Skip to main content
Log in

Analysing the intermeshed patterns of road transportation and macroeconomic indicators through neural and clustering techniques

  • Original Article
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

As is widely acknowledged, the transportation of goods by road can, in one way or another, be linked to a range of macroeconomic indicators. A hybrid artificial intelligence system is proposed in this paper to analyse the interaction between transportation patterns and the economy. The temporal patterns of road transportation and macroeconomic trends are studied, by combining the use of both (supervised and unsupervised) neural networks and clustering techniques. The proposed system is validated, by establishing links between road transportation data from Spain and macroeconomic trends over 6 years (2011–2017). The results reveal an interesting inner structure of the data, through data visualizations of intermeshed relations between road transportation patterns and macroeconomic indicators. The same data structure was also visible in the output of the clustering techniques. Furthermore, a number of high-quality predictions were advanced by processing the road transportation data as time series, and forecasting the future values of the main series. These results demonstrated the validity of the proposed linkage between road transportation data and macroeconomic indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennathan E, Fraser J, Thompson LS (1992) What determines demand for freight transport?. World Bank Publications, Washington DC

    Google Scholar 

  2. Crainic TG, Laporte G (1997) Planning models for freight transportation. Eur J Oper Res 97(3):409–438. https://doi.org/10.1016/s0377-2217(96)00298-6

    Article  MATH  Google Scholar 

  3. Costa P (1988) Using input–output to forecast freight transport demand. Springer, Berlin, pp 79–120. https://doi.org/10.1007/978-3-662-02551-2_3

    Book  Google Scholar 

  4. McKinnon A, Woodburn A (1996) Logistical restructuring and road freight traffic growth. Transportation 23(2):141–161. https://doi.org/10.1007/bf00170033

    Article  Google Scholar 

  5. Eurostat_Press_Office (2018) Energy, transport and environment indicators 2018 edition. https://doi.org/10.2785/326009

  6. Ballingall J, Steel D, Briggs P (2003) Decoupling economic activity and transport growth: the state of play in New Zealand 2003. https://atrf.info/papers/2003/2003_Ballingall_Steel_Briggs.pdf. Accessed 25 July 2019

  7. Alises A, Vassallo JM (2015) Comparison of road freight transport trends in Europe. Coupling and decoupling factors from an input–output structural decomposition analysis. Transp Res A Policy Pract 82:141–157. https://doi.org/10.1016/j.tra.2015.09.013

    Article  Google Scholar 

  8. Profillidis V, Botzoris G, Galanis A (2018) Decoupling of economic activity from transport-related energy consumption: an analysis for European Union member countries. Int J Innov Sustain Dev 12(3):271. https://doi.org/10.1504/ijisd.2018.091518

    Article  Google Scholar 

  9. Murko D, Štok ZM (2017) The impact of the transport policies on marketing charges in the rail transport comparisons between the European Union member states. Int J Logist Syst Manag 27(2):187–207. https://doi.org/10.1504/ijlsm.2017.083816

    Article  Google Scholar 

  10. Alises A, Vassallo JM (2016) The impact of the structure of the economy on the evolution of road freight transport: a macro analysis from an input–output approach. Transp Res Proc. https://doi.org/10.1016/j.trpro.2016.05.404

    Article  Google Scholar 

  11. Yu H (2018) A review of input–output models on multisectoral modelling of transportation–economic linkages. Transp Rev 38(5):654–677. https://doi.org/10.1080/01441647.2017.1406557

    Article  Google Scholar 

  12. Peng Z-R, Yu H (2018) Economic analysis framework for freight transportation based on Florida statewide multi-modal freight model. Final report. Florida Department of Transportation Research Center, University of Florida, Gainesville

    Google Scholar 

  13. Russo F, Musolino G (2012) A unifying modelling framework to simulate the spatial economic transport interaction process at urban and national scales. J Transp Geogr 24:189–197. https://doi.org/10.1016/j.jtrangeo.2012.02.003

    Article  Google Scholar 

  14. Liimatainen H, Pöllänen M (2013) The impact of sectoral economic development on the energy efficiency and CO2 emissions of road freight transport. Transp Policy 27:150–157. https://doi.org/10.1016/j.tranpol.2013.01.005

    Article  Google Scholar 

  15. Courtonne JY, Longaretti PY, Dupré D (2018) Uncertainties of domestic road freight statistics: insights for regional material flow studies. J Ind Ecol 22(5):1189–1201. https://doi.org/10.1111/jiec.12651

    Article  Google Scholar 

  16. Herrero Á, Jiménez A (2019) Improving the management of industrial and environmental enterprises by means of soft computing. Cybern Syst 50(1):1–2. https://doi.org/10.1080/01969722.2019.1560961

    Article  Google Scholar 

  17. Herrero Á et al (2016) A hybrid proposal for cross-sectoral analysis of knowledge management. Soft Comput 20(11):4271–4285. https://doi.org/10.1007/s00500-016-2293-9

    Article  Google Scholar 

  18. Sáiz-Bárcena L et al (2015) Easing knowledge management in the power sector by means of a neuro-genetic system. Int J Bio-Inspired Comput 7(3):170–175. https://doi.org/10.1504/ijbic.2015.069556

    Article  Google Scholar 

  19. Herrero Á, Jiménez A, Bayraktar S (2019) Hybrid unsupervised exploratory plots: a case study of analysing foreign direct investment. Complexity 2019:6271017

    Article  Google Scholar 

  20. Herrero Á, Corchado E (2011) Mobile hybrid intrusion detection. In: The MOVICAB-IDS system. Studies in Computational Intelligence 334, 1 edn. Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18299-0

    Chapter  Google Scholar 

  21. Arroyo Á et al (2017) A hybrid intelligent system for the analysis of atmospheric pollution: a case study in two European regions. Log J IGPL 25(6):915–937. https://doi.org/10.1093/jigpal/jzx050

    Article  MathSciNet  Google Scholar 

  22. Mrowczynska B et al (2012) A comparison of forecasting the results of road transportation needS. Transport 27(1):73–78. https://doi.org/10.3846/16484142.2012.666763

    Article  Google Scholar 

  23. Kuptcova A et al (2016) Data mining workspace as an optimization prediction technique for solving transport problems. Transp Probl 11(3):21–31. https://doi.org/10.20858/tp.2016.11.3.3

    Article  Google Scholar 

  24. Abdirassilov Z, Sładkowski A (2018) Application of artificial neural networks for shortterm prediction of container train flows in direction of China-Europe via Kazakhstan. Transp Probl 13(4):103–113. https://doi.org/10.20858/tp.2018.13.4.10

    Article  Google Scholar 

  25. Simić D et al (2017) A hybrid clustering and ranking method for best positioned logistics distribution centre in Balkan Peninsula. Log J IGPL 25(6):991–1005. https://doi.org/10.1093/jigpal/jzx047

    Article  MathSciNet  Google Scholar 

  26. Woźniak M, Graña M, Corchado E (2014) A survey of multiple classifier systems as hybrid systems. Inf Fusion 16:3–17. https://doi.org/10.1016/j.inffus.2013.04.006

    Article  Google Scholar 

  27. Asencio-Cortés G et al (2017) Using principal component analysis to improve earthquake magnitude prediction in Japan. Log J IGPL 25(6):949–966. https://doi.org/10.1093/jigpal/jzx049

    Article  MathSciNet  Google Scholar 

  28. Bishop CM (1996) Neural networks for pattern recognition. Oxford University Press, Oxford, p 482

    MATH  Google Scholar 

  29. Friedman JH, Tukey JW (1974) A projection pursuit algorithm for exploratory data analysis. IEEE Trans Comput 23(9):881–890. https://doi.org/10.1109/T-C.1974.224051

    Article  MATH  Google Scholar 

  30. Corchado E, Fyfe C (2003) Connectionist techniques for the identification and suppression of interfering underlying factors. Int J Pattern Recognit Artif Intell 17(8):1447–1466. https://doi.org/10.1142/S0218001403002915

    Article  Google Scholar 

  31. Corchado E, MacDonald D, Fyfe C (2004) Maximum and minimum likelihood Hebbian learning for exploratory projection pursuit. Data Min Knowl Discov 8(3):203–225. https://doi.org/10.1023/B:DAMI.0000023673.23078.a3

    Article  MathSciNet  MATH  Google Scholar 

  32. Seung HS, Socci ND, Lee D (1998) The rectified Gaussian distribution. Adv Neural Inf Process Syst 10:350–356

    Google Scholar 

  33. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  34. Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In: Fifth Berkeley symposium on mathematical statistics and probability

  35. Andreopoulos B et al (2009) A roadmap of clustering algorithms: finding a match for a biomedical application. Brief Bioinf 10(3):297–314. https://doi.org/10.1093/bib/bbn058

    Article  Google Scholar 

  36. Zhuang W et al (2012) Ensemble clustering for internet security applications. IEEE Trans Syst Man Cybern C (Applications and Reviews) 42(6):1784–1796. https://doi.org/10.1109/TSMCC.2012.2222025

    Article  Google Scholar 

  37. Leontaritis IJ, Billings SA (1985) Input–output parametric models for non-linear systems part I: deterministic non-linear systems. Int J Control 41(2):303–328. https://doi.org/10.1080/0020718508961129

    Article  MATH  Google Scholar 

  38. Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, New York City

    MATH  Google Scholar 

  39. Basso M et al (2005) NARX models of an industrial power plant gas turbine. IEEE Trans Control Syst Technol 13(4):599–604. https://doi.org/10.1109/TCST.2004.843129

    Article  MathSciNet  Google Scholar 

  40. Consejo_Unión_Europea (2012) REGLAMENTO(CE) 70/2012 sobre la relación estadística de los transportes de mercancías por carretera (refundición), in Diario Oficial de la Unión Europea. Oficina de publicaciones de la Unión Europea, p 145

Download references

Acknowledgements

We are grateful for the complete datasets of the Permanent Survey of Goods Transport by Road (Encuesta Permanente de Transporte de Mercancías por Carretera) facilitated by the General Sub-Directorate of Economic Studies and Statistics of the Ministry of Development (Subdirección General de Estudios Económicos y Estadísticas del Ministerio de Fomento) of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Herrero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso de Armiño, C., Manzanedo, M.Á. & Herrero, Á. Analysing the intermeshed patterns of road transportation and macroeconomic indicators through neural and clustering techniques. Pattern Anal Applic 23, 1059–1070 (2020). https://doi.org/10.1007/s10044-020-00872-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-020-00872-x

Keywords

Navigation