Skip to main content
Log in

AFDL: a new adaptive fuzzy dictionary learning for medical image classification

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Sparse coding allows the representation of complex data as a linear combination of basis sparse vectors (alternatively called atoms or codewords), a collection of which constitutes a dictionary. Dictionary learning is a learning process aimed at finding a small number of optimal basis vectors for a more accurate representation of the original data. The existing dictionary learning methods do not address the inherent uncertainty of the input data in their learning processes. To compensate for the uncertainty, and to obtain a flexible and effective learning system, we introduce a new adaptive fuzzy dictionary learning (AFDL) method for image classification purposes. The new method iteratively alternates between sparse coding based on a given dictionary and an adaptive fuzzy dictionary learning approach to learn (improve) dictionary atoms. The adjustability of the dictionary and coefficients vectors, in this method, provide us a more accurate and straight representation of input data. AFDL was applied on magnetic resonance images from the cancer image archive datasets, for medical image classification of cancer tumors. Finally, the overall experimental results clearly show that our approach outperforms its rival techniques in terms of accuracy, sensitivity, and specificity. Convergence speed in the experimental results shows that AFDL can achieve its acceptable precision in a reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abd-Ellah MK, Awad AI, Khalaf AA, Hamed HF (2019) A review on brain tumor diagnosis from mri images: practical implications, key achievements, and lessons learned. Magn Reson Imaging 61:300–318

    Google Scholar 

  2. Aharon M, Elad M, Bruckstein A et al (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Article  Google Scholar 

  3. Al-Shaikhli SDS, Yang MY, Rosenhahn B (2014) Brain tumor classification using sparse coding and dictionary learning. In: 2014 IEEE international conference on image processing (ICIP). IEEE, pp 2774–2778

  4. Al-Shaikhli SDS, Yang MY, Rosenhahn B (2016) Brain tumor classification and segmentation using sparse coding and dictionary learning. Biomed Eng 61(4):413–429

    Google Scholar 

  5. Amaldi E, Kann V (1998) On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor Comput Sci 209(1–2):237–260

    MathSciNet  MATH  Google Scholar 

  6. Babu BS, Varadarajan S (2017) Detection of brain tumour in MRI scan images using tetrolet transform and SVM classifier. Indian J Sci Technol 10(19):1–10

    Google Scholar 

  7. Bahadure NB, Ray AK, Thethi HP (2018) Comparative approach of MRI-based brain tumor segmentation and classification using genetic algorithm. J Digit Imaging 31(4):477–489

    Google Scholar 

  8. Barstuğan M, Ceylan R (2017) (2017) Classification of mammogram images by dictionary learning. In: Artificial intelligence and data processing symposium (IDAP), 2017 International. IEEE, pp 1–4

  9. Bergeaud F, Mallat S (1995) Matching pursuit of images. In: International conference on image processing, 1995. Proceedings, vol 1. IEEE, pp 53–56

  10. Bi C, Wang H, Bao R (2014) SAR image change detection using regularized dictionary learning and fuzzy clustering. In: 2014 IEEE 3rd international conference on cloud computing and intelligence systems (CCIS). IEEE, pp 327–330

  11. Cao F, Hu H, Lu J, Zhao J, Zhou Z, Wu J (2016) Pose and illumination variable face recognition via sparse representation and illumination dictionary. Knowl-Based Syst 107:117–128

    Google Scholar 

  12. Chen J, Jiao L, Ma W, Liu H (2016) Unsupervised high-level feature extraction of sar imagery with structured sparsity priors and incremental dictionary learning. IEEE Geosci Remote Sens Lett 13(10):1467–1471

    Google Scholar 

  13. Chen J, Jiao L, Wen Z (2017) High-level feature selection with dictionary learning for unsupervised sar imagery terrain classification. IEEE J Sel Top Appl Earth Observ Remote Sens 10(1):145–160

    Google Scholar 

  14. Chen SM, Lee LW (2011) Fuzzy interpolative reasoning for sparse fuzzy rule-based systems based on interval type-2 fuzzy sets. Expert Syst Appl 38(8):9947–9957

    MathSciNet  Google Scholar 

  15. Chen SM, Chang YC, Pan JS (2013) Fuzzy rules interpolation for sparse fuzzy rule-based systems based on interval type-2 gaussian fuzzy sets and genetic algorithms. IEEE Trans Fuzzy Syst 21(3):412–425

    Google Scholar 

  16. Chen Y, Su J (2017) Sparse embedded dictionary learning on face recognition. Pattern Recognit 64:51–59

    Google Scholar 

  17. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M et al (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057

    Google Scholar 

  18. Dai W, Xu T, Wang W (2012) Simultaneous codeword optimization (simco) for dictionary update and learning. IEEE Trans Signal Process 60(12):6340–6353

    MathSciNet  MATH  Google Scholar 

  19. El-Dahshan ESA, Hosny T, Salem ABM (2010) Hybrid intelligent techniques for mri brain images classification. Digit Signal Process 20(2):433–441

    Google Scholar 

  20. Engan K, Aase SO, Husoy JH (1999) Method of optimal directions for frame design. In: 1999 IEEE international conference on acoustics, speech, and signal processing, 1999, vol 5. Proceedings. IEEE, pp 2443–2446

  21. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701

    MATH  Google Scholar 

  22. Fu W, Li S, Fang L, Benediktsson JA (2018) Contextual online dictionary learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(3):1336–1347

    Google Scholar 

  23. Gao XW, Hui R, Tian Z (2017) Classification of CT brain images based on deep learning networks. Comput Methods Progr Biomed 138:49–56

    Google Scholar 

  24. Gravel P, Beaudoin G, De Guise JA (2004) A method for modeling noise in medical images. IEEE Trans Med Imaging 23(10):1221–1232

    Google Scholar 

  25. Gu J, Jiao L, Yang S, Zhao J (2017) Sparse learning based fuzzy C-means clustering. Knowl-Based Syst 119:113–125

    Google Scholar 

  26. Hao S, Wang W, Yan Y, Bruzzone L (2017) Class-wise dictionary learning for hyperspectral image classification. Neurocomputing 220:121–129

    Google Scholar 

  27. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Analysis 35:18–31

    Google Scholar 

  28. He Z, Zhao X, Zhang S, Ogawa T, Haseyama M (2014) Random combination for information extraction in compressed sensing and sparse representation-based pattern recognition. Neurocomputing 145:160–173

    Google Scholar 

  29. Hou B, Chen C, Liu X, Jiao L (2015) Multilevel distribution coding model-based dictionary learning for polsar image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 8(11):5262–5280

    Google Scholar 

  30. Hu J, Tan YP (2018) Nonlinear dictionary learning with application to image classification. Pattern Recogn 75:282–291

    Google Scholar 

  31. Hüllermeier E (2015) Does machine learning need fuzzy logic? Fuzzy Sets Syst 281:292–299. https://doi.org/10.1016/j.fss.2015.09.001

    Article  MathSciNet  Google Scholar 

  32. Jafari MG, Plumbley MD (2011) Fast dictionary learning for sparse representations of speech signals. IEEE J Sel Top Signal Process 5(5):1025–1031

    Google Scholar 

  33. Jiang Z, Lin Z, Davis LS (2011) Learning a discriminative dictionary for sparse coding via label consistent K-SVD. In: CVPR 2011. IEEE, pp 1697–1704

  34. Khalil M, Ayad H, Adib A (2018) Performance evaluation of feature extraction techniques in MR-brain image classification system. Procedia Comput Sci 127:218–225

    Google Scholar 

  35. Kumar V, Schuhmacher M (2005) Fuzzy uncertainty analysis in system modeling. In: Proceeding of ESCAPE–15, Barcelona, Spain, pp 391–396

  36. Kumar V, Sachdeva J, Gupta I, Khandelwal N, Ahuja CK (2011) Classification of brain tumors using pca-ann. In: World congress on information and communication technologies (WICT). IEEE, pp 1079–1083

  37. Lahmiri S (2017) Glioma detection based on multi-fractal features of segmented brain mri by particle swarm optimization techniques. Biomed Signal Process Control 31:148–155

    Google Scholar 

  38. Lelandais B, Gardin I, Mouchard L, Vera P, Ruan S (2014) Dealing with uncertainty and imprecision in image segmentation using belief function theory. Int J Approx Reason 55(1):376–387

    MathSciNet  Google Scholar 

  39. Li X, Fang M, Wang H, Zhang JJ (2015) Supervised transfer kernel sparse coding for image classification. Pattern Recogn Lett 68:27–33

    Google Scholar 

  40. Liu BD, Shen B, Gui L, Wang YX, Li X, Yan F, Wang YJ (2016) Face recognition using class specific dictionary learning for sparse representation and collaborative representation. Neurocomputing 204:198–210

    Google Scholar 

  41. Liu H, Wang S, Hou B, Yang S, Shi J, Xiong T, Jiao L (2014) (2014) Unsupervised classification of polarimetric sar images integrating color features. In: IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, pp 2762–2765

  42. Liu J, Tai XC, Huang H, Huan Z (2013) A weighted dictionary learning model for denoising images corrupted by mixed noise. IEEE Trans Image Process 22(3):1108–1120

    MathSciNet  MATH  Google Scholar 

  43. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 who classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Google Scholar 

  44. Luo M, Sun F, Liu H (2013) Hierarchical structured sparse representation for T–S fuzzy systems identification. IEEE Trans Fuzzy Syst 21(6):1032–1043

    Google Scholar 

  45. Luo X, Liu F, Yang S, Wang X, Zhou Z (2015) Joint sparse regularization based sparse semi-supervised extreme learning machine (S3ELM) for classification. Knowl-Based Syst 73:149–160

    Google Scholar 

  46. Mairal J, Ponce J, Sapiro G, Zisserman A, Bach FR (2009) Supervised dictionary learning. In: Advances in neural information processing systems, pp 1033–1040

  47. Mallat S, Zhang Z (1993) Matching pursuit with time-frequency dictionaries. Tech. rep, Courant Institute of Mathematical Sciences New York United States

  48. Măluţan R, Terebeş R, Germain C, Borda M, Cîşlariu M (2015) Speckle noise removal in ultrasound images using sparse code shrinkage. In: E-health and bioengineering conference (EHB), 2015. IEEE, pp 1–4

  49. Mesa D, Kracht W, Díaz G (2016) Textural image classification of foams based on variographic analysis. Miner Eng 98:52–59

    Google Scholar 

  50. Mukanova A, Hu G, Gao Q (2014) N-gram based image representation and classification using perceptual shape features. In: 2014 Canadian conference on computer and robot vision (CRV). IEEE, pp 349–356

  51. Nabizadeh N, Kubat M (2015) Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput Electr Eng 45:286–301

    Google Scholar 

  52. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2015) Cbtrus statistical report: primary brain and central nervous system tumors diagnosed in the united states in 2008-2012. Neuro-oncology 17(suppl\(\_4\)):iv1–iv62

  53. Papageorgiou E, Spyridonos P, Glotsos DT, Stylios CD, Ravazoula P, Nikiforidis G, Groumpos PP (2008) Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Appl Soft Comput 8(1):820–828

    Google Scholar 

  54. Pedano N, Flanders A, Scarpace L, et al. (2016) Radiology data from the cancer genome atlas low grade glioma [TCGA-LGG] collection. Cancer Imaging Arch

  55. Pham TD (2014) Nonstationary mapping of spatial uncertainty for medical image classification. In: 2014 International conference on medical biometrics., IEEE, pp 164–168

  56. Quan Y, Huang Y, Ji H (2015) Dynamic texture recognition via orthogonal tensor dictionary learning. In: Proceedings of the IEEE international conference on computer vision, pp 73–81

  57. Quan Y, Xu Y, Sun Y, Huang Y (2016) Supervised dictionary learning with multiple classifier integration. Pattern Recogn 55:247–260

    MATH  Google Scholar 

  58. Rejathalal V, Mandalapu SB, Govindan V (2014) Sparse representation based classification of MR images of brain for Alzheimer’s disease diagnosis

  59. Roy S, Sadhu S, Bandyopadhyay SK, Bhattacharyya D, Kim TH (2016) Brain tumor classification using adaptive neuro-fuzzy inference system from mri. Int J Bio-Sci Bio-Technol 8(3):203–218

    Google Scholar 

  60. Saad NM, Bakar S, Muda AS, Mokji MM (2015) Review of brain lesion detection and classification using neuroimaging analysis techniques. J Teknol 74(6):73–85

    Google Scholar 

  61. Scarpace FAEJRMTADW Lisa (2015) The cancer imaging archive (tcia). Data From REMBRANDT

  62. Sharma M, Mukharjee S (2012) Brain tumor segmentation using hybrid genetic algorithm and artificial neural network fuzzy inference system (anfis). Int J Fuzzy Logic Syst (IJFLS) 2(4):31–42

    Google Scholar 

  63. Shulei W, Huandong C, Zhizhong Z, Haixia L, Chunhui S (2014) An improved remote sensing image classification based on K-means using HSV color feature. In: 2014 Tenth international conference on computational intelligence and security (CIS). IEEE, pp 201–204

  64. Sidike P, Chen C, Asari V, Xu Y, Li W (2016) Classification of hyperspectral image using multiscale spatial texture features. In: 2016 8th workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS). IEEE, pp 1–4

  65. Song XN, Liu Z (2013) A fuzzy adaptive K-SVD dictionary algorithm for face recogntion. Appl Mech Mater 347:3797–3803

    Google Scholar 

  66. Song Y, Zhang S, He B, Sha Q, Shen Y, Yan T, Nian R, Lendasse A (2018) Gaussian derivative models and ensemble extreme learning machine for texture image classification. Neurocomputing 277:53–64

    Google Scholar 

  67. Steele RM, Jaynes C (2005) Feature uncertainty arising from covariant image noise. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05). IEEE, pp 1063–1070

  68. SUCKLING J P (1994) The mammographic image analysis society digital mammogram database. Digit Mammo, pp 375–386

  69. Sujatha K, Keerthana P, Priya SS, Kaavya E, Vinod B (2012) Fuzzy based multiple dictionary bag of words for image classification. Procedia Eng 38:2196–2206

    Google Scholar 

  70. Thiagarajan JJ, Ramamurthy KN, Spanias A (2014) Multiple kernel sparse representations for supervised and unsupervised learning. IEEE Trans Image Process 23(7):2905–2915

    MathSciNet  MATH  Google Scholar 

  71. Thiyagarajan A, Pandurangan U (2015) Comparative analysis of classifier performance on mr brain images. Int Arab J Inf Technol 12(6A):772–779

    Google Scholar 

  72. Wang H, Yuan C, Hu W, Sun C (2012) Supervised class-specific dictionary learning for sparse modeling in action recognition. Pattern Recogn 45(11):3902–3911

    Google Scholar 

  73. Wu F, Jing XY, You X, Yue D, Hu R, Yang JY (2016) Multi-view low-rank dictionary learning for image classification. Pattern Recogn 50:143–154

    MATH  Google Scholar 

  74. Wu X, Li Q, Xu L, Chen K, Yao L (2017) Multi-feature kernel discriminant dictionary learning for face recognition. Pattern Recogn 66:404–411

    Google Scholar 

  75. Xu T, Wang W, Dai W (2013) Sparse coding with adaptive dictionary learning for underdetermined blind speech separation. Speech Commun 55(3):432–450

    Google Scholar 

  76. Xu Y, Zhu JY, Eric I, Chang C, Lai M, Tu Z (2014) Weakly supervised histopathology cancer image segmentation and classification. Med Image Anal 18(3):591–604

    Google Scholar 

  77. Xu Y, Li Z, Zhang B, Yang J, You J (2017) Sample diversity, representation effectiveness and robust dictionary learning for face recognition. Inf Sci 375:171–182

    Google Scholar 

  78. Yadav S, Vishwakarma VP (2018) Extended interval type-ii and kernel based sparse representation method for face recognition. Expert Syst Appl 116:265–274

    Google Scholar 

  79. Yam Y, Kreinovich V, Nguyen HT (2000) Extracting fuzzy sparse rules by Cartesian representation and clustering. In: 2000 IEEE international conference on systems, man, and cybernetics, vol 5. IEEE, pp 3778–3783

  80. Yang M, Dai D, Shen L, Van Gool L (2014) Latent dictionary learning for sparse representation based classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4138–4145

  81. Yang M, Zhang L, Feng X, Zhang D (2014) Sparse representation based fisher discrimination dictionary learning for image classification. Int J Comput Vis 109(3):209–232

    MathSciNet  MATH  Google Scholar 

  82. Yin J, Zhu H, Yuan D, Xue T (2017) Sparse representation over discriminative dictionary for stereo matching. Pattern Recogn 71:278–289

    Google Scholar 

  83. Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  84. Zarandi MF, Zarinbal M, Izadi M (2011) Systematic image processing for diagnosing brain tumors: a type-ii fuzzy expert system approach. Appl Soft Comput 11(1):285–294

    Google Scholar 

  85. Zarinbal M, Zarandi MF, Turksen I, Izadi M (2015) A type-2 fuzzy image processing expert system for diagnosing brain tumors. J Med Syst 39(10):110

    Google Scholar 

  86. Zhang C, Wang S, Huang Q, Liu J, Liang C, Tian Q (2013) Image classification using spatial pyramid robust sparse coding. Pattern Recogn Lett 34(9):1046–1052

    Google Scholar 

  87. Zhang R, Shen J, Wei F, Li X, Sangaiah AK (2017) Medical image classification based on multi-scale non-negative sparse coding. Artif Intell Med 83:44–51

    Google Scholar 

  88. Zhang S, Wang J, Tao X, Gong Y, Zheng N (2017) Constructing deep sparse coding network for image classification. Pattern Recogn 64:130–140

    Google Scholar 

  89. Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y (2018) A deep learning model integrating FCNNS and CRFS for brain tumor segmentation. Med Image Anal 43:98–111

    Google Scholar 

  90. Zheng H, Tao D (2015) Discriminative dictionary learning via fisher discrimination K-SVD algorithm. Neurocomputing 162:9–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoochehr Kelarestaghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Kelarestaghi, M., Eshghi, F. et al. AFDL: a new adaptive fuzzy dictionary learning for medical image classification. Pattern Anal Applic 24, 145–164 (2021). https://doi.org/10.1007/s10044-020-00909-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-020-00909-1

Keywords

Navigation