Skip to main content
Log in

Wavelet domain majority coupled binary pattern: a new descriptor for texture classification

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new approach for texture classification called wavelet domain majority coupled binary pattern is proposed. Here, the single-level wavelet transform is applied which decomposes the image, resulting in wavelet coefficients. The wavelet coefficients present in all the four sub-bands are taken for further processing. The relationship of wavelet coefficients present at distances one, two and three is utilized. The average wavelet coefficients present at various distances are compared with the center wavelet coefficient of the local region, resulting in binary value. For each distance,  eight bit binary pattern is generated. Altogether, three distances yield three eight bit binary pattern. Then, the rule of majority is applied to the three  eight bit binary pattern and results in generation of proposed label. The proposed labels together contribute for the construction of histogram. Finally, the distance measure is used to identify the similarity between query and database images. Experimental results show that the proposed method achieves the average retrieval rate of 88.92% on Brodatz, 93.95% on Outex and 90.53% on Virus databases. This shows that the proposed method achieves good performance and outperforms other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hrúz M, Trojanová J, Železný M (2011) Local binary pattern based features for sign language recognition. Pattern Recognit Image Anal 21:398

    Article  Google Scholar 

  2. Shang J, Chen C, Pei X et al (2017) A novel local derivative quantized binary pattern for object recognition. Vis Comput 33:221

    Article  Google Scholar 

  3. Ko BC, Kim SH, Nam JY (2011) X-ray image classification using random forests with local wavelet-based CS-local binary patterns. J Digit Imaging 24:1141. https://doi.org/10.1007/s10278-011-9380-3

    Article  Google Scholar 

  4. Patel B, Maheshwari RP, Balasubramanian R (2016) Multi-quantized local binary patterns for facial gender classification. Comput Electr Eng 54:271–284

    Article  Google Scholar 

  5. Arivazhagan S, Ganesan L (2003) Texture classification using wavelet transform. Pattern Recognit Lett 24:1513–1521

    Article  Google Scholar 

  6. Goh YZ, Teoh ABJ, Goh MKO (2011) Wavelet local binary patterns fusion as illuminated facial image preprocessing for face verification. Expert Syst Appl 38(4):3959–3972

    Article  Google Scholar 

  7. Idrissa Mahamadou, Acheroy Marc (2002) Texture classification using Gabor filters. Pattern Recognit Lett 23:1095–1102

    Article  Google Scholar 

  8. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit 29(1):51–59

    Article  Google Scholar 

  9. Chang Chuo-Ling, Girod Bernd (2007) Direction-adaptive discrete wavelet transform for image compression. IEEE Trans Image Process 16:1289–1302

    Article  MathSciNet  Google Scholar 

  10. Do MN, Vetterli M (2002) Wavelet-based texture retrieval using generalized Gaussian density and Kullback-leibler distance. IEEE Trans Image Process 11(2):146–158

    Article  MathSciNet  Google Scholar 

  11. Arivazhagan S, Ganesan L, Padam Priyal S (2006) Texture classification using Gabor wavelets based rotation invariant features. Pattern Recognit Lett 27(16):1976–1982

    Article  Google Scholar 

  12. Kokare M, Biswas PK, Chatterji BN (2007) Texture image retrieval using rotated wavelet filters. J Pattern Recognit Lett 28:1240–1249

    Article  Google Scholar 

  13. Kokare M, Biswas PK, Chatterji BN (2005) Texture image retrieval using new rotated complex wavelet filters. IEEE Trans Syst Man Cybern 33(6):1168–1178

    Article  Google Scholar 

  14. Hafiane A, Seetharaman G, Zavidovique B (2007) Median binary pattern for texture classification. In: Proceedings of fourth international conferences image analysis and recognition, Montreal, Canada, pp 387–398

  15. Liu Li, Zhao Lingjun, Long Yunli, Kuang Gangyao, Fieguth Paul (2012) Extended local binary patterns for texture classification. Image Vis Comput 30:86–99

    Article  Google Scholar 

  16. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  17. Zhao Yang, Jia Wei, Rong-Xiang Hu, Min Hai (2013) Completed robust local binary pattern for texture classification. Neurocomputing 106:68–76

    Article  Google Scholar 

  18. Pan Zhibin, Li Zhengyi, Fan Hongcheng, Xiuquan Wu (2017) Feature based local binary pattern for rotation invariant texture classification. Expert Syst Appl 88:238–248

    Article  Google Scholar 

  19. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  Google Scholar 

  20. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with higher-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  Google Scholar 

  21. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19:1657–1663

    Article  MathSciNet  Google Scholar 

  22. El merabet Y, Ruichek Y (2018) Local concave-and-convex micro-structure patterns for texture classification. Pattern Recognit 76:303–322

    Article  Google Scholar 

  23. Kaya Yılmaz, Ertugrul ÖF, Tekin R (2015) Two novel local binary pattern descriptors for texture analysis. Appl Soft Comput 34:728–735

    Article  Google Scholar 

  24. Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local extrema patterns: a new descriptor for content based image retrieval. Int J Multimed Info Retr 1(3):191–203

    Article  Google Scholar 

  25. Nguyen VD, Nguyen DD, Nguyen TT, Dinh VQ, Jeon JW (2014) Support local pattern and its application to disparity improvement and texture classification. IEEE Trans Circuits Syst Video Technol 24(2):263–276

    Article  Google Scholar 

  26. Zhao Y, Huang D, Jia W (2012) Completed local binary count for rotation invariant texture classification. IEEE Trans Image Process 21(10):4492–4497

    Article  MathSciNet  Google Scholar 

  27. Ramakrishnan S, Nithya S (2018) Two improved extension of local binary pattern descriptors using wavelet transform for texture classification. IET Image Proc 12(11):2002–2010

    Article  Google Scholar 

  28. Gopala Krishnan K, Vanathi PT (2018) An efficient texture classification algorithm using integrated discrete wavelet transform and local binary pattern features. Cogn Syst Res 52:267–274

    Article  Google Scholar 

  29. Muqeet MA, Holambe RS (2019) Local binary patterns based on directional wavelet transform for expression and pose-invariant face recognition. Appl Comput Inf 15(2):163–171

    Google Scholar 

  30. Hadizadeh H (2015) Multi-resolution local Gabor wavelets binary patterns for gray-scale texture description. Pattern Recognit Lett 65:163–169

    Article  Google Scholar 

  31. ManishaVerma Balasubramanian Raman (2016) Local tri-directional patterns: a new texture feature descriptor for image retrieval. Digit Signal Proc 51:62–72

    Article  MathSciNet  Google Scholar 

  32. Brodatz P (1996) Textures: a photographic album for artists and designers. Dover, New York

    Google Scholar 

  33. Ojala T, Maenpaa M, Pietikainen J et al (2002) Outex—new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of international conference pattern recognition, Quebec City, Canada, pp 701–706

  34. Xingyuan Bu, Yuwei Wu, Gao Zhi, Jia Yunde (2019) Deep convolutional network with locality and sparsity constraints for texture classification. Pattern Recognit 91:34–46

    Article  Google Scholar 

  35. Wang Q, Wan J, Li X (2019) Robust hierarchical deep learning for vehicular management. IEEE Trans Veh Technol 68(5):4148–4156

    Article  Google Scholar 

  36. Wang Q, Yuan Z, Du Q, Li X (2019) GETNET: a general end-to-end 2-D CNN framework for hyperspectral image change detection. IEEE Trans Geosci Remote Sens 57(1):3–13

    Article  Google Scholar 

  37. Hassaballah M, Alshazly Hammam A, Ali Abdelmgeid A (2019) Ear recognition using local binary patterns: a comparative experimental study. Expert Syst Appl 118:182–200

    Article  Google Scholar 

  38. El merabet Y, Ruichek Y, El idrissi A (2019) Attractive-and-repulsive center-symmetric local binary patterns for texture classification. Eng Appl Artif Intell 78:158–172

    Article  Google Scholar 

  39. Virus database. http://www.cb.uu.se/~gustaf/virustexture/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nithya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithya, S., Ramakrishnan, S. Wavelet domain majority coupled binary pattern: a new descriptor for texture classification. Pattern Anal Applic 24, 393–408 (2021). https://doi.org/10.1007/s10044-020-00907-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-020-00907-3

Keywords

Navigation