Skip to main content
Log in

A novel CT image segmentation algorithm using PCNN and Sobolev gradient methods in GPU frameworks

  • Theoretical advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Accurate brain tumor segmentation plays a significant role in the area of radiotherapy diagnosis and in the proper treatment for brain tumor detection. Typically, the brain tumor has poor boundary and low contrast between normal and lesion soft tissues that makes segmentation of brain tumor in the CT images a challenging task. This paper presents a novel approach to brain image segmentation using pulse-coupled neural network (PCNN) and zero level set (ZL) with Sobolev gradient (SG) method. In this article, PCNN is designed to use as an edge mapper to provide a regional description for the ZL to segregate the CT images based on contour maps. The PCNN is used to estimate the exact threshold to obtain the prominent edges of the images. Resulting edges are utilized in the ZL to extract image contour from the source image. Due to the over-sensitivity of the ZL method on the initial contour, a level set with the SG has been equipped to overcome the limitation of the ZL method. The experimental results show satisfactory segmentation outcomes with excellent accuracy and acceleration in comparison with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dora L, Agrawal S, Panda R, Abraham A (2017) State of the art methods for brain tissue segmentation: a review. IEEE Rev Bio Eng 10:235–249

    Article  Google Scholar 

  2. Eklund A, Dufort P, Forsberg D, LaConte SM (2013) Medical image processing on the GPU-past, present and future. Med Image Anal 17(8):1073–1094

    Article  Google Scholar 

  3. Hsieh J (2003) Computed tomography: principles, design, artifacts, and recent advances, vol 114. SPIE Press, Bellingham

    Google Scholar 

  4. Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  5. Wang Z, Ma Y, Cheng F, Yang L (2010) Review of pulse-coupled neural networks. Image Vis Comput 28(1):5–13

    Article  Google Scholar 

  6. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  Google Scholar 

  7. Sui H, Peng F, Xu C, Sun K, Gong J (2012) GPU-accelerated MRF segmentation algorithm for SAR images. Comput Geosci 43:159–166

    Article  Google Scholar 

  8. Sanders J, Kandrot E (2010) CUDA by example: an introduction to general-purpose GPU programming, portable documents. Addison-Wesley Professional, Boston

    Google Scholar 

  9. Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM (2001) Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5):856–876

    Article  Google Scholar 

  10. Akgun D, Erdogmus P (2015) GPU accelerated training of image convolution filter weights using genetic algorithms. Appl Soft Comput 30:585–594

    Article  Google Scholar 

  11. Brodtkorb AR, Hagen TR, Saetra ML (2013) Graphics processing unit (GPU) programming strategies and trends in GPU computing. J Parallel Distrib Comput 73(1):4–13

    Article  Google Scholar 

  12. Kirk DB, Hwu WMW (2010) Programming massively parallel processors. Elsevier, Amsterdam

    Google Scholar 

  13. Massingill BL, Mattson TG, Sanders BA (2004) Patterns for parallel programming. The software patterns series. Addison-Wesley Professional, Boston

    Google Scholar 

  14. Vagli P, Turini F, Cerri F, Neri E (2008) Temporal bone. Image Process Radiol 12:137–149

    Article  Google Scholar 

  15. Yoo TS (2004) Insight into images: principles and practice for segmentation, registration, and image analysis. AK Peters Ltd, Natick

    Book  Google Scholar 

  16. Sonka M, Hlavac V, Boyle R (2014) Image processing, analysis, and machine vision. Cengage Learning, Stamford

    Google Scholar 

  17. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  Google Scholar 

  18. Neuberger JW (1997) Sobolev gradients and differential equations. Lecture notes in mathematics, vol 1670. Springer, Berlin

    Book  Google Scholar 

  19. Khadidos A, Sanchez V, Li CT (2017) Weighted level set evolution based on local edge features for medical image segmentation. IEEE Trans Image Process 26(4):1979–1991

    Article  MathSciNet  Google Scholar 

  20. Pratondo A, Chui CK, Ong SH (2016) Robust edge-stop functions for edge-based active contour models in medical image segmentation. IEEE Signal Process Lett 23(2):220–226

    Article  Google Scholar 

  21. Wei S, Qu H, Hou M (2011) Automatic image segmentation based on PCNN with adaptive threshold time constant. Neurocomputing 74:1485–1491

    Article  Google Scholar 

  22. Xie W, Li Y, Ma Y (2015) PCNN-based level set method of automatic mammographic image segmentation. Opt Int J Light Electron Opt 127(4):1644–1650

    Article  Google Scholar 

  23. Song E, Huang D, Hung C (2011) Semi-supervised multi-class adaboost by exploiting unlabeled data. Expert Syst Appl 38:6720–6726

    Article  Google Scholar 

  24. Konstantinos K, Christian L, Virginia FJN et al (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Article  Google Scholar 

  25. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for scene segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Article  Google Scholar 

  26. Litjens G, Kooi T, Bejnordi BE (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  27. Zhang H, Wang S, Xu X, Chow T, Jonathan Wu QMJ (2018) Tree2Vector: learning a vectorial representation for tree-structured data. IEEE Trans Neural Netw Learn Syst 29(11):C1–5173

    Article  MathSciNet  Google Scholar 

  28. Smistad E, Falch TL, Bozorgi M et al (2015) Medical image segmentation on GPUs-A comprehensive review. Med Image Anal 20(1):1–18

    Article  Google Scholar 

  29. Renka RJ (2010) Geometric curve modeling with Sobolev gradients. In: Neuberger JW (ed) Sobolev gradients and differential equations. Springer, Berlin, pp 199–208

    Chapter  Google Scholar 

  30. Jaros M, Strakos P et al (2017) Implementation of K-means segmentation algorithm on Intel Xeon Phi and GPU: application in medical imaging. Adv Eng Softw 103:21–28

    Article  Google Scholar 

  31. Renka RJ (2005) Sobolev gradient method for construction of elastic curves in regular surfaces. Nonlinear Anal Theory Methods Appl 63(5):e1789–e1796

    Article  Google Scholar 

  32. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79

    Article  Google Scholar 

  33. https://github.com/biswajitcsecu

  34. Levine M, Nazif A (1985) Dynamic measurement of computer generated image segmentations. IEEE Trans Pattern Anal Mach Intell 7:155–164

    Article  Google Scholar 

  35. Lin L, Yang W et al (2016) Inference with collaborative model for interactive tumor segmentation in medical image sequences. IEEE Trans Cybern 46(12):2796–2809

    Article  Google Scholar 

  36. Liu B, Cheng HD, Huang J, Tian J, Tang X, Liu J (2010) Probability density difference-based active contour for ultrasound image segmentation. Pattern Recognit 43(6):2028–2042

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Kr. Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, B., Ghosh, S.K. & Ghosh, A. A novel CT image segmentation algorithm using PCNN and Sobolev gradient methods in GPU frameworks. Pattern Anal Applic 23, 837–854 (2020). https://doi.org/10.1007/s10044-019-00837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-019-00837-9

Keywords

Navigation