Skip to main content
Log in

Local gradient of gradient pattern: a robust image descriptor for the classification of brain strokes from computed tomography images

  • Theoretical advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new feature extraction method for the classification of brain computed tomography (CT) scan images into hemorrhagic strokes, ischemic strokes and normal CT images. The most popular feature extraction method is local binary pattern (LBP), which works by thresholding the neighboring pixel values with the center pixel value of the image. Unlike LBP, our proposed method is based on comparing neighbors of center pixel and the mean of whole image intensities in the first step, and computing double gradients of local neighborhoods of a center pixel of the original image in x and y directions in the second step. Further, values obtained from the first step are compared with double gradients of neighbors in order to generate codes for the center pixel. We have also calculated the codes for the first step. Thereafter, histograms of all the codes are generated and finally concatenated to form a single feature vector. We termed this descriptor as the local gradient of gradient pattern. We have performed nine different experiments where images have been classified using various classifiers. The efficacy of our feature descriptor for image classification is identified by comparing it with seven different feature extraction methods. Performances of these methods are tested using metrics such as precision, true positive rate, false positive rate, F-measure and accuracies of the classifier. Results obtained show that our method is superior to other previous descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.strokeassociation.org/STROKEORG/AboutStroke/TypesofStroke/IschemicClots/Ischemic-Strokes-Clots_UCM_310939_Article.jsp#.Ws2h8YhubIU.

References

  1. Adamson J, Beswick A, Ebrahim S (2004) Is stroke the most common cause of disability? J Stroke Cerebrovasc Dis 13(4):171–177

    Article  Google Scholar 

  2. Gattringer T, Enzinger C, Ropele S, Fazekas F (2018) Brain imaging (CT/MRI). In: Ischaemic stroke in the young, Oxford University Press, pp 113–132

  3. Vesey AT, Jenkins WSA, Irkle A, Moss A, Sng G, Forsythe RO, Clark T, Roberts G, Fletcher A, Lucatelli C, Rudd JH (2017) 18F-fluoride and 18F-fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: case-control study. Circ Cardiovasc Imaging 10(3):e004976

    Article  Google Scholar 

  4. Reshef A, Shirvan A, Waterhouse RN, Grimberg H, Levin G, Cohen A, Ulysse LG, Friedman G, Antoni G, Ziv I (2008) Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET. J Nucl Med 49(9):1520–1528

    Article  Google Scholar 

  5. Menon BK, d’Esterre CD, Qazi EM, Almekhlafi M, Hahn L, Demchuk AM, Goyal M (2015) Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 275(2):510–520

    Article  Google Scholar 

  6. Gautam A, Raman B, Raghuvanshi S (2018) A hybrid approach for the delineation of brain lesion from CT images. Biocybern Biomed Eng 38(3):504–518

    Article  Google Scholar 

  7. Chaplot S, Patnaik LM, Jagannathan NR (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92

    Article  Google Scholar 

  8. Zhang Y, Dong Z, Wu L, Wang S (2011) A hybrid method for MRI brain image classification. Expert Syst Appl 38(8):10049–10053

    Article  Google Scholar 

  9. Kamnitsas K, Chen L, Ledig C, Rueckert D, Glocker B (2015) Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. Ischemic stroke lesion segmentation 2015:13–16

    Google Scholar 

  10. Farag AA, Ali A, Elshazly S, Farag AA (2017) Feature fusion for lung nodule classification. Int J Comput Assist Radiol Surg 12(10):1809–1818

    Article  Google Scholar 

  11. He Y, Sang N, Gao C (2013) Multi-structure local binary patterns for texture classification. Pattern Anal Appl 16(4):595–607

    Article  MathSciNet  Google Scholar 

  12. Rani R, Kumar R, Singh AP (2018) An empirical evaluation of translational and rotational invariance of descriptors and the classification of flower dataset. Pattern Anal Appl 21(1):1–8

    Article  MathSciNet  Google Scholar 

  13. Dey M, Raman B, Verma M (2016) A novel colour-and texture-based image retrieval technique using multi-resolution local extrema peak valley pattern and RGB colour histogram. Pattern Anal Appl 19(4):1159–1179

    Article  MathSciNet  Google Scholar 

  14. Wu JK, Kankanhalli MS, Lim JH, Hong D (2000) Perspectives on content-based multimedia systems. Springer, Berlin

    Google Scholar 

  15. Chaddad A, Zinn PO, Colen RR (2015) Radiomics texture feature extraction for characterizing GBM phenotypes using GLCM. In: IEEE 12th international symposium on biomedical imaging (ISBI), pp 84–87

  16. Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251

    Article  Google Scholar 

  17. Verma M, Raman B (2015) Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval. J Vis Commun Image Represent 32:224–236

    Article  Google Scholar 

  18. Ye T, Zu C, Jie B, Shen D, Zhang D, Initiative Alzheimer’s Disease Neuroimaging (2016) Discriminative multi-task feature selection for multi-modality classification of Alzheimer’s disease. Brain Imaging Behav 10(3):739–749

    Article  Google Scholar 

  19. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit 29(1):51–59

    Article  Google Scholar 

  20. Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125

    Article  MATH  Google Scholar 

  21. Murala S, Wu QMJ (2014) Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J Biomed Health Inform 18(3):929–938

    Article  Google Scholar 

  22. Ojala T, Pietikäinen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  23. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  MATH  Google Scholar 

  25. Murala S, Wu QMJ (2013) Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119:399–412

    Article  Google Scholar 

  26. Chen X, Zhou Z, Zhang J, Liu Z, Huang Q (2016) Local convex-and-concave pattern: an effective texture descriptor. Inf Sci 363:120–139

    Article  Google Scholar 

  27. Dubey SR, Singh SK, Singh RK (2015) Local wavelet pattern: a new feature descriptor for image retrieval in medical CT databases. IEEE Trans Image Process 24(12):5892–5903

    Article  MathSciNet  MATH  Google Scholar 

  28. Dubey SR, Singh SK, Singh RK (2015) Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Process Lett 22(9):1215–1219

    Article  Google Scholar 

  29. Ortiz A, Lozano F, Gorriz JM, Ramirez J, Martinez Murcia FJ, Initiative Alzheimer’s Disease Neuroimaging (2018) Discriminative sparse features for alzheimer’s disease diagnosis using multimodal image data. Curr Alzheimer Res 15(1):67–79

    Google Scholar 

  30. Wei G, Cao H, Ma H, Qi S, Qian W, Ma Z (2018) Content-based image retrieval for lung nodule classification using texture features and learned distance metric. J Med Syst 42:13

    Article  Google Scholar 

  31. Li Z, Tang J (2015) Unsupervised feature selection via nonnegative spectral analysis and redundancy control. IEEE Trans Image Process 24(12):5343–5355

    Article  MathSciNet  MATH  Google Scholar 

  32. Li Z, Tang J, He X (2018) Robust structured nonnegative matrix factorization for image representation. IEEE Trans Neural Netw Learn Syst 29(5):1947–1960

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Shailendra Raghuvanshi, Head of the Radiology Department, Himalayan Institute of Medical Sciences, Jolly Grant, Dehradun, India, for providing us the CT scan images of brain strokes and Indian Institute of Technology Roorkee, India, for continuous support.

Funding

This study was funded by Ministry of Human Resource Development, India (Grant Number MHC-02-23-200-428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Gautam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, A., Raman, B. Local gradient of gradient pattern: a robust image descriptor for the classification of brain strokes from computed tomography images. Pattern Anal Applic 23, 797–817 (2020). https://doi.org/10.1007/s10044-019-00838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-019-00838-8

Keywords

Navigation