial to note that the aforementioned 
values of the parameters concern the base configuration. The 
values of the remaining configurations are presented further 
on.

4.4 � Topologies

We now proceed to describe the topologies whose results 
have been reported throughout the paper. Table 8 shows the 
topology of the different configurations for each data set 
and method. Configurations towards FS methods contain 
the symbol #, unlike those where no FS method is applied. 
Later, we only show the configuration number in order to 
ease legibility.

4.5 � Nonparametric statistical analysis

We perform nonparametric statistical tests following the rec-
ommendations pointed out by Demšar [18]. Average ranks 
provide a fair comparison of the algorithms. The purpose of 
a nonparametric test is to determine the statistical signifi-
cance of the differences in rank observed for each method 
with all data sets. There are two methods, the Friedman [24] 
and Iman–Davenport [32] tests. The former test is equivalent 
to the repeated-measures ANOVA [2], and it is based in χF

2 
statistic; the null hypothesis expresses that all algorithms 
perform equally, so a rejection of it implies the existence 
of significant differences. The latter test is a derivation of 
the former based of FF which is a better statistic, derived 
from χF

2. FF is distributed according to the F distribution 
with (k − 1) and (k − 1) (N − 1) degrees of freedom with k 

Table 7   Values of EDD/EDDFS 
parameters depending on the 
data set

Data set EDD EDDFS

Num. of neurons 
(neu)

Max. num. of genera-
tions (gen)

Num. of neurons 
(neu#)

Max. num. of 
generations 
(gen#)

Breast 9 500 7 500
Breast-t 5 300 5 150
Cardiotocography 6 300 5 150
Heart 6 500 4 25
Hepatitis 3 100 3 100
Labour 6 300 5 300
Lymphography 6 500 6 100
Parkinson’s 6 500 3 500
Pima 3 120 3 120
Plates 6 500 5 500
Promoter 11 500 5 300
Waveform 3 500 3 500
Winequality-red 6 300 4 300
Yeast 11 500 11 500



Table 8   Topologies in fourteen 
data sets applying EDD and 
EDDFS

Data set Method Configuration (topology as number of inputs: number of hidden 
neurons: number of outputs)

Breast FS0 1 (15:9:1) 2 (15:10:1) 3 (15:9:1) 4 (15:10:1)
FS1 1# (4:7:1) 2# (4:8:1) 3# (4:7:1) 4# (4:8:1)
FS2 1# (4:7:1) 2# (4:8:1) 3# (4:7:1) 4# (4:8:1)
FS3 1# (2:7:1) 2# (2:8:1) 3# (2:7:1) 4# (2:8:1)
FS4 1# (2:7:1) 2# (2:8:1) 3# (2:7:1) 4# (2:8:1)
FS5 1# (5:7:1) 2# (5:8:1) 3# (5:7:1) 4# (5:8:1)
FS6 1# (3:7:1) 2# (3:8:1) 3# (3:7:1) 4# (3:8:1)

Breast-t FS0 1 (9:5:5) 2 (9:10:5) 3 (9:5:5) 4 (9:10:5)
FS1 1# (6:5:5) 2# (6:6:5) 3# (6:5:5) 4# (6:6:5)
FS2 1# (6:5:5) 2# (6:6:5) 3# (6:5:5) 4# (6:6:5)
FS3 1# (5:5:5) 2# (5:6:5) 3# (5:5:5) 4# (5:6:5)
FS4 1# (6:5:5) 2# (6:6:5) 3# (6:5:5) 4# (6:6:5)
FS5 1# (8:5:5) 2# (8:6:5) 3# (8:5:5) 4# (8:6:5)
FS6 1# (4:5:5) 2# (4:6:5) 3# (4:5:5) 4# (4:6:5)

Cardiotocography FS0 1 (31:6:2) 2 (31:7:2) 3 (31:6:2) 4 (31:7:2)
FS1 1# (9:5:2) 2# (9:6:2) 3# (9:5:2) 4# (9:6:2)
FS2 1# (7:5:2) 2# (7:6:2) 3# (7:5:2) 4# (7:6:2)
FS3 1# (10:5:2) 2# (10:6:2) 3# (10:5:2) 4# (10:6:2)
FS4 1# (21:5:2) 2# (21:6:2) 3# (21:5:2) 4# (21:6:2)
FS5 1# (20:5:2) 2# (20:6:2) 3# (20:5:2) 4# (20:6:2)
FS6 1# (8:5:2) 2# (8:6:2) 3# (8:5:2) 4# (8:6:2)

Heart FS0 1 (13:6:1) 2 (13:7:1) 3 (13:6:1) 4 (13:7:1)
FS1 1# (7:4:1) 2# (7:5:1) 3# (7:4:1) 4# (7:5:1)
FS2 1# (7:4:1) 2# (7:5:1) 3# (7:4:1) 4# (7:5:1)
FS3 1# (8:4:1) 2# (8:5:1) 3# (8:4:1) 4# (8:5:1)
FS4 1# (9:4:1) 2# (9:5:1) 3# (9:4:1) 4# (9:5:1)
FS5 1# (9:4:1) 2# (9:5:1) 3# (9:4:1) 4# (9:5:1)
FS6 1# (6:4:1) 2# (6:5:1) 3# (6:4:1) 4# (6:5:1)

Hepatitis FS0 1 (19:3:1) 2 (19:4:1) 3 (19:3:1) 4 (19:4:1)
FS1 1# (10:3:1) 2# (10:4:1) 3# (10:3:1) 4# (10:4:1)
FS2 1# (10:3:1) 2# (10:4:1) 3# (10:3:1) 4# (10:4:1)
FS3 1# (11:3:1) 2# (11:4:1) 3# (11:3:1) 4# (11:4:1)
FS4 1# (5:3:1) 2# (5:4:1) 3# (5:3:1) 4# (5:4:1)
FS5 1# (12:3:1) 2# (12:4:1) 3# (12:3:1) 4# (12:4:1)
FS3 1# (6:3:1) 2# (6:4:1) 3# (6:3:1) 4# (6:4:1)

Labour FS0 1 (29:6:1) 2 (29:7:1) 3 (29:6:1) 4 (29:7:1)
FS1 1# (7:5:1) 2# (7:6:1) 3# (7:5:1) 4# (7:6:1)
FS2 1# (8:5:1) 2# (8:6:1) 3# (8:5:1) 4# (8:6:1)
FS3 1# (5:5:1) 2# (5:6:1) 3# (5:5:1) 4# (5:6:1)
FS4 1# (5:5:1) 2# (5:6:1) 3# (5:5:1) 4# (5:6:1)
FS5 1# (11:5:1) 2# (11:6:1) 3# (11:5:1) 4# (11:6:1)
FS6 1# (8:5:1) 2# (8:6:1) 3# (8:5:1) 4# (8:6:1)

Lymphography FS0 1 (38:6:3) 2 (38:7:3) 3 (38:6:3) 4 (38:7:3)
FS1 1# (11:6:3) 2# (11:7:3) 3# (11:6:3) 4# (11:7:3)
FS2 1# (12:6:3) 2# (12:7:3) 3# (12:6:3) 4# (12:7:3)
FS3 1# (9:6:3) 2# (9:7:3) 3# (9:6:3) 4# (9:7:3)
FS4 1# (9:6:3) 2# (9:7:3) 3# (9:6:3) 4# (9:7:3)
FS5 1# (15:6:3) 2# (15:7:3) 3# (15:6:3) 4# (15:7:3)
FS3 1# (8:6:3) 2# (8:7:3) 3# (8:6:3) 4# (8:7:3)



Table 8   (continued) Data set Method Configuration (topology as number of inputs: number of hidden 
neurons: number of outputs)

Parkinson’s FS0 1 (22:6:1) 2 (22:7:1) 3 (22:6:1) 4 (22:7:1)
FS1 1# (5:3:1) 2# (5:4:1) 3# (5:3:1) 4# (5:4:1)
FS2 1# (6:3:1) 2# (6:4:1) 3# (6:3:1) 4# (6:4:1)
FS3 1# (7:3:1) 2# (7:4:1) 3# (7:3:1) 4# (7:4:1)
FS4 1# (6:3:1) 2# (6:4:1) 3# (6:3:1) 4# (6:4:1)
FS5 1# (21:3:1) 2# (21:4:1) 3# (21:3:1) 4# (21:4:1)
FS6 1# (4:3:1) 2# (4:4:1) 3# (4:3:1) 4# (4:4:1)

Pima FS0 1 (8:3:1) 2 (8:4:1) 3 (8:3:1) 4 (8:4:1)
FS1 1# (3:3:1) 2# (3:4:1) 3# (3:3:1) 4# (3:4:1)
FS2 1# (4:3:1) 2# (4:4:1) 3# (4:3:1) 4# (4:4:1)
FS3 1# (4:3:1) 2# (4:4:1) 3# (4:3:1) 4# (4:4:1)
FS4 1# (5:3:1) 2# (5:4:1) 3# (5:3:1) 4# (5:4:1)
FS5 1# (6:3:1) 2# (6:4:1) 3# (6:3:1) 4# (6:4:1)
FS6 1# (4:3:1) 2# (4:4:1) 3# (4:3:1) 4# (4:4:1)

Plates FS0 1 (27:6:6) 2 (27:7:6) 3 (27:6:6) 4 (27:7:6)
FS1 1# (16:5:6) 2# (16:6:6) 3# (16:5:6) 4# (16:6:6)
FS2 1# (10:5:6) 2# (10:6:6) 3# (10:5:6) 4# (10:6:6)
FS3 1# (19:5:6) 2# (19:6:6) 3# (19:5:6) 4# (19:6:6)
FS4 1# (21:5:6) 2# (21:6:6) 3# (21:5:6) 4# (21:6:6)
FS5 1# (27:5:6) 2# (27:6:6) 3# (27:5:6) 4# (27:6:6)
FS6 1# (6:5:6) 2# (6:6:6) 3# (6:5:6) 4# (6:6:6)

Promoter FS0 1 (114:11:1) 2 (114:12:1) 3 (114:11:1) 4 (114:12:1)
FS1 1# (7:5:1) 2# (7:6:1) 3# (7:5:1) 4# (7:6:1)
FS2 1# (10:5:1) 2# (10:6:1) 3# (10:5:1) 4# (10:6:1)
FS3 1# (8:5:1) 2# (8:6:1) 3# (8:5:1) 4# (8:6:1)
FS4 1# (7:5:1) 2# (7:6:1) 3# (7:5:1) 4# (7:6:1)
FS5 1# (13:5:1) 2# (13:6:1) 3# (13:5:1) 4# (13:6:1)
FS6 1# (11:5:1) 2# (11:6:1) 3# (11:5:1) 4# (11:6:1)

Waveform FS0 1 (40:3:2) 2 (40:4:2) 3 (40:3:2) 4 (40:4:2)
FS1 1# (14:3:2) 2# (14:4:2) 3# (14:3:2) 4# (14:4:2)
FS2 1# (14:3:2) 2# (14:4:2) 3# (14:3:2) 4# (14:4:2)
FS3 1# (15:3:2) 2# (15:4:2) 3# (15:3:2) 4# (15:4:2)
FS4 1# (15:3:2) 2# (15:4:2) 3# (15:3:2) 4# (15:4:2)
FS5 1# (19:3:2) 2# (19:4:2) 3# (19:3:2) 4# (19:4:2)
FS6 1# (5:3:2) 2# (5:4:2) 3# (5:3:2) 4# (5:4:2)

Winequality-red FS0 1 (11:6:5) 2 (11:7:5) 3 (11:6:5) 4 (11:7:5)
FS1 1# (5:4:5) 2# (5:5:5) 3# (5:4:5) 4# (5:5:5)
FS2 1# (4:4:5) 2# (4:5:5) 3# (4:4:5) 4# (4:5:5)
FS3 1# (8:4:5) 2# (8:5:5) 3# (8:4:5) 4# (8:5:5)
FS4 1# (8:4:5) 2# (8:5:5) 3# (8:4:5) 4# (8:5:5)
FS5 1# (8:4:5) 2# (8:5:5) 3# (8:4:5) 4# (8:5:5)
FS6 1# (4:4:5) 2# (4:5:5) 3# (4:4:5) 4# (4:5:5)

Yeast FS0 1 (8:11:9) 2 (8:12:9) 3 (8:11:9) 4 (8:12:9)
FS1 1# (5:11:9) 2# (5:12:9) 3# (5:11:9) 4# (5:12:9)
FS2 1# (7:11:9) 2# (7:12:9) 3# (7:11:9) 4# (7:12:9)
FS3 1# (7:11:9) 2# (7:12:9) 3# (7:11:9) 4# (7:12:9)
FS4 1# (7:11:9) 2# (7:12:9) 3# (7:11:9) 4# (7:12:9)
FS5 1# (7:11:9) 2# (7:12:9) 3# (7:11:9) 4# (7:12:9)
FS6 1# (6:11:9) 2# (6:12:9) 3# (6:11:9) 4# (6:12:9)



algorithms and N data sets. If the null hypothesis is rejected, 
we can proceed with a post hoc test. Bonferroni–Dunn [19] 
and Nemenyi [53] tests have both been carried out. The for-
mer compares some methods with a control method. The 
latter is used when all classifiers are compared to each other. 
The critical difference (CD) for each of them can be com-
puted from critical values—which can be found in any sta-
tistical book—, k and N. The considered significance levels 
have been 0.05 for Iman–Davenport test, and 0.05 and 0.10 
for the post hoc methods.

5 � Results

This section depicts the CCR results obtained in the test set 
or in the test subset depending on that feature selection has 
been considered or not.

Firstly, we jointly present the results obtained with EDD 
and EDDFS. Then, a statistical analysis compares EDD ver-
sus EDDFS to determine whether there are significant differ-
ences between applying or not a feature selection with evo-
lutionary PUNN. Later, the computational cost is reported 
in order to provide an efficiency measure.

Afterwards, a second experiment compares for each fea-
ture selector, the best mean values obtained with the current 
proposal to other classifiers using the same reduced data 
sets. Hence, in regard to EDD, we deal with the associated 
topology for each FS method that we report in this paper; the 
results have been extracted from next subsection for FS1–6 
methods.

Lastly, a statistical comparison for each of the FS meth-
ods is presented in order to establish which classifier per-
forms better with the considered test bed.

5.1 � Results applying EDD and EDDFS

The results obtained with EDD [65] and EDDFS method-
ologies are shown together. There were eight configurations 
in the original proposal of EDD, denoted in the following 
way: 1, 2, … 8. This paper only deals with the first four 
configurations. In EDDFS, the four existing configurations 
are 1#… 4#.

Table 9 reports the mean and standard deviation (SD) of 
the test accuracies for each data set for a total of 30 runs. The 
rows containing FS0 refer to the results using the original 
data set performing no feature selection. The letters FS1, 
FS2, … FS6 mean that a filter has been applied. The best 
results without and with FS appear in bold for each data set. 
The last rows show the average values obtained for all data 
sets with each filter and configuration.

From the descriptive analysis of the data, it can be 
noted that the EDDFS methodology obtains the best 
results for almost all data sets. The SD reduction with 

EDDFS is often clear, and it expresses more homogene-
ous results compared to EDD. The accuracy average value 
increases from 70.83 to 75.27 in the best case; hence, FS 
is very valuable in order to improve the performance of 
the classifier based on evolutionary PUNN. All filters 
provide better average results that those obtained without 
FS.

5.1.1 � Statistical analysis

In this section, we compare EDD and EDDFS methodolo-
gies by means of nonparametric statistical tests. To deter-
mine whether there are significant differences, we apply an 
Iman–Davenport test. It compares the average ranks of the 
algorithms, where a low rank value indicates a good algo-
rithm performance and a high value a bad algorithm perfor-
mance. The average ranks of all methods, without (FS0) and 
with FS (FS1–6), are shown in Table 10. The Iman–Dav-
enport test results are presented in Table 11. According 
to them, since the FF statistic is higher than the critical 
value the null hypothesis is rejected. Therefore, we apply 
a post hoc Bonferroni–Dunn test that compares a number 
of methods with a control method, by determining whether 
the average ranks differ from at least the CD which can be 
calculated from the Bonferroni–Dunn test critical values, k 
and N. In our case, we make a comparison of methods that 
employ FS (FS1–6) versus the control method (FS0) that 
does not use FS. Table 12 displays the Bonferroni–Dunn test 
results where the ranking difference, the CD (at α = 0.05 and 
α = 0.10) and the detected significant difference level have 
been indicated for more clarity.

Next, the Bonferroni–Dunn test results are analysed and 
these enable us to ascertain that: there are significant differ-
ences between EDD applying each of the FS methods and 
EDD without FS. The statistical tests point out that evo-
lutionary PUNN performance improves significantly pre-
processing the data set with any of the FS methods employed 
in this paper. The best method is FS2 followed by FS1.

5.1.2 � Analysis of computational cost

The comparison between EDD and EDDFS methodologies 
is completed by means of a computational cost analysis. 
Table 13 reports the time results concerning the average 
computational cost per evaluation measured in milliseconds 
(ms). Experiments have been run in a desktop computer with 
an Intel Core 2 Quad processor at 2.4 GHz and 2 GB RAM 
of physical memory. We now explain the table’s contents. 
The first column specifies the data set name. Columns two to 
eight show the average elapsed time of an evaluation regard-
ing to EDD (FS0) and EDDFS (FS1–6) methodologies. Col-
umns nine to fourteen depict the reduction percentage of 



Table 9   Test results obtained 
in fourteen data sets applying 
EDD and EDDFS

Data set Method Mean ± SD

Configuration

1/1# 2/2# 3/3# 4/4#

Breast FS0 63.85 ± 3.81 63.00 ± 3.24 64.27 ± 3.89 63.43 ± 3.80
FS1 70.84 ± 1.92 70.93 ± 1.59 70.18 ± 1.77 70.00 ± 1.92
FS2 70.84 ± 1.92 70.93 ± 1.59 70.18 ± 1.77 70.00 ± 1.92
FS3 69.20 ± 0.48 69.10 ± 0.35 69.06 ± 0.25 69.06 ± 0.25
FS4 69.20 ± 0.48 69.10 ± 0.35 69.06 ± 0.25 69.06 ± 0.25
FS5 68.49 ± 1.83 68.73 ± 2.96 68.26 ± 3.02 67.88 ± 2.67
FS6 68.26 ± 1.03 68.17 ± 1.20 68.54 ± 0.77 68.64 ± 0.90

Breast-t FS0 52.80 ± 6.42 54.00 ± 8.83 54.53 ± 8.03 53.46 ± 10.37
FS1 56.00 ± 9.15 54.66 ± 7.52 53.33 ± 8.15 55.33 ± 7.20
FS2 54.93 ± 7.27 57.07 ± 7.50 54.27 ± 8.51 55.73 ± 7.20
FS3 54.93 ± 7.64 54.26 ± 7.90 59.86 ± 4.98 57.73 ± 8.44
FS4 61.06 ± 8.19 57.46 ± 8.88 58.13 ± 8.64 58.80 ± 7.80
FS5 55.73 ± 7.49 55.60 ± 7.07 57.20 ± 9.28 54.26 ± 9.43
FS6 55.20 ± 6.51 56.00 ± 5.66 57.87 ± 6.79 57.33 ± 6.91

Cardiotocography FS0 80.93 ± 2.76 79.94 ± 3.70 81.25 ± 3.17 81.04 ± 3.79
FS1 85.45 ± 1.61 84.16 ± 2.27 84.34 ± 2.31 83.93 ± 2.85
FS2 81.57 ± 1.86 81.79 ± 2.34 81.30 ± 1.91 81.35 ± 1.80
FS3 83.17 ± 2.42 82.78 ± 3.63 82.30 ± 3.51 81.04 ± 3.35
FS4 77.27 ± 1.41 76.44 ± 2.14 76.89 ± 1.73 76.52 ± 2.40
FS5 81.37 ± 2.76 80.35 ± 3.08 81.14 ± 3.20 81.71 ± 2.62
FS6 81.09 ± 2.36 81.81 ± 1.87 81.22 ± 2.37 81.62 ± 2.47

Heart FS0 75.93 ± 2.40 75.83 ± 3.27 76.23 ± 2.48 76.03 ± 3.50
FS1 76.23 ± 1.86 76.47 ± 2.12 75.93 ± 2.33 77.50 ± 2.01
FS2 76.23 ± 1.86 76.47 ± 2.12 75.93 ± 2.33 77.50 ± 2.01
FS3 76.08 ± 2.50 75.98 ± 2.30 76.47 ± 2.01 75.59 ± 2.37
FS4 77.40 ± 2.10 76.76 ± 2.09 77.89 ± 2.49 77.99 ± 1.79
FS5 77.40 ± 2.10 76.76 ± 2.09 77.89 ± 2.49 77.99 ± 1.79
FS6 76.08 ± 3.27 76.32 ± 2.68 75.58 ± 3.10 76.32 ± 3.04

Hepatitis FS0 84.47 ± 4.49 85.52 ± 4.67 84.47 ± 4.55 84.29 ± 5.33
FS1 88.77 ± 2.49 88.77 ± 2.93 88.95 ± 2.80 89.91 ± 2.59
FS2 88.77 ± 2.49 88.77 ± 2.93 88.95 ± 2.80 89.91 ± 2.59
FS3 89.04 ± 2.40 89.30 ± 2.49 89.56 ± 2.13 89.47 ± 2.85
FS4 86.67 ± 1.53 86.67 ± 1.82 86.40 ± 1.40 86.32 ± 1.45
FS5 87.01 ± 3.01 87.63 ± 2.20 87.89 ± 2.72 88.07 ± 2.74
FS6 88.42 ± 2.81 88.68 ± 2.68 88.24 ± 2.82 88.24 ± 2.26

Labour FS0 84.04 ± 11.04 83.57 ± 10.29 84.28 ± 10.67 82.85 ± 13.98
FS1 92.85 ± 4.96 92.61 ± 5.13 90.95 ± 4.93 91.42 ± 4.74
FS2 95.71 ± 4.44 93.57 ± 5.42 96.19 ± 4.08 94.29 ± 4.75
FS3 91.19 ± 3.07 90.95 ± 3.21 89.76 ± 4.05 89.76 ± 3.60
FS4 91.19 ± 3.07 90.95 ± 3.21 89.76 ± 4.05 89.76 ± 3.60
FS5 92.61 ± 5.13 95.00 ± 5.97 92.61 ± 5.77 95.00 ± 5.01
FS6 91.42 ± 3.93 91.42 ± 4.35 91.66 ± 4.22 92.38 ± 4.56

Lymphography FS0 75.49 ± 6.98 76.12 ± 6.95 76.48 ± 6.70 76.85 ± 7.56
FS1 78.28 ± 5.91 77.47 ± 4.83 78.01 ± 6.05 75.04 ± 6.49
FS2 78.46 ± 6.08 81.08 ± 4.76 81.17 ± 5.56 79.54 ± 4.69
FS3 77.02 ± 4.90 76.93 ± 5.15 77.20 ± 4.79 75.31 ± 5.48
FS4 76.93 ± 4.74 79.18 ± 4.60 78.46 ± 4.83 79.18 ± 4.97
FS5 78.64 ± 5.46 78.79 ± 5.38 78.19 ± 4.48 79.27 ± 5.37



Table 9   (continued) Data set Method Mean ± SD

Configuration

1/1# 2/2# 3/3# 4/4#

FS6 80.00 ± 4.79 79.91 ± 4.64 79.64 ± 4.95 77.48 ± 3.71
Parkinson’s FS0 79.66 ± 5.01 78.16 ± 4.77 78.98 ± 4.05 79.32 ± 4.76

FS1 79.66 ± 2.37 79.32 ± 2.32 79.93 ± 2.15 79.05 ± 2.83
FS2 80.88 ± 1.96 82.24 ± 2.21 81.49 ± 1.92 81.29 ± 2.73
FS3 80.27 ± 4.23 81.84 ± 4.20 80.61 ± 3.07 80.14 ± 3.90
FS4 78.03 ± 1.16 80.07 ± 2.82 78.78 ± 1.98 79.66 ± 3.24
FS5 80.20 ± 4.45 79.65 ± 3.14 80.34 ± 3.65 78.50 ± 3.24
FS6 81.42 ± 1.54 82.17 ± 2.33 81.83 ± 1.88 80.95 ± 3.14

Pima FS0 77.33 ± 2.36 78.61 ± 1.88 76.96 ± 1.67 77.69 ± 1.79
FS1 79.54 ± 0.90 79.49 ± 0.79 79.60 ± 0.87 79.89 ± 0.92
FS2 80.53 ± 0.87 80.65 ± 1.18 80.65 ± 1.14 80.83 ± 0.96
FS3 75.48 ± 1.42 75.19 ± 1.26 75.00 ± 1.17 75.31 ± 1.51
FS4 78.42 ± 1.09 78.76 ± 1.13 78.73 ± 1.06 78.71 ± 1.47
FS5 78.94 ± 1.34 79.09 ± 1.40 79.02 ± 1.50 79.35 ± 1.48
FS6 80.73 ± 0.87 80.80 ± 1.14 80.69 ± 1.00 80.78 ± 0.82

Plates FS0 52.61 ± 5.09 51.18 ± 5.35 52.01 ± 3.37 52.82 ± 4.03
FS1 55.25 ± 3.66 52.36 ± 2.94 50.83 ± 5.95 54.14 ± 3.89
FS2 49.94 ± 3.72 49.35 ± 5.14 52.00 ± 6.12 52.74 ± 5.91
FS3 54.51 ± 4.92 55.07 ± 2.81 54.24 ± 2.32 57.30 ± 4.88
FS4 53.08 ± 4.96 54.91 ± 4.44 54.82 ± 5.62 55.06 ± 4.12
FS5 52.61 ± 5.09 51.18 ± 5.35 52.01 ± 3.37 52.82 ± 4.03
FS6 52.21 ± 4.40 53.25 ± 4.22 52.96 ± 4.40 53.28 ± 3.72

Promoter FS0 59.74 ± 9.30 58.21 ± 9.67 60.51 ± 10.00 55.51 ± 10.03
FS1 84.48 ± 3.97 84.62 ± 3.78 83.20 ± 3.97 82.94 ± 4.12
FS2 77.69 ± 5.84 76.15 ± 6.50 77.05 ± 5.93 77.95 ± 6.69
FS3 67.43 ± 5.77 67.05 ± 5.11 66.15 ± 5.56 67.94 ± 5.74
FS4 75.89 ± 4.39 75.51 ± 4.45 76.41 ± 3.74 76.53 ± 4.55
FS5 77.06 ± 6.61 77.43 ± 5.41 75.25 ± 6.36 76.79 ± 6.26
FS6 80.64 ± 6.50 79.69 ± 5.71 78.46 ± 7.46 81.69 ± 5.59

Waveform FS0 81.43 ± 2.10 82.78 ± 0.64 82.05 ± 1.64 84.32 ± 1.73
FS1 84.97 ± 1.13 86.54 ± 0.48 84.92 ± 0.98 86.30 ± 0.95
FS2 84.97 ± 1.13 86.54 ± 0.48 84.92 ± 0.98 86.30 ± 0.95
FS3 85.39 ± 1.41 85.78 ± 0.74 85.20 ± 1.14 86.37 ± 0.84
FS4 84.87 ± 0.93 86.75 ± 0.57 85.55 ± 1.21 85.66 ± 0.80
FS5 85.58 ± 1.15 86.35 ± 0.95 85.22 ± 1.30 85.99 ± 1.20
FS6 79.95 ± 0.61 80.06 ± 0.54 80.00 ± 0.49 80.01 ± 0.53

Winequality-red FS0 61.03 ± 1.30 60.80 ± 1.25 61.16 ± 1.20 60.98 ± 1.42
FS1 61.67 ± 1.10 61.49 ± 0.99 61.21 ± 1.11 61.15 ± 1.30
FS2 61.67 ± 1.10 61.49 ± 0.99 61.21 ± 1.11 61.15 ± 1.30
FS3 61.70 ± 1.06 61.54 ± 1.10 61.75 ± 1.01 61.66 ± 1.05
FS4 61.70 ± 1.06 61.54 ± 1.10 61.75 ± 1.01 61.66 ± 1.05
FS5 61.70 ± 1.06 61.54 ± 1.10 61.75 ± 1.01 61.66 ± 1.05
FS6 61.39 ± 0.88 61.51 ± 0.95 61.29 ± 1.04 61.67 ± 0.84

Yeast FS0 59.18 ± 1.17 59.62 ± 1.27 58.50 ± 1.74 59.18 ± 1.83
FS1 59.82 ± 1.22 59.53 ± 1.36 58.95 ± 1.14 59.72 ± 1.46
FS2 60.10 ± 1.41 60.36 ± 1.16 59.93 ± 1.85 60.20 ± 1.46
FS3 60.10 ± 1.41 60.36 ± 1.16 59.93 ± 1.85 60.20 ± 1.46
FS4 60.10 ± 1.41 60.36 ± 1.16 59.93 ± 1.85 60.20 ± 1.46



each method of EDDFS versus EDD (FS0). The time values 
shown are the average of the four configurations for each 
method (FS0, FS1, FS2, FS3, FS4, FS5 and FS6). The last 

row contains the average of the values in the column; the 
best and the second best values appear in bold and italics, 
respectively.

The time reduction percentage is given by the following 
expression:

where i is the FS method index.
Looking at the previous table, we conclude that the reduc-

tion percentage, on average, is higher than 40% in all cases 
and greater than a 60% in the best approach. There are also 
extreme cases for single data sets. For instance, in Promoter 
and Parkinson’s data sets, the higher reduction rates are 
96.13% (from 16.02 to 0.62 ms) and 87.58% (from 5.52 to 
0.69 ms). However, in data sets with times above 100 ms 
such as Plates, Waveform and Yeast the maximum reduc-
tion is, respectively, 66.03% (from 147.58 to 50.13 ms) 
80.34% (from 142.96 to 28.11 ms) and 23.11% (from 144.88 
to 111.40 ms). In absolute terms, the time per evaluation 
has been reduced to 17.65 ms, in the fastest option, from 
46.01 ms, considering the averages for the test bed.

The empirical times give notice that the proposed meth-
odology, EDDFS, is much more efficient than the previous 
methodology, EDD. The average time with FS ranges from 
17.65 to 31.27 ms versus 46.01 ms without FS.

5.2 � Comparison of EDDFS with a variety 
of classifiers

Now, a comparison is performed between EDDFS and 
other state-of-the-art machine learning classifiers with 
and without FS. These algorithms are C4.5, k-nearest 
neighbours (k-NN),—concretely 1-NN—, SVM [69], 
PART [23] and the MLP model [6] with a learning 
back-propagation method (BP). Since all of them are 
implemented in the Waikato environment for knowledge 

(11)Time_Reduction (%) =

(

1 −
FSi

FS0

)

100 i = 1,… , 6

Table 9   (continued) Data set Method Mean ± SD

Configuration

1/1# 2/2# 3/3# 4/4#

FS5 60.10 ± 1.41 60.36 ± 1.16 59.93 ± 1.85 60.20 ± 1.46
FS6 58.23 ± 1.27 58.19 ± 1.41 57.91 ± 1.02 58.05 ± 1.22

Average FS0 70.61 70.53 70.83 70.56
FS1 75.27 74.89 74.31 74.74
FS2 74.45 74.94 74.71 74.91
FS3 73.25 73.30 73.36 73.35
FS4 73.70 73.89 73.75 73.94
FS5 74.10 74.18 74.05 74.25
FS6 73.93 74.14 74.02 74.17

Table 10   Average ranks of 
EDD and EDDFS

Method Average rank

FS0 6.61
FS1 3.29
FS2 2.82
FS3 3.75
FS4 3.71
FS5 3.75
FS6 4.07

Table 11   Statistics and critical 
value for Iman–Davenport test 
of EDD and EDDFS

Statistics Critical 
value for 
α = 0.05

χF
2 FF F(6, 78)

26.60 6.07 2.22

Table 12   Critical difference values and ranking differences of EDD 
and EDDFS by means of a Bonferroni–Dunn test (FS0 is the control 
method)

*Statistically significant difference with α = 0.05

FS0 versus Ranking difference (control 
method − compared method)

Significant 
for compared 
method

FS1 3.32 *
FS2 3.79 *
FS3 2.86 *
FS4 2.90 *
FS5 2.86 *
FS6 2.54 *

CD(�=0.05) = 2.15; CD(�=0.10) = 1.95



analysis (WEKA) workbench [8] the same cross-valida-
tion, hence the same instances, in each of the partitions, 
that in the first experiment have been used. BP param-
eter values were the following: learning rate η = 0.3 and 
momentum α = 0.2. The remaining algorithms have been 
run with WEKA default values that are those recom-
mended by the own algorithm authors. The number of 
runs for MLP was 30.

We have reported in Table 14 the results both without 
(FS0 method) and with FS (FS1… and FS6) for each data 
set and algorithm. In each row, the best result appears in 
bold and the second best one in italics.

From a purely descriptive analysis of the results, we 
can assert the following.

Taking into account the data sets without any FS appli-
cation, SVM classifier achieves the best result in seven 
out of fourteen data sets; the EDD method, C4.5 and MLP 
obtain twice the highest accuracies. On average, SVM 
has the best accuracy (74.12%), MLP the second best 
one (72.48%) and the remaining algorithms range from 
67.68% (PART) to 71.40% (EDD).

Focusing on FS, we can conclude that the EDD method 
obtains the best result for seven out of fourteen data sets; 
C4.5 and 1-NN algorithms yield the highest performance 
for two data sets, and the remaining classifiers once. 
Furthermore, EDD reports the highest mean accuracy 
(75.62%) followed by SVM (73.04%).

Both statements confirm the good behaviour of the 
evolutionary product units. The important achieve-
ment of the FS combined with EDD lets the proposed 

methodology, EDDFS, to substantially improve the per-
formance. However, we need to consider another type of 
information, not only the quantitative one.

5.2.1 � Statistical analysis applying FS

This section involves a comparison in the performance 
between the aforementioned five algorithms, considering 
the results applying FS. As in the first experiment, non-
parametric statistical tests have been employed. To deter-
mine whether there are significant differences, we apply an 
Iman–Davenport test. This method compares the average 
ranks of the algorithms, where a low rank value indicates a 
good algorithm performance and a high value a bad algo-
rithm performance. The average ranks of all methods apply-
ing FS are depicted in Table 15. The Iman–Davenport test 
results for each feature selector are presented in Table 16. 
According to the results, since the FF statistic is higher than 
the critical value in all cases the null hypothesis is rejected. 
So, we proceed with a post hoc Nemenyi test to compare 
all classifiers with each other for detecting significant dif-
ferences. The performance of two classifiers is significantly 
different if the corresponding average ranks differ by at least 
the CD, whose value can be computed from Nemenyi test 
critical values, k and N.

Tables 17, 18, 19, 20, 21 and 22 show the Nemenyi test 
results, each one focusing on FS1, FS2, FS3, FS4, FS5 and 
FS6, respectively, where the ranking difference between 
each different pair and the detected significant difference 
level have been indicated for more clarity.

Table 13   Average computational cost and reduction percentage for the test bed applying EDD and EDDFS

Data set Average computational cost (ms) Reduction (%)

FS0 FS1 FS2 FS3 FS4 FS5 FS6 FS1 FS2 FS3 FS4 FS5 FS6

Breast 5.89 1.81 1.81 1.18 1.18 1.99 1.72 69.21 69.21 80.03 80.03 66.16 70.81
Breast-t 3.00 2.09 2.01 1.79 2.07 2.53 1.90 30.26 32.85 40.48 31.11 15.55 36.73
Cardiotocography 90.89 24.60 22.22 30.43 53.15 45.97 23.01 72.93 75.55 66.53 41.52 49.42 74.69
Heart 4.10 0.96 0.96 1.02 1.15 1.15 1.00 76.57 76.57 75.07 71.82 71.82 75.62
Hepatitis 0.95 0.63 0.63 0.37 0.62 0.88 0.57 33.66 33.66 60.37 34.83 7.00 39.34
Labour 0.97 0.36 0.42 0.30 0.30 0.50 0.42 63.46 56.44 68.77 68.77 48.76 57.21
Lymphography 8.60 3.07 3.41 2.27 2.53 3.98 1.94 64.29 60.34 73.57 70.56 53.78 77.44
Parkinson’s 5.52 0.82 0.90 0.96 0.97 2.47 0.69 85.21 83.66 82.64 82.45 55.31 87.58
Pima 2.99 2.53 2.81 2.48 2.91 2.95 2.84 15.30 6.04 17.21 2.55 1.35 5.14
Plates 147.58 96.39 66.98 109.44 99.31 147.58 50.13 34.68 54.62 25.85 32.71 0.00 66.03
Promoter 16.02 0.70 0.81 0.62 0.62 0.86 0.75 95.62 94.94 96.13 96.13 94.62 95.30
Waveform 142.96 64.28 64.28 71.85 74.15 87.50 28.11 55.03 55.03 49.74 48.13 38.79 80.34
Winequality-red 69.82 27.49 27.49 36.55 36.55 27.49 21.56 60.62 60.62 47.65 47.65 60.62 69.12
Yeast 144.88 111.40 111.40 133.20 133.20 111.40 112.54 23.11 23.11 8.06 8.06 23.11 22.32
Average 46.01 24.08 21.87 28.03 29.19 31.27 17.65 55.71 55.90 56.58 51.17 41.88 61.26



Table 14   Test results obtained 
in fourteen data sets for several 
classifiers both with and without 
FS

Data set Method Classifier

C4.5 1-NN SVM PART​ MLP EDD

Breast FS0 70.42 64.79 64.79 69.01 60.80 64.27
FS1 69.01 70.42 66.20 71.83 69.01 70.93
FS2 69.01 70.42 66.20 71.83 69.01 70.93
FS3 69.01 70.42 64.79 69.01 69.01 69.20
FS4 69.01 70.42 64.79 69.01 69.01 69.20
FS5 64.79 70.42 64.79 70.42 69.30 68.73
FS6 69.01 70.42 64.79 69.01 69.53 68.64

Breast-t FS0 52.00 60.00 52.00 44.00 63.20 54.53
FS1 56.00 52.00 60.00 44.00 65.33 56.00
FS2 68.00 56.00 60.00 56.00 65.47 57.07
FS3 52.00 48.00 60.00 52.00 66.40 59.86
FS4 52.00 52.00 64.00 52.00 67.20 61.06
FS5 56.00 56.00 60.00 48.00 64.67 57.20
FS6 48.00 48.00 56.00 48.00 65.60 57.87

Cardiotocography FS0 82.71 76.32 83.65 82.52 80.75 81.25
FS1 77.07 81.77 81.20 82.52 81.94 85.45
FS2 78.38 80.45 81.39 81.20 80.86 81.79
FS3 84.21 79.70 79.14 85.15 80.91 83.17
FS4 75.19 63.91 75.19 75.00 68.29 77.27
FS5 83.08 76.88 84.21 81.58 81.87 81.71
FS6 77.82 81.20 81.20 77.26 80.13 81.81

Heart FS0 70.59 73.53 76.47 73.53 74.85 76.23
FS1 73.53 73.53 76.47 77.94 72.50 77.50
FS2 73.53 73.53 76.47 77.94 72.50 77.50
FS3 73.53 75.00 76.47 75.00 73.09 76.47
FS4 72.06 75.00 76.47 75.00 74.85 77.99
FS5 72.06 75.00 76.47 75.00 74.85 77.99
FS6 73.53 70.59 77.94 75.00 74.90 76.32

Hepatitis FS0 84.21 86.84 89.47 81.58 84.73 85.52
FS1 84.21 89.47 86.84 84.21 87.28 89.91
FS2 84.21 89.47 86.84 84.21 87.28 89.91
FS3 89.47 92.11 89.47 86.84 86.84 89.56
FS4 89.47 84.21 89.47 84.21 84.21 86.67
FS5 89.47 86.84 86.84 84.21 87.89 88.07
FS6 89.47 84.21 89.47 86.84 87.72 88.68

Labour FS0 85.71 71.43 78.57 85.71 69.52 84.28
FS1 85.71 71.43 78.57 85.71 64.29 92.85
FS2 85.71 64.29 71.43 85.71 57.62 96.19
FS3 85.71 64.28 78.57 78.57 78.57 91.19
FS4 85.71 64.28 78.57 78.57 78.57 91.19
FS5 85.71 78.57 71.43 85.71 71.43 95.00
FS6 85.71 78.57 71.43 78.57 71.43 92.38

Lymphography FS0 75.68 83.78 91.89 75.68 86.58 76.85
FS1 88.29 78.38 83.78 70.27 73.24 78.28
FS2 81.08 81.08 81.08 64.86 80.45 81.17
FS3 75.68 70.27 78.38 64.86 71.89 77.20
FS4 75.68 70.27 78.38 64.86 71.89 79.18
FS5 81.08 81.08 86.49 64.86 83.42 79.27
FS6 81.08 75.68 81.08 70.27 74.50 80.00



Table 14   (continued) Data set Method Classifier

C4.5 1-NN SVM PART​ MLP EDD

Parkinson’s FS0 71.43 77.55 75.51 75.51 77.62 79.66
FS1 75.51 79.59 75.51 77.55 81.56 79.93
FS2 73.47 81.63 75.51 79.59 83.13 82.24
FS3 75.51 81.63 75.51 75.51 75.71 81.84
FS4 79.59 79.59 75.51 81.63 75.65 80.07
FS5 71.43 85.71 75.51 75.51 79.05 80.34
FS6 81.63 73.47 79.59 77.55 84.83 82.17

Pima FS0 74.48 73.96 78.13 74.48 75.94 78.61
FS1 76.04 74.48 77.60 76.04 78.18 79.89
FS2 76.04 67.71 79.17 76.04 78.73 80.83
FS3 69.79 71.88 73.96 72.92 74.25 75.48
FS4 74.48 67.19 78.65 74.48 76.89 78.76
FS5 74.48 69.27 77.08 74.48 76.13 79.35
FS6 76.04 67.71 79.17 76.04 79.01 80.80

Plates FS0 39.05 49.17 57.02 46.69 53.50 52.82
FS1 40.50 51.24 51.03 46.90 56.71 55.25
FS2 54.75 47.31 51.65 51.65 57.33 52.74
FS3 39.67 51.24 57.44 46.90 55.14 57.30
FS4 38.22 50.62 55.17 44.63 55.24 55.06
FS5 39.05 49.17 57.02 46.69 53.50 52.82
FS6 44.63 43.18 45.04 49.79 52.85 53.28

Promoter FS0 69.23 65.38 88.46 53.85 86.03 60.51
FS1 73.08 57.69 84.62 80.77 84.49 84.62
FS2 73.08 69.23 73.08 80.77 76.28 77.95
FS3 76.92 61.54 76.92 80.77 65.38 67.94
FS4 80.77 57.69 84.62 76.92 75.64 76.53
FS5 73.08 69.23 76.92 80.77 72.95 77.43
FS6 73.08 76.92 73.08 80.77 78.21 81.69

Waveform FS0 74.80 68.96 86.24 76.88 84.85 84.32
FS1 74.40 75.36 86.88 77.04 83.21 86.54
FS2 74.40 75.36 86.88 77.04 83.21 86.54
FS3 74.88 74.88 87.12 79.92 83.41 86.37
FS4 74.40 76.64 87.12 79.68 86.27 86.75
FS5 76.32 73.76 87.12 76.64 82.96 86.35
FS6 74.72 69.12 78.80 74.00 77.57 80.06

Winequality-red FS0 53.85 49.88 59.55 51.36 56.35 61.16
FS1 50.87 48.88 59.80 52.11 59.36 61.67
FS2 50.87 48.88 59.80 52.11 59.36 61.67
FS3 50.12 49.63 58.81 52.85 57.04 61.75
FS4 50.12 49.63 58.81 52.85 57.04 61.75
FS5 50.87 48.88 59.80 52.11 59.36 61.75
FS6 51.36 50.37 59.31 49.13 59.64 61.67

Yeast FS0 54.84 48.39 55.91 56.72 59.94 59.62
FS1 53.49 48.92 54.03 54.84 60.20 59.82
FS2 54.03 49.46 54.84 54.30 60.20 60.36
FS3 54.03 49.46 54.84 54.30 60.20 60.36
FS4 54.03 49.46 54.84 54.30 60.20 60.36
FS5 54.03 49.46 54.84 54.30 60.20 60.36
FS6 52.69 48.12 51.61 52.96 58.96 58.23



An analysis based upon the Nemenyi test results allows 
us to state the following.

First, with respect to the FS1 method, there are significant 
differences between EDDFS and all the methods except for 

SVM and MLP. Excluding EDDFS, there are no differences 
between the remaining algorithms.

Second, in relation to the FS2 feature selector, there are 
significant differences between EDDFS and C4.5, 1-NN 
(at a significance level of 0.05) and PART (at a signifi-
cance level of 0.10) classifiers. The rank differences of 
SVM and MLP versus EDDFS are 1.58 and 1.65, respec-
tively. This justifies that EDDFS with FS2 shows an excel-
lent performance.

Third, with regards to the FS3 method, there are sig-
nificant differences between EDDFS and C4.5, 1-NN and 
PART. EDDFS and SVM rankings are very close and differ 
in 0.96 in favour of the first method; SVM does not present 
significant differences versus the remaining algorithms.

Fourth, related to FS4 method, there are significant 
differences between EDDFS and C4.5, 1-NN and PART. 
EDDFS and SVM rankings differ now in 0.75 for the first 

Table 14   (continued) Data set Method Classifier

C4.5 1-NN SVM PART​ MLP EDD

Average FS0 68.50 67.86 74.12 67.68 72.48 71.40
FS1 69.84 68.08 73.04 70.12 72.66 75.62
FS2 71.18 68.20 71.74 70.95 72.25 75.49
FS3 69.32 67.15 72.24 69.62 71.28 74.12
FS4 69.34 65.07 72.97 68.80 71.50 74.42
FS5 69.39 69.31 72.75 69.31 72.68 74.74
FS6 69.91 66.97 70.61 68.94 72.49 74.54

Table 15   Average ranks of 
FS methods with different 
classifiers

Method Classifier

C4.5 1-NN SVM PART​ MLP EDDFS

FS1 4.57 4.39 3.32 3.75 3.07 1.89
FS2 4.29 4.75 3.29 3.61 3.36 1.71
FS3 4.25 4.43 2.89 4.04 3.46 1.93
FS4 4.04 4.86 2.61 4.18 3.46 1.86
FS5 4.32 4.46 2.68 4.11 3.14 2.29
FS6 3.82 4.79 3.29 4.32 2.93 1.86

Table 16   Statistics and critical value for Iman–Davenport test of FS 
methods with different classifiers

Method Statistics Critical value for α = 0.05
F(5, 65)

χF
2 FF

FS1 19.22 4.92 2.36
FS2 21.79 5.87
FS3 18.20 4.57
FS4 24.35 6.93
FS5 17.00 4.17
FS6 22.01 5.96

Table 17   Pairwise comparisons 
of the classifiers with FS1 by 
means of a Nemenyi test

Each filled cell contains the ranking difference between the methods in the row and the column. Also, it is 
specified if the latter method outperforms the former one at a significance level of 0.05 (*) or 0.10 (°)

C4.5 1-NN SVM PART​ MLP EDDFS

C4.5 0.18 1.25 0.82 1.50 2.68* 
1-NN 1.04 0.64 1.32 2.50* 
SVM − 0.43 0.25 1.43
PART 0.68 1.86°
MLP 1.18
CD(�=0.05) = 2.02; CD(�=0.10) = 1.83



classifier. In the current case, SVM wins to 1-NN with 
significant differences.

Fifth, towards FS5, EDDFS obtains significant differ-
ences only versus C4.5 and 1-NN. The rank difference 

between PART and EDDFS is very close to CD (at a sig-
nificance level of 0.10) in favour of EDDFS.

Lastly and taking into concern the FS6 method, EDDFS 
wins in a significant way to 1-NN, PART and C4.5 (at 0.10 

Table 18   Pairwise comparisons 
of the classifiers with FS2 by 
means of a Nemenyi test

Each filled cell contains the ranking difference between the methods in the row and the column. Also, it is 
specified if the latter method outperforms the former one at a significance level of 0.05 (*) or 0.10 (°)

C4.5 1-NN SVM PART​ MLP EDDFS

C4.5 − 0.46 1.00 0.68 0.93 2.58* 
1-NN 1.46 1.14 1.39 3.04* 
SVM − 0.32 − 0.07 1.58
PART 0.25 1.90°
MLP 1.65
CD(�=0.05) = 2.02; CD(�=0.10) = 1.83

Table 19   Pairwise comparisons 
of the classifiers with FS3 by 
means of a Nemenyi test

Each filled cell contains the ranking difference between the methods in the row and the column. Also, it is 
specified if the latter method outperforms the former one at a significance level of 0.05 (*) or 0.10 (°)

C4.5 1-NN SVM PART​ MLP EDDFS

C4.5 − 0.18 1.36 0.21 0.79 2.32* 
1-NN 1.54 0.39 0.97 2.50* 
SVM − 1.15 − 0.57 0.96
PART 0.58 2.11* 
MLP 1.53
CD(�=0.05) = 2.02; CD(�=0.10) = 1.83

Table 20   Pairwise comparisons 
of the classifiers with FS4 by 
means of a Nemenyi test

Each filled cell contains the ranking difference between the methods in the row and the column. Also, it is 
specified if the latter method outperforms the former one at a significance level of 0.05 (*) or 0.10 (°)

C4.5 1-NN SVM PART​ MLP EDDFS

C4.5 − 0.82 1.43 − 0.14 0.58 2.18* 
1-NN 2.25*  0.68 1.40 3.00* 
SVM − 1.57 − 0.85 0.75
PART 0.72 2.32* 
MLP 1.60
CD(�=0.05) = 2.02; CD(�=0.10) = 1.83

Table 21   Pairwise comparisons 
of the classifiers with FS5 by 
means of a Nemenyi test

Each filled cell contains the ranking difference between the methods in the row and the column. Also, it is 
specified if the latter method outperforms the former one at a significance level of 0.05 (*) or 0.10 (°)

C4.5 1-NN SVM PART​ MLP EDDFS

C4.5 − 0.14 1.64 0.21 1.18 2.03* 
1-NN 1.78 0.35 1.32 2.17* 
SVM − 1.43 − 0.46 0.39
PART 0.97 1.82
MLP 0.85
CD(�=0.05) = 2.02; CD(�=0.10) = 1.83



level). MLP gets significant differences with 0.10 confi-
dence level versus 1-NN.

6 � Conclusions

A methodology to achieve simple classification models com-
bining an initial filter-based feature selection with a later step 
to build a classifier based on product unit neural networks 
trained with an evolutionary programming algorithm in clas-
sification problems using EDD workbench has been intro-
duced. A blend of EDD framework and FS, called EDDFS, 
has certainly been proposed. The pre-processing stage is 
performed by means of FS methods implemented as filters. 
A review of the state-of-the-art methods has been done, and 
six filters from different feature selection approaches, such 
as FR-FSS, FSS and FR, have been tried out. According to 
the experimental results, the models obtained with the pro-
posal are more accurate as well as simpler, in relation to the 
number of inputs and/or nodes in the hidden layer. Besides, 
the current contribution is much more efficient, ranging from 
40 to 60%, than the previous one.

The empirical study to compare EDDFS and EDD meth-
odologies, both of them based on Evolutionary PUNN, has 
been performed on fourteen classification problems (seven 
binary and seven multiple class data sets) from the very 
well-known machine learning repository from the Univer-
sity of California at Irvine, which present test error rates 
measured in accuracy about a 20% or above with C4.5 or 
1-NN classifiers. A great deal of configurations, over four
hundred, has been trialled. The average test accuracy has
been improved in more than four points (more or less from
71 to 75%). The statistical analysis reveals that differences
are significant in favour for any considered filter.

We have also undergone other state-of-the-art classifiers 
with and without FS using the fourteen data sets in order to 
get an overall outlook. We investigated further the competi-
tiveness of each FS method by comparing their performance 
applying some reference-supervised learning algorithms to 
the reduced data sets, in order to determine for each feature 

selector which is the best machine learning algorithm of the 
ones considered.

Nonparametric statistical tests were conducted, and the 
most important conclusions reached are as follows. On 
the one hand, all the filter-based FS methods helped to 
improve significantly the accuracy of the neural network 
models with product units. As stated by the average ranks 
the best filters are, in this order, FS2 (BestFirst_CFS), 
FS1 (spBI_CFS) and FS3 (spBI_CNS). This means that 
correlation-based FS methods are the most appropriate for 
product units, followed by those based on consistency. At 
a lower level, BestFirst search and SOAP measure in con-
junction with Best Incremental Ranked Subset are power-
ful for feature selection with evolutionary neural networks 
containing kinds of multiplicative neurons in the hidden 
layer such as product units.

On the other hand, the comparison with other classi-
fiers reported in this paper sheds light on that EDDFS 
has the best average rank versus the remaining algorithms 
for all FS methods. Comparing the different filters, the 
results of the tests allow us to state the following. EDDFS 
achieves significant differences versus three classifiers, 
such as C4.5, 1-NN and PART, with FS1 (spBI_CFS), 
FS2 (BestFirst_CFS), FS3 (spBI_CNS), FS4 (cnBI_CNS) 
and FS6 (FCBF) filter. With FS5 (InfoGain), the difference 
is significant when compared with the two classifiers. For 
each filter, EDDFS has a better ranking than SVM and 
MLP applying the Friedman test, although the difference 
is not significant. FS2 (BestFirst_CFS) provides greater 
rank differences than the remaining filters to EDDFS ver-
sus SVM and MLP. EDDFS obtains the best results, on 
average, with FS1 (75.62), and the results closer to this 
are obtained by SVM (73.04) and MLP (72.66) classifiers.

According to the above results, our new learning 
methodology of neural networks based on product units, 
EDDFS, is seen to significantly improve accuracy in all 
cases with respect to the previous approach, EDD. Lastly, 
we mention some efficiency issues. The current proposal, 
EDDFS, is much more efficient than EDD. The time reduc-
tion percentage ranges approximately from a 41 to 61%, 
on average, for the test bed.

Table 22   Pairwise comparisons 
of the classifiers with FS6 by 
means of a Nemenyi test

Each filled cell contains the ranking difference between the methods in the row and the column. Also, it is 
specified if the latter method outperforms the former one at a significance level of 0.05 (*) or 0.10 (°)

C4.5 1-NN SVM PART​ MLP EDDFS

C4.5 − 0.97 0.53 − 0.50 0.89 1.96°
1-NN 1.50 0.47 1.86° 2.93* 
SVM − 1.03 0.36 1.43
PART 1.39 2.46* 
MLP 1.07
CD(�=0.05) = 2.02; CD(�=0.10) = 1.83
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