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Abstract
A reliable automatic visual quality assessment of 3D-printed surfaces is one of the key issues related to computer and 
machine vision in the Industry 4.0 era. The colour-independent method based on image entropy proposed in the paper makes 
it possible to detect and identify some typical problems visible on the surfaces of objects obtained by additive manufactur-
ing. Depending on the quality factor, some of such 3D printing failures may be corrected during the printing process or the 
operation can be aborted to save time and filament. Since the surface quality of 3D-printed objects may be related to some 
mechanical or physical properties of obtained objects, its fast and reliable evaluation may also be helpful during the qual-
ity monitoring procedures. The method presented in the paper utilizes the assumption of the increase of image entropy for 
irregularly distorted 3D-printed surfaces. Nevertheless, because of the local nature of distortions, the direct application of the 
global entropy does not lead to satisfactory results of automatic surface quality assessment. Therefore, the extended method, 
based on the combination of the local image entropy and its variance with additional colour adjustment, is proposed in the 
paper, leading to the proper classification of 78 samples used during the experimental verification of the proposed approach.
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1  Introduction

Additive manufacturing has become one of the most dynam-
ically developing technologies related to Industry 4.0 in 
recent years. The use of relatively cheap and widely avail-
able 3D printers makes the rapid prototyping and on-demand 
production of various unique elements and details possible. 
Due to a long time necessary for printing of some larger 
objects as well as technical imperfections of some low-cost 
devices, one of the relevant issues is a reliable quality assess-
ment of the printed elements, especially their surfaces.

Automatic detections of some distortions during the print-
ing process make it possible to perform potential corrections 
in some cases, or for more significant malformations, the 

decision about aborting the manufacturing can be made. 
In such online applications, the visual quality assessment 
should be made preferably in controlled lighting conditions 
by the analysis of images captured by the cameras observing 
the side surface of the printed element. Such an assumption 
makes it possible to check the regularity of each layer of 
the filament, and therefore, the amount and size of detected 
deficiencies may be estimated.

In general manner, 3D printing methods can be divided 
into four major groups: stereolithography, ink-jet printing, 
selective laser sintering and fused deposition modelling 
(FDM). The last one, utilizing layer deposition of a thermo-
plastic material extruded from a software-controlled nozzle, 
is the most popular, and therefore, the methods presented 
in this paper will be focused on the FDM. Since the most 
popular thermoplastic filaments are polylactide (PLA) and 
acrylonitrile butadiene styrene (ABS), all the samples used 
in experiments have been prepared using various colours of 
such materials.

Automatic visual quality assessment of the 3D-printed 
surfaces is a relatively new, yet important, area of com-
puter vision research. Although it constitutes a major tech-
nical challenge, it also leads to some new possibilities of 
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interdisciplinary integration of various kinds of information. 
The detection of some cracks or larger distortions visible on 
the printed surface may be considered as an indication of 
weak mechanical properties of the manufactured element. 
On the other hand, some internal contaminations which 
cannot be detected using purely visual analysis might be 
assessed using similar methods combined with electromag-
netic (e.g. terahertz based) nondestructive testing methods, 
successfully applied to evaluation of optical properties for 
various filaments [1]. Some possibilities of applications of 
X-ray computed tomography and ultrasonic imaging for 
detection of embedded defects and effects of altered print-
ing orientation have been discussed by Zeltmann et al. [2].

As stated by Straub [3], the decision system which uses 
the results of the automatic quality assessment is depend-
ent on the hardware possibilities. In the basic version, only 
the decision about stopping or continuing the printing pro-
cess can be made. In more advanced systems, some addi-
tional actions can be made, e.g. re-application of filament 
to detected places (sometimes even before the start of the 
deposition of the next layer, assuming the observation from 
the top) or milling the areas having too much of the depos-
ited material.

The rest of this paper is organized as follows: Sect. 2.1 
focuses on the known applications of image analysis for 
monitoring the 3D printing process, in Sect. 2, some pre-
vious attempts to quality assessment have been presented 
together with discussion of initial experiments and Sect. 3 is 
related to the description of the proposed approach, whereas 
the next section contains the analysis of obtained experimen-
tal results and is followed by conclusions.

2 � Previous research

2.1 � Overview of machine vision in monitoring of 3D 
printing

One of the first attempts to visual monitoring of the 3D 
printing has been the concept of process signatures applied 
to fused deposition of ceramics proposed by Fang et al. [4, 
5]. This approach focuses only on defect detection using 
simplified texture analysis by comparing the image of the 
printed sample with the expected virtual one. Another idea 
presented by Cheng and Jafari [6] is based on the monitor-
ing of top surface during printing to prevent the presence of 
voids. It is based on the process dynamics models, and the 
correlation between adjacent layers for the reconstructed 3D 
road shapes using shape from profile makes the identifica-
tion of a single type of contamination possible (caused by 
under- or overfilling).

Another application of vision-based methods for fault 
detection has been proposed by Szkilnyk, Hughes and 

Surgenor [7], which makes it possible to recognize some 
defects, e.g. jams, however only those previously defined. A 
comparison of some other machine vision methods used for 
fault detection has been provided by Chauhan and Surgenor 
[8, 9], whereas Straub [10] has described the system dedi-
cated to initial image analysis used for comparison of the in-
process object with the final one. However, considering the 
pixel-by-pixel comparison used by the Author, an accurate 
calibration of the camera and the printing device is neces-
sary to obtain good results. The proposed system has been 
found very sensitive to environmental and even small camera 
position changes. Some alignment issues have been further 
described in the paper [11].

An interesting solution for quality assessment of 
3D-printed electronic products has been proposed by Tour-
lokis [12]. It has been applied to 3D ink-jet printing and 
focuses on the analysis of droplets using neural networks. 
However, considering the required training for the network 
and the specific application, the universality of this method 
is considered as limited.

Another initial attempt to visual inspection of 3D printing 
has been presented by Makagonov, Blinova and Bezuklad-
nikov [13]. Detection of singular points based on the use of 
functions available in OpenCV library made it possible to 
match properly the images of 3D-printed parts with their 
models shown on reference images. Nevertheless, the qual-
ity assessment of the printed surfaces has not been applied. 
Holzmond and Li [14] have proposed the use of 3D image 
correlation system for monitoring the surface geometry of 
the printed parts, which requires the reconstruction of 3D 
images using two cameras and further comparison with a 3D 
CAD model. Scime and Beuth [15] have used the filter banks 
and k-means unsupervised clustering for training and further 
anomaly detection in parts obtained from laser powder bed 
fusion 3D printers.

One of the recent most relevant achievements is the appli-
cation of machine vision to support the multimaterial ink-jet 
3D printing. This project, presented at SIGGRAPH 2015 as 
MultiFab [16], assumes self-calibration of printheads and 
closed visual feedback loop for correcting the printed objects 
based on the 3D scanning. Nevertheless, the machine vision 
module of the system utilizes optical coherence tomography 
(OCT) with the use of Michelson interferometer, beam split-
ter and light polarizers and therefore this solution cannot 
be considered as really low cost (the total price is about 
$7,000). Detection of corrupted areas with missing filament 
is made with the use of depth map analysis acquired after 
additional calibration of optical parts and double scanning 
the surface of the empty platform. The additional mentioned 
limitation of the OCT scanner applied to quality monitor-
ing purposes is its inability of detection of overhangs or 
undercuts. Another application of the OCT to in situ process 
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monitoring for selective laser sintering 3D printers has been 
recently proposed by Gardner et al. [17].

An interesting application of machine learning for quality 
monitoring of the 3D prints has been examined by Delli and 
Chang [18]. However, the main drawback of this approach, 
utilizing the previously trained SVM model, is its inability 
to assess the defects on the vertical plane as only the top-
view camera has been used. Another issue is the necessity 
of pausing the printing process when taking photographs of 
unfinished parts.

2.2 � Quality assessment of 3D prints

Considering the approaches discussed in Sect. 2.1, the appli-
cation of image analysis for quality evaluation of the 3D 
prints seems to be a strongly desirable solution, although 
most of the researchers limit their solutions to process moni-
toring or fault detection. To face this challenge, we have 
decided to examine the possibilities of applying texture anal-
ysis methods based on the features extracted from the grey-
level co-occurrence matrix (GLCM). Assuming the visibility 
of consecutive layers of the filament (which should be regu-
lar for high-quality FDM prints) in controlled lighting condi-
tions, we have decided to use both photographs and scanned 
images for verification purposes. The first experiments made 
it possible to distinguish both high-quality surfaces from the 
low-quality prints as well as photographs from scans [19, 
20]. Nevertheless, it requires the time-consuming calcula-
tions of series of GLCMs and their features: homogeneity 
for quality evaluation and correlation for the detection of 
the image type.

Another investigated approach is based on the use of 
some full-reference image quality assessment (IQA) meth-
ods, such as structural similarity (SSIM) and its modifica-
tions as well as feature similarity (FSIM) [21, 22]. Since the 
use of full-reference methods, based on the comparison with 
the reference image, would require a calibrated model of the 
3D-printed surface, we have proposed a solution based on 
the division of images into regions (equivalent to blocks, 
avoiding the use of the word “windows” due to a possible 
misunderstanding caused by the use of “sliding windows” in 
convolutional filters as well as similarity-based IQA meth-
ods, such as aforementioned SSIM or FSIM).

Consequently, it is possible to calculate the mutual simi-
larity indexes between the regions whose low values indicate 
low quality of the surfaces due to irregularity of possible 
contaminations. A regular distribution of such distortions 
in practical applications appears pretty unlikely; however, in 
such cases, a change of the number of regions may be used 
to solve any issues arising from potentially too high similar-
ity values. Assuming that the same local contaminations are 
visible in the central parts of 16 regions obtained using the 4 
× 4 grid, the use of nine or 25 regions (3 × 3 or 5 × 5 grids, 

respectively) causes their shifting according to each other 
when those regions are compared.

A similar idea of comparisons, although for some ran-
domly chosen fragments of the 3D-printed surfaces, has also 
been proposed for the local cross-correlation [23]. One of 
the advantages of this approach is the decrease in the com-
putational cost. However, the application of this method for 
a higher number of samples with different colours would 
require some modifications as well as the choice of appro-
priate parameters and additional adjustments. One of the 
drawbacks of this approach is also the necessity of using 
high-resolution scans, which limits its potential applicabil-
ity in real-time assessment of images acquired by cameras.

The initial attempt to the use of entropy has been pre-
sented in the paper [24]. The idea of its application is based 
on the assumption of low image entropy for regular patterns, 
which can be observed for high-quality flat 3D-printed sur-
faces. However, the calculation of a single entropy value 
for the whole image does not lead to satisfactory results; 
therefore, its local values should be computed as well. In 
the initial experiments, some different colour-to-greyscale 
conversions have been examined and the best results have 
been obtained using the well-known ITU-R recommenda-
tion BT.601-7 [25], which is equivalent to the use of rgb2g-
ray function in MATLAB environment. Nevertheless, the 
influence of the chosen conversion method is not significant 
and the classification of samples into low- and high-quality 
ones could be possible using independent thresholds for each 
colour.

A further extension of this approach has been described 
in the paper [26]. Since a strong influence of the filament’s 
colour on the entropy of the scanned image can be observed, 
a colour-independent quality evaluation should be based on 
the combination of the local entropy values and their vari-
ances calculated for the RGB and HSV colour models. The 
detailed results obtained for 18 high- and low-quality sam-
ples obtained for five colours of PLA filaments can be found 
in our earlier publication [26], which is the basic point for 
this paper.

As mentioned above, all the experiments and results 
presented in the discussed papers have been obtained for 
a relatively small number of samples with limited number 
of colours. Therefore, to provide a highly efficient colour-
independent method, some more comprehensive experi-
ments have been made using not only five colours of the 
PLA samples but also some ABS filaments (five additional 
colours). Additionally, the newer 3D-printed samples con-
tain varying amount of contaminations and hence they are 
divided into four groups according to subjective assessment 
as high-, moderately high, moderately low and low-quality 
surfaces. Those groups result from the analysis of subjec-
tive quality scores provided by the members of our scien-
tific group. During the subjective assessment, both sides of 
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each sample have been considered, which are stored as two 
separate images in the data set used in calculations. Sam-
ples containing visible distortions, forced by changing the 
temperature or speed of filament’s feeding using controlled 
stepper motors, have been subjectively assessed as low or 
moderately low quality, depending on the amount and den-
sity of contaminations. It is worth to note that some of the 
samples containing small cracks, actually being the result of 
lack of adhesion between the neighbouring layers, although 
without significant other quality issues, might have been 
assessed as moderately high or even high quality.

In some applications, the presence of cracks may be con-
sidered as enough to classify such samples as low-quality 
ones, e.g. due to the loss of mechanical properties. Neverthe-
less, since cracks might be possible to correct after manufac-
turing, it has been assumed that their role is a bit different 
from aesthetic point of view than some other quality issues 
caused by overfilling or underfilling. Hence, the eight pos-
sible types of surfaces (four quality scores, each with or 
without cracks) have been presented in the subsequent plots. 
All the samples have been produced in our laboratory—the 
reference samples have been obtained using Da Vinci 1.0 
Pro 3-in-1 3D printer shown in Fig. 1, whereas for the con-
taminated samples, two older devices, namely RepRap Pro 
Ormerod2 and Prusa i3, have been used.

The idea of using a single measure of image quality 
comes from general-purpose image quality assessment 
methods, e.g. structural similarity (SSIM) [27] and its 
modifications, such as MS-SSIM or FSIM [28]. Actually, 
even the hybrid metrics based on multimetric fusion [29, 
30] applied for general-purpose IQA produce a single output 
value, which is easy for the interpretation. Usually, image 
quality assessment problem is not considered as a typical 
classification task, when the division into two classes should 
only be made. Since one may expect the presence of images 
of different quality, also moderate, some databases, e.g. TID, 
LIVE, CSIQ, etc. are available, which contain the original 
and distorted images assessed by numerous human observers 
with aggregated subjective scores expressed as mean opin-
ion scores (MOS) or differential MOS values [31]. Unfortu-
nately, there are no such data sets containing the images of 
3D-printed surfaces, as well as generally accepted methods 
of automatic evaluation of their quality. Hence, to let the 
user interpret the single measure, we have decided not to 
use the typical classification approach for the four features.

In other words, our goal is not classification but auto-
matically computing the quality score, which could be used 
for classification of samples containing the additional infor-
mation, especially if the quality is very high or low, or is 
quite close to the threshold. In future applications, it could 
be useful, when the decision of aborting or continuing the 
manufacturing process should be made. Assuming that the 
quality of the printed samples is not always perfect, different 
decisions could be made, depending on how much distorted 
the manufactured surface is.

3 � Discussion of the proposed method

Some of the main challenges of the automatic quality evalu-
ation of object surfaces, especially being obtained using low-
cost additive manufacturing devices, are the colour inde-
pendence of the assessment results, relatively low required 
computational cost and robustness to lighting conditions. 
Considering the complexity issues and demands, there is 
no need to provide the real-time analysis of images because 
of relatively low printing speed. Therefore, the analysis of 
a few frames per second should be enough and nowadays it 
can be obtained using many available hardware solutions. 
Ensuring the uniform illumination is possible by the use of 
dedicated illuminators, typically applied in industrial appli-
cations based on machine vision, especially assuming the 
closed housing of the 3D printer.

Therefore, in our research, we have focused on colour 
independence of the assessment method using the images 
of surfaces of the 3D-printed flat plates, obtained using the 
flatbed scanner at 1200 dpi resolution to ensure the visibility 
of individual layers of the filament. As mentioned, for the 

Fig. 1   Photograph of the Da Vinci 1.0 Pro 3-in-1 device used mainly 
for additive manufacturing of the reference samples made in our labo-
ratory
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verification of the developed algorithm, a larger data set of 
images has been prepared with the use of various colours 
of PLA and ABS filaments, forcing the presence of differ-
ing amount of distortions. The resolution of such obtained 
images is 1600 × 1600 pixels, which is equivalent to 35 × 
35 mm2, considering the physical size of the samples. The 
thickness of the samples is about 4 mm, whereas the height 
of each layer varies from 0.3 to 0.35 mm depending on the 
printer and the size of the nozzle. For such assumptions, 
each layer visible on the 3D-printed surface is represented 
by several pixels on the image. As the obtained images are 
square, all the resulting blocks are also square, and therefore, 
their size is 200 × 200 pixels for 64 blocks and 100 × 100 
pixels for 256 blocks, respectively.

Since the presence of contaminations visible on the 
3D-printed surface increases the local image entropy, not 
only the absolute entropy values but also their variance can 

be useful for quality assessment purposes. One of the rea-
sons is the dependence of the entropy on the overall bright-
ness of images, which should be balanced to ensure the col-
our independence of the final quality metric. For a single 
channel of the image (or after its conversion to greyscale), 
the entropy, considered as a statistical measure of random-
ness, can be calculated as

where the vector p contains the histogram counts calculated 
for the N bins (typically 256).

An illustration of the usefulness of the entropy for the 
detection of local contaminations and irregularities of the 
3D-printed surfaces is shown in Fig. 2, where its increase 
for highly corrupted regions is well visible. It is worth noting 
that the average entropy calculated for all 16 parts, equal to 
4.8185, is significantly lower than its global value calculated 
for the whole image. Nevertheless, the results obtained for 
various filaments differ noticeably, and therefore, the proper 
classification into high- and low-quality 3D prints might be 
troublesome without the prior knowledge of the filament’s 
colour as shown in Fig. 3. Some more detailed results for the 
first 18 samples have also been presented in [24].

As mentioned earlier, the direct use of entropy might be 
combined with the additional factor, namely the variance 
of local entropy, as proposed in the conference paper [26]. 
Since low entropy is typical for high-quality 3D prints and 
high variance of the local entropy indicates low quality, it 
has been assumed that their combination should provide a 
better classification, particularly when expressed in loga-
rithmic scale. Therefore, this mean-variance (MV) formula 
can be expressed as

(1)E = −

N∑

i=1

pi ⋅ log2(pi)

Fig. 2   Illustration of local entropy values for 16 parts of an exem-
plary image converted to greyscale according to ITU-R recommenda-
tion BT.601-7 [25]

Fig. 3   Results obtained for the 
direct application of entropy for 
78 samples used in experiments 
(colours of the individual points 
are equivalent to the colours of 
samples)
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where the EV factors are the products of the average local 
entropy and its variance calculated in RGB and HSV colour 
spaces. Local entropy values used in the above formula for 
the RGB colour space are calculated for the average of three 
colour channels, whereas for the HSV colour space, only the 
hue component is used in calculations. The number of image 
fragments can be a subject of further optimization.

As illustrated in Fig. 4, although this approach makes the 
proper classification of the first 18 PLA samples possible, 
its application to the other colours of ABS filaments does 
not lead to satisfactory results. Considering moderately low 
quality as low and moderately high as high, respectively, 
the use of the proposed threshold equal to −7 is generally 
correct for the brown samples. Nevertheless, it is not valid 

(2)MVcombined = ln(EVRGB ⋅ EVhue)
for any of the other colours of the ABS 3D prints used in 
the experiments.

Since one of the potential reasons of lower performance 
may be the presence of some less visible distortions, espe-
cially on moderately low and moderately high quality sur-
faces, a quite obvious extension of the method might be the 
increase in the number of image blocks into 64 or 256. The 
results obtained for these assumptions are shown in Figs. 5 
and 6, respectively. Analysing the latter plot, slightly better 
results have been obtained for yellow (samples no. 49–60) 
and salmon colour filaments (samples no. 29–40), making 
it possible to use the same threshold value as for the first 
18 PLA samples. It should be, however, noted that the MV 
values of the most of the samples increase due to higher 
number of blocks, causing mainly higher variance of local 
entropy values, and therefore, the most appropriate thresh-
old value should also be increased for most colours. This 

Fig. 4   Results obtained for the 
mean-variance (MV)-based 
metric proposed in [26]
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Fig. 5   Results obtained for the 
mean-variance (MV)-based 
metric [26] and division into 64 
fragments
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phenomenon can be easily observed, e.g. for the brown 
samples (no. 19–28), in Figs. 4, 5, 6. Nevertheless, the 
issue of full colour independence has not been fully solved 
and an additional correction should be made.

For some of the ABS filaments, their classification into 
low- and high-quality samples using the MV metric could 
be possible assuming the appropriate choice of threshold 
value, which should be dependent on the filament’s colour. 
Nevertheless, as shown in Figs. 4, 5, 6, it should be higher 
either for the brightest or the darkest samples, so the direct 
use of brightness would not lead to satisfactory results.

The necessary adjustment of the MV metric, incorporat-
ing the deviation from the medium brightness calculated for 
the sum of three RGB channels, is proposed in the form of 
the nonlinear formula expressed as:

where R, G and B are the average values of three chan-
nels for the whole image, and the appropriate values of 
the remaining parameters allowing proper classification of 

(3)� =
(R + G + B)�

m
+ 2 ⋅ |log(R + G + B) − k|�

the 78 samples used in experiments are: � = 0.76 , m = 70 , 
k = 6.15 and � = 8 . These values have been obtained as a 
result of optimization procedure limited by the assumption 
of colour independence of the classification threshold. The 
additional simplifying constraints have been related to the 
postulated use of the sum of the RGB channels represent-
ing the overall brightness and the desired simple threshold 
expressed as an integer value. Nevertheless, the optimization 
of the aforementioned coefficients has not been considered 
as our main task, i.e. due to their necessary recalculation 
during the calibration procedure for some other images, 
potentially obtained in different lighting conditions.

Finally, the value of the colour-independent modified MV 
metric—utilizing the correction based on the sum of the 
average values of the RGB channels—can be defined as:

assuming the brightness correction coefficient � calculated 
according to formula (3) and the division of the image into 
256 fragments. The flowchart of the proposed method is 
illustrated in Fig. 7.

(4)MVAVGcol = MVcombined − �

Fig. 6   Results obtained for the 
mean-variance (MV)-based 
metric [26] and division into 
256 fragments

0 10 20 30 40 50 60 70 80
Sample Number

-16

-14

-12

-10

-8

-6

-4

-2

0

2

va
lu

e

MV RGB Hue 256

high quality samples
moderately high quality samples
moderately low quality samples
low quality samples
high quality samples with cracks
moderately high quality samples with cracks
moderately low quality samples with cracks
low quality samples with cracks

Fig. 7   Flowchart of the pro-
posed method

Image 
of the 3D 
printed 
surface

RGB to HSV 
conversion

Summation of the 
RGB channels

Local entropy calculation 
for the RGB channels

Final result 
of the quality metric

Division into blocks

Nonlinear correction 
formula Δ 

Extraction of hue 
component

Optimised 
parameters

Choice of the
number of blocks 

Local entropy calculation 
for hue component

Variance of local entropy
for hue component

Average of the 
MVRGB values

Variance of local entropy
for the RGB channels

Combined 
MVRGBHue value 

Calculation of the 
MVRGB metric 

Calculation 
of the MVHue metric 



1042	 Pattern Analysis and Applications (2020) 23:1035–1047

1 3

The results obtained using the proposed approach are 
shown in Fig. 8, whereas their equivalents achieved assum-
ing the division of images into 64 blocks are illustrated in 
Fig. 9. As can be easily noticed, the appropriate threshold for 
the proposed method is equal to −6 . Unfortunately, the use 
of 64 larger blocks does not lead to satisfactory classification 
due to some issues for yellow samples (as shown in Fig. 9) 
and even worse results have been achieved for 16 blocks. The 
attempts to optimize the coefficients of formula (3) have not 
led to the expected solution in both those cases, and therefore 
the division into 256 smaller blocks turned out to be neces-
sary. To present a visual comparison of the quality of some 

selected 3D-printed objects, sample surface images together 
with MVAVGcol values are shown in Fig. 10. The additional 
illustration of samples of the same colour with varying quality 
is shown in Fig. 11.

4 � Discussion of results

During the experiments, the final classification into only 
two classes, representing high- and low-quality samples, 
has been assumed, although subjective scores have been 
divided into four groups. The reason for introducing two 

Fig. 8   Results obtained for the 
proposed metric and the divi-
sion into 256 fragments with a 
colour-independent classifica-
tion of 3D-printed surfaces 
according to their quality

Fig. 9   Results obtained for the 
proposed metric and the divi-
sion into 64 fragments
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additional classes is related to the interpretation of results. 
Since the accuracy of classification is not always 100%, 
particularly during initial research, the main focus has 
been set on the proper classification of samples subjec-
tively assessed as “high” and “low” quality as the initial 
requirement, further improving the classification accu-
racy for “moderately high” and “moderately low” quality 
samples. One of the assumptions of our future research is 
the introduction of a nearly continuous subjective quality 
scale. However, it would require the development of a big-
ger database containing also numerous subjective scores 
delivered by a relatively large group of human observers, 

similarly as in general-purpose image quality assessment 
data sets (e.g. LIVE or TID).

An additional verification of the necessity of all four main 
features (local entropy values and their variances in RGB col-
our space as well as for the hue component) has been made by 
the appropriate simplifications of formulas 2 and 4. The results 
obtained using only the MV metric calculated for the RGB 
colour space are shown in Fig. 12, whereas those achieved for 
the hue component are illustrated in Fig. 13. Both plots con-
firm the decrease in the classification accuracy reached using 
such simplified combinations of features. Additionally, a set 
of values of some popular classification metrics obtained for 
various cases is presented in Table 1, considering high-quality 

Fig. 10   Sample images used in 
experiments together with the 
calculated quality scores

High quality

MVAVGcol = -6.67

Moderately 
high quality

MVAVGcol = -6.27

Moderately 
low quality

MVAVGcol = -4.96

Low quality

MVAVGcol = -4.99

High quality
with cracks

MVAVGcol = -8.23

Moderately 
high quality
with cracks

MVAVGcol = -6.54

Moderately 
low quality
with cracks

MVAVGcol = -4.45

Low quality
with cracks

MVAVGcol = -3.06

Sample no. 33 Sample no. 23 Sample no. 40 Sample no. 77

Sample no. 55Sample no. 45Sample no. 22Sample no. 75

Fig. 11   Illustration of sample 
images of two exemplary col-
ours with varying quality

High quality

MVAVGcol = -7.81

Moderately high quality

MVAVGcol = -6.56

Moderately low quality

MVAVGcol = -4.96

Low quality

MVAVGcol = -5.39

High quality

MVAVGcol = -7.37

Moderately high quality

MVAVGcol = -6.81

Moderately low quality

MVAVGcol = -4.65

Low quality

MVAVGcol = -3.60

Sample no. 30 Sample no. 36 Sample no. 40 Sample no. 39

Sample no. 24 Sample no. 19 Sample no. 26 Sample no. 28
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samples as positives and low-quality ones as negatives. Hence, 
F-Measure and accuracy may be calculated using the follow-
ing formulas:

Analysing the presented results, it may be noticed that in 
some cases for the simplified methods, where the classifica-
tion accuracy is not perfect, improperly classified samples 
belong to the “moderately low” and “moderately high” qual-
ity groups. The decrease in the number of regions to 64 
causes the improper classification of two yellow samples 

(5)FM =
2 ⋅ TP

2 ⋅ TP + FP + FN
,

(6)accuracy =
TP + TN

TP + FP + FN + TN
.

Fig. 12   Results obtained for 
the mean-variance (MV)-based 
metric using only RGB colour 
space

Fig. 13   Results obtained for 
the mean-variance (MV)-based 
metric using only hue compo-
nent

Fig. 14   Illustration of two yellow high-quality samples improperly 
classified using MV

AVG64
 method
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(no. 49 and 50 shown in Fig.  14) as low-quality ones, 
whereas the use of the limited number of features (Figs. 12 
and 13) causes more problems, especially using only the 
hue component.

The extended colour-independent method of image qual-
ity evaluation of the 3D-printed surfaces based on image 
entropy proposed in the paper makes it possible to assess 
different samples reliably, regardless of the used filaments. 
Although the presented method has been verified for 78 flat 
surfaces manufactured from two types of materials (PLA 
and ABS), the application of the presented approach can be 
easily extended also for some other shapes (e.g. convex sur-
faces) since there are no assumptions related to the presence 
of straight lines in contrast to, e.g., the use of Hough trans-
form or local similarity metrics [21, 22]. Since the proposed 
metric is based on image entropy, which is independent on 
the orientation of the lines (as, e.g., the assessment based 
on Hough transform), it may be applied for curved surfaces 
similarly as for the flat ones (with necessary adjustment of 
the classification threshold). Some photographs of additional 
samples used during verification and further experiments are 
shown in Fig. 15 together with obtained results.

Another generalization may be related to the automatic 
choice of the size of the analysed block, especially for online 
quality monitoring purposes. Considering the presented 
results, a proper classification is possible for the blocks 
containing about ten visible layers of the printed material, 
being a compromise between the computational complexity 
and required classification accuracy.

Since our approach is not the “standard” classification, 
it is not based on the division into training and testing data 
sets. As our goal is to find the combination of features 
based on entropy ensuring a proper thresholding between 
the classes, the proposed method does not require the train-
ing of any classifiers. Nevertheless, a closed-form formula 
with an appropriate threshold presented in the paper makes it 
possible to obtain the correct classification of the 78 samples 
used in experiments as well as convenient interpretation of 
obtained results by the users. The classification has been 
made by using formula (4) and setting the optimal thresh-
old with the minimum distances to the two nearest values 
obtained for high- and low-quality samples and maximum 
accuracy calculated according to formula (6).

5 � Concluding remarks

Considering the possible application of machine learning 
methods, including growing popularity of deep neural net-
works, their use would require a much higher number of 
samples. Since manufacturing of the individual 3D-printed 
objects is a quite time-consuming task, the use of less than 
100 images has been assumed. Therefore, we have decided 
not to use typical machine learning methods, as well as 
deep CNN-based approach. Since our goal is to develop a 
colour-independent quality assessment method, we have 
not considered each colour as a separate class, bringing all 
samples together. In comparison with many general image 

Table 1   Classification metrics 
obtained for the scanned images 
of the 3D-printed samples in 
various cases

Method Number of classified samples Classification metrics

TP FP TN FN F-Measure Accuracy

Entropy (Fig. 3) 30 11 19 18 0.674 0.628
MV

RGBHue16
 (Fig. 4) 30 1 29 18 0.759 0.756

MV
RGBHue64

 (Fig. 5) 46 8 22 2 0.902 0.872
MV

RGBHue256
 (Fig. 6) 43 3 27 5 0.915 0.897

MV
RGB

 (Fig. 12) 45 2 28 3 0.967 0.936
MV

Hue
 (Fig. 13) 41 8 22 7 0.845 0.808

MV
AVG64

 (Fig. 9) 48 0 28 2 0.980 0.974
��

������
 (Fig. 8) 48 0 30 0 1 1

Fig. 15   Sample photographs 
of the curved surfaces used in 
additional experiments together 
with the calculated quality 
scores

High quality

MVAVGcol = -6.92

Low quality

MVAVGcol = -2.45

High quality

MVAVGcol = -6.15

Low quality

MVAVGcol = -3.19
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quality assessment databases, containing typically less than 
1000 images, where the diversity of contents, e.g. shapes, 
textures, colours, etc., is much bigger, it has been assumed 
that the number of 78 samples representing only 3D-printed 
surfaces is enough, being also higher than in some of medi-
cal image databases where gathering of data might also be 
troublesome.

Although our analysis has been made off-line after manu-
facturing, we have used relatively small flat samples in our 
experiments, assuming that they may be considered as some 
fragments of a bigger object. Therefore, assuming an appro-
priate location of a camera, the proposed method may be 
applied for quality monitoring during the 3D printing pro-
cess as well.

One of the directions of our future work will be concen-
trated on the further improvement of the proposed method 
towards its robustness to nonuniform lighting conditions. 
Such extension would be desired, especially for the online 
quality monitoring of the 3D-printed objects in devices with-
out closed casings. Another interesting challenges are the 
development of the quality assessment method correlated 
with subjective perception of observed degradations as well 
as the utilization of stereo-vision and depth data.

Another direction of our further research is the combina-
tion of the method proposed in the paper with some addi-
tional features which were investigated in earlier papers, 
e.g. based on texture analysis [19], Hough transform [21] 
or some image quality assessment methods based on the 
mutual structural similarity [22]. Such combination of fea-
tures might be useful, especially for uncontrolled lighting 
conditions improving the robustness of the method.
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