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Abstract 

A direct implementation of supervised topic modeling using a Naive Bayes classifier is mainly characterized by the 
formulation of robust generative topic models that utilize prior distributions such as Dirichlet in LDA (latent 
Dirichlet allocation), where the classification ultimately follows the Bayes theorem. Though, in large scale 
applications, SVM (support vector machine) seems to outperform Naive Bayes.  In this paper, we propose a 
classification framework that combines the flexibility of the generative topic models and the strong performance of 
the SVM.  We therefore present a generative-discriminative collapsed variational Bayes technique for text 
documents and visual classification.  Our collapsed variational Bayes topic model implements simultaneously two 
different and asymmetric conjugate priors within the same generative process as it specifically draws the document 
and corpus parameters using both GD (generalized Dirichlet) and BL (Beta-Liouville) distributions. Each of these 
flexible priors generalizes the Dirichlet in LDA. The proposed hybrid model results in a much improved inference 
that contributes to more accurate estimates, coherent (topic) generative features, a robust formulation of probabilistic 
kernels, and a much improved classification rate. Experiments in image and text documents classification show the 
merits of the proposed approach. 
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Abstract We propose an alternative to the genera-
tive classifier that usually models both the class con-
ditionals and class priors separately, and then uses the
Bayes theorem to compute the posterior distribution
of classes given the training set as a decision bound-
ary. Because SVM (support vector machine) is not a
probabilistic framework, it is really di�cult to imple-
ment a direct posterior distribution-based discrimina-
tive classifier. As SVM lacks in full Bayesian analysis,
we propose a hybrid (generative-discriminative) tech-
nique where the generative topic features from a Bayesian
learning are fed to the SVM. The standard LDA (la-
tent Dirichlet allocation) topic model with its Dirichlet
(Dir) prior could be defined as Dir-Dir topic model to
characterize the Dirichlet placed on the document and
corpus parameters. With very flexible conjugate priors
to the multinomials such as GD (generalized-Dirichlet)
and BL (Beta-Liouville) in our proposed approach, we
define two new topic models: the BL-GD and GD-BL.
We take advantage of the geometric interpretation of
our generative topic (latent) models that associate a K-
dimensional manifold (K is the size of the topics) em-
bedded into a V -dimensional feature space (word sim-
plex) where V is the vocabulary size. Under this struc-
ture, the low dimensional topic simplex (the subspace)
defines a document as a single point on its manifold
and associates each document with a single probability.
The SVM, with its kernel trick, performs on these doc-
uments probabilities in classification where it utilizes
the maximum marging learning approach as a decision
boundary. The key note is that points or documents
that are close to each other on the manifold must be-
long to the same class. Experimental results with text

Address(es) of author(s) should be given

documents and images show the merits of the proposed
framework.

Keywords hybrid (generative-discriminative) mod-
els · support vector machine · conjugate priors ·
Beta-Liouville · generalized Dirichlet · probabilistic
kernels · documents classification

1 Introduction

Machine learning and AI (artificial intelligence) have
been responsible for a wide variety of applications such
as object detection and recognition, information retrieval,
and natural language understanding and processing.
These are very hot topics in the research community.
Though, object categorization has always received a
particular attention from researchers in the area of com-
puter vision due to the emergence of multimedia datasets
(texts, images, videos, sounds, etc) as they are increas-
ingly becoming very complex and di�cult to handle.
Building models that could fully represent or describe
the intrinsic characteristics in these collections of data
while allowing easy classification has always been one
of the top objectives and challenging tasks in machine
learning. In general, object classification can be divided
in two main groups in the literature: the generative ap-
proach and the discriminative scheme [1].
These two techniques can be formulated as follows: us-
ing for instance (for now) the variable ⌥ as the class
label and � as the observed data in class ⌥ , the dis-
criminative approach will directly model the posterior
distribution p(⌥/�) or estimate a function h such that
h(�) = ⌥ , from the observed data [2,3,1]. On the other
hand, generative techniques will model both the prior
distribution p(⌥ ) and the class conditional (likelihood
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function) p(�/⌥ ) separately, which is equivalent to mod-
eling the joint distribution p(�,⌥ ) before estimating the
posterior p(⌥/�) of the class given the training set us-
ing Bayes theorem as a decision boundary. [4,5,1,3].
A real life analogy to these definitions would be to
determine for instance, the type of music someone is
currently listening (song). In this scenario, the gener-
ative approach will obviously learn about each music
type (such as classical, jazz, country, electronic, etc.)
before indicating to which type of music this partic-
ular song belongs. A discriminative method takes a
much simpler and faster approach: it does not learn
any of these music types. It will only focus on show-
ing di↵erences between the types of musics (similarities
or dissimilarities). Consequently, discriminative tech-
niques do not learn the very details about models of
di↵erent classes while generative approaches do. Dis-
criminative methods go directly to the point and often
do not require lot of computational ressources as in the
case of generative schemes. This simplicity and robust-
ness (superior performance) in the discriminative ap-
proaches have often attracted many researchers [6,2,3,
1] since their asymptotic error is even lower than the one
found in generative approaches [2]. However, generative
schemes are still being implemented in many machine
learning environments for their usefullness and pop-
ularity [6–8,4,5,9–15]. This is because generative ap-
proaches (while requiring prior information [16]) learn
about the additional details about their models which
can be useful in a case of occlusion and missing data.
Discriminative techniques on the other hand do not
have such flexibility when facing missing data or oc-
clusions. Generative techniques can compute marginals
from the joint distributions. This is useful in appli-
cations such as outlier detection or novelty detection
where the model detects e�ciently new data that carry
low probability and therefore very di�cult to predict
accurately [17]. Importantly, during the learning pro-
cess for instance, generative approaches have ability
to handle many (thousands) object categories better
than discriminative classifiers [1]. Moreover, following
the work in [2], generative schemes have also proved
to outperform discriminative methods in a binary clas-
sification problem with small number of training sam-
ples. For instance, the SVM despite its discriminative
power in classification is not a probabilistic approach,
and it does not provide posterior distributions. Poste-
rior distributions are important in Bayesian analysis
because they provide the tool to make optimal deci-
sions in machine learning (for instance when combining
models, minimizing risk, determining a rejection cri-
teria that minimizes misclassification rate, etc. [17]).
Therefore, their absence makes it di�cult to imple-

ment a Bayesian learning in SVM. In contrast, gener-
ative schemes benefit from a Bayesian analysis. These
characteristics illustrate the strengths and capabilities
of each approach. As they carry complementary advan-
tages, it has been suggested to merge the two meth-
ods, so that their integration guarantees improvement
in performance in automatic object classification. It led
to the emergence of hybrid (generative-discriminative)
models [6,18–20]. Particularly, for SVM, as today’s ma-
chine learning techniques carry a strong emphasis on
Bayesian paradigm, combining generative models with
the SVM classifier remains an essentiel step to allow this
classifier to implicitly take advantage of the Bayesian
learning. This has been the work of researchers such as
[6] who successfully showed the flexibility of the hybrid
generative-discriminative with mixtures models where
the discriminative classifier is the SVM. The SVM heav-
ily relies on e�cient kernel formulation in order to pro-
vide robust classification. With the high complexity in
the datasets and models, standard kernels such as lin-
ear, polynomial, Gaussian RBF (radial basis function)
are very restrictive in terms of performance. Further-
more, despite the flexibility of the well-known Fisher
kernel [21], it often lacks in preserving the nonlinearity
induced by the generative model [22]. This is an ex-
ample of the necessity to utilize appropriate kernels for
better results in the hybrid, generative-discriminative
models [6]. The introduction of the Fisher kernel has
been immediately followed by the work of other re-
searchers such as [23] and [24] who were able to combine
generative features to SVM using the Kullback-Leibler
kernel and the TOP kernel derived from Tangent vec-
tors Of Posterior log-odds (TOP), respectively.
It is also noteworthy that recent development in the
generative architecture has witnessed the emergence of
topic models [25–30] such as LDA (latent Dirichlet Al-
location) [31,32]. Originally implemented for text doc-
ument modeling and analysis within the BoW (bag of
words), the LDA topic model is currently dominating
the area of computer vision with interesting applica-
tions related to image categorization [32], sentiment
and behaviour analysis [33], text analysis through the
social CQA (Community Answering Questions) plat-
form [34], videos analysis [5], and 3D object modeling
[35] for retrieval systems. One of the successes of topic
modeling is the introduction of intermediate representa-
tions within the bag of words called topics. They are low
dimensional subspace representations such that docu-
ments are now described as mixtures of topics while
topics are defined as distributions over the vocabulary
words. This provides a hierarchical description of doc-
uments with the observed data. Though, the limitation
of the Dirichlet-based topic models due to the Dirichlet
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(Dir) prior [14,15,5,4] prompted the use of other flexi-
ble priors such as GD and BL. These conjugate priors
led to some improvement in generative topic models as
they provide robust inferences along with e�cient gen-
erative processes [14,15,5,4,36]. In addition, the col-
lapsed representation proposed in [37] for batch pro-
cessing has shown improvement in the generative topic
models implementation. However, little work has been
done in the literature to connect the generative topic
model to the SVM classifier to take advantage of its su-
perior discriminative property based on maximum mar-
gin learning as a decision boundary. In the generative
stage, the topic features must be generated and then in
the discriminative stage, the topics are then fed to the
SVM which performs the classification. This constitutes
our main objective. The generative stage which learns
the topics requires an e�cient inference capable of de-
livering heterogeneous topic features. Though, many
probabilistic topic models usually implement standard
variational Bayes approaches. Variational Bayes [38,39,
14,15,40], despite their deterministic nature are very
limited when it comes to characterize dependency be-
twen topic components, for instance to allow a better
compression of the topic features, which is essential for
the performance of our SVM classifier. In the gener-
ative stage, our proposed approach ultimately imple-
ments two robust generative topic models using asym-
metric BL and GD in the collapsed space of latent vari-
ables. The superiority of the collapsed variational Bayes
(CVB) inference in topic modeling is enhanced by the
use of these two specific conjugate priors to the multi-
nomials. Normally, using these two priors leads to four
topic models: the BL-BL topic model, the GD-GD-topic
model, the GD-BL topic model, and finally the BL-GD
topic model. The first two topic models here (GD-GD
and BL-BL) have been already implemented in our pre-
vious work within the CVB inference [4,5,41] and they
represent the direct extensions to the Dir based-CVB-
LDA [42]. The last two topic models (GD-BL and BL-
GD) are the ones that are subjects of implementation
in this paper. Importantly, they also carry the CVB
inference; and they represent the generative stage in
the formation of our hybrid (generative-discriminative)
model. As the generative topic features must be fed
into the SVM classifier using powerful kernel functions
that operate in distribution space, we therefore pro-
vide to the SVM, a collection of nonlinear probabilis-
tic kernels (such as Jensen-Shannon kernel, symmet-
ric Kullback-Leibler divergence kernel, Bhattacharyyaa
kernel, Renyi kernel, etc.) to cope with data processing
in distribution space while allowing an improved classi-
fication rate as we induce the space with the CGS (col-
lapsed Gibbs sampler) that operates within the varia-

tional Bayesian inference [42]. It samples from the vari-
ational distribution in the collapsed space. The CVB
corrects the bias in VB due to its CGS and the VB
fixes the deterministic limitation of CGS [42]. Due to
CVB, our generative topic features are robust, accu-
rate and e�cient [42,37,4,5]. The contribution in our
proposed hybrid framework is as it follows:

– With CVB inference using asymmetric GD and BL
priors simultaneously, we obtained the BL-GD and
GD-BL topic models that produce heterogeneous
topic features in the generative stage

– SVM is not a probabilistic model; however, we suc-
cessfully use the kernel trick formulation to make it
operate on documents represented as topic features
which are probability distributions; SVM now as-
signs a class label to a previously unseen document
based on its topic distribution using its maximum
margin framework.

Experimental results in image and text document clas-
sification show the e�ciency of the proposed approach
in comparison to its major competitors.
This paper is structured as follows: section 2 illustrates
the background and related work. Section 3 presents
the new approach while section 4 covers the experi-
ments and results in several applications. And finally,
section 5 emphasizes on some future work and provides
a conclusion.

2 Related work and background

In general, low performance in traditional machine learn-
ing techniques in applications such as object catego-
rization [43,44,28] have led to the emergence of hy-
brid models especially generative-discriminative meth-
ods. This type of hybrid framework is often a combina-
tion of two stages: the generative stage which produces
the features, and the discriminative stage which per-
forms the classification using the features produced by
the generative stage [6]. It is noteworthy that the com-
plexity and characteristics in data representation often
dictate the model to implement. For instance, in the
past, Gaussian data dominated model learning; how-
ever, recently, the emergence of multimedia data causes
many processing systems to work with count data espe-
cially text documents [31,32,37,5,4,7,45,6]. Using the
same analogy to modeling techniques, we can observe
that in machine learning literature, generative models
such as GMM (Gaussian Mixture Models) and HMM
(Hidden Markov Models) were very specific to Gaussian
data. Despite their strong assumption on parameters
(as parametric distributions), these models have often
received a lot of attention in the research community
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because of their simplicity in learning and estimation;
most importantly as their functionalities were very well
understood in data science [46]. So, the recent prolifer-
ation of count data led to the introduction of other gen-
erative models such as Beta-Liouville mixtures, gener-
alized Dirichlet mixtures [8,5,4], Dirichlet process mix-
tures [47,7,48], and finally topic models considered as
a new class of generative approaches [31,32,36,15,40,4,
5].
Two main groups define topic models [26,49] in the lit-
erature. We have probabilistic models (PLSA (proba-
bilistic latent semantic analysis) and LDA) and non-
probabilistic topic models such as latent semantic anal-
ysis (LSA), matrix factorization, and non-negative ma-
trix factorization (NNMF) [50,25]. The early success of
probabilistic models especially LDA has led to other ex-
tensions to enhance the flexibility of LDA. They repre-
sent LDA-based topic models. Methods such as Patchinko
Allocation topic model [51], correlated topic model [52–
54], supervised topic model [55,20,56–58], dynamic topic
model [59,29,60,61], hierarchical topic model [62], spher-
ical topic model [63], all characterize these alternatives
provided to the LDA architecture. Currently, within the
framework of LDA-based topic models, the advance-
ment of social media platforms [64] and online services
such as Q&A (questions and answers) [34] communities
are having some serious impacts on extensions such as
dynamic topic model [65,66,64,29,60], correlated topic
model [53,52], supervised topic model, and online topic
model schemes [67–70,41]. Current topic models also
provide improvement in semantic analysis [30,44,71,72,
29] to enhance coherence in the topics estimated and
the relationship between documents [73]. Some current
hot topics in research (within topic modeling frame-
work) include social network analysis, bioinformatics
[74], emotion, sentiment analysis [65,75,66], and infor-
mation retrieval [76,35]. It is important to notice that
the generative setting, through the BoW representation
including its derivates and topic models, have provided
tremendous success in computer vision for object learn-
ing and categorization [32,77–79,4,5]. Typical to gen-
erative techniques, probabilistic topic models use ex-
tensively prior information with distributions such as
Dirichlet, Beta-Liouville, and generalized Dirichlet [1,
31,42,80,81,7,8].
Particularly, the immediate success of the well-known
topic models such as PLSI (probabilistic latent seman-
tic indexing) or PLSA(probability latent semantic anal-
ysis) [82] and LDA in text document processing and
analysis has been well received in the research commu-
nity; especially, with the tremendeous contributions of
LDA in both text and visual document annotation and
categorization [83]. As a parametric model and a gener-

ative probabilistic technique initially implemented for
topic discovery in large document collections [84], LDA
[31] characterizes documents as mixtures of topics while
the topics are themselves mixtures over the vocabulary
words. By observing the LDA architecture, we can con-
clude that a very important attribute of topic mod-
els (PLSI [82] and HDP(hierarchical Dirichlet process)
[85]) is their ability to operate on distribution space
where their topic structures (latent variables) are de-
fined as distributions summarizing the characteristics
of the documents. They produce multinomial distribu-
tions over the topics given the data.
There has been a huge interest in providing extensions
within the generative topic model framework by utiliz-
ing the flexibility of operating in distribution space. For
instance, the work of [86] successfully builds a nonpara-
metric topic model by replacing the document multi-
nomial mixture model in LDA with the kernel den-
sity estimator. It is a way of solving the discretization
problems related to the clustering and quantization pro-
cesses during the codebook formation in topic model. It
provides a framework that implicitly works on contin-
uous feature space rather than discrete features space
in topic modeling. Furthermore, authors in [35] propose
a multitopic model with a model selection criteria that
solves the problem of predefining a fixed number of top-
ics for 3D object retrieval using the Kullback-Leibler
divergence between 3D objects distributions within the
BoW. Therefore, improving the characteristics of gener-
ative topic models coupled with the possibilities o↵ered
by working with distributions became subjects of dis-
cussions in the research community as well for tasks
such as classification. The motivations include the pos-
sibility of carrying potential properties of generative
topic models into discriminative classifiers to boost clas-
sification performance. This is because a recent devel-
opment in discriminative setting through kernels for-
mulation also allows SVM to perform with input fea-
tures that are fully represented as distributions [87].
As a result, due to the success of LDA, recent works
in machine learning and computer vision are able to
provide extensions that combine LDA with discrimina-
tive classifiers [87,88,83]. For instance, authors in [87]
provide a way of extracting latent features from proba-
bilistic topic models in distribution space. The features
are then used by the SVM for classification. Their topic
model (LDA) is implemented within a Bayesian non-
parametric setting using HDP (hierarchical Dirichlet
process) for model selection. It leads to a topic model
kernel that is robust for classification with the SVM.
The work in [88] implements kernel topic models where
it provides an extension to topic models by replacing
the document mixture weights with Gaussian distribu-
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tions leading to a Bayesian inference based on latent
Gaussian. As a Gaussian process latent variable model,
the technique is a combination of Gaussian process re-
gression and LDA topic model in a nonparametric set-
ting. In addition, authors in [83] were able to success-
fully perform classification on high spatial resolution
remote sensing images using the LDA topic model with
a kernel-based SVM that utilizes a combination of RBF
or Gaussian kernels. In [4,5], the authors provide alter-
natives to the LDA topic model [31] and LGDA (latent
generalized Dirichlet allocation) [14] in a classification
framework where they combine unsupervised learning
(for the topics estimation) to a supervised technique by
implementing generative classifiers for the topics similar
to the work in [32]. An online version of the Naive Bayes
classifier has been proposed within topic modeling en-
vironment by the same authors in [41]. In supervised
learning, there have been extensive works using hybrid
(generative-discriminative) models.
Hybrids in general are able to demonstrate that the per-
formance in discriminative models using SVM always
depends on the characteristic of the generative features
(data) and the choice of the kernels used [1,46]. Stan-
dard kernels such as Gaussian, linear, polynomial were
heavily utilized in the past in classification problems
with success. This is the case of hybrids that imple-
ment for instance GMM or HMM into discriminative
classifiers (SVM) using standard kernels [46] with ex-
cellent results in object categorization. The complexity
in today’s data and models characteristics are request-
ing a new generation of kernels that can cope with the
challenge added to the fact that there is a huge interest
in working with distributions nowadays. This automat-
ically leads to the introduction of probabilistic kernels.
Their flexibility allows a better generalization of the
SVM. The SMM (support measure machine) [89] and
latent SMM [90] are true examples that illustrate this
generalization capabilities of the SVM: they currently
represent one of the state-of-the-art techniques for ob-
ject classification using distributions within the BoW
framework in discriminative settings. However, origi-
nally, the Fisher kernels proposed by Jaakola and Haus-
sler [21] catalyzed the emergence of kernels for proba-
bilistic generative models used in discriminative classi-
fiers today. Another kernel is the TOP kernel derived
from the Tangent vectors Of Posterior log-odds. These
two kernels (Fisher and TOP) were successfully used
in DNA (Deoxyribonucleic acid) and protein sequence
analysis (classification) [24,21].
Other recent hybrids as they exhibit the flexibility of
their generative models (based on Beta-Liouville and
generalized Dirichlet mixtures) in discriminative clas-
sifiers (SVM) have reported similar success in image

categorization [6,91] while using probabilistic kernels.
Despite the major contributions shown by previous and
some recent schemes, they still carry some limitations.
For instance, as we emphasize on topic models in this
paper, the Dirichlet conjugate prior often a↵ects LDA’s
performance for positively correlated data. This is be-
cause it has a very restricted covariance structure com-
pared to GD and BL that are more flexible [14,40,
5,4]. Many topic models in the literature are LDA-
based. This could have a negative impact on the gen-
erative process and inferences [4,5] in Dirichlet-based
topic models such as LDA. In addition, the possibil-
ity of using topic models in discriminative classifiers
has created many extensions within the nonparametric
setting to account for e�cient model selection and pro-
cessing. However, working with nonparametric models
could be very challenging as they require operation or
modeling in infinite dimensional spaces. For instance,
in [88], the kernel topic model implemented is a Gaus-
sian process latent variable model based on LDA. It
has a very complex inference as the framework is not
analytically tractable. Similar challenges are noticed in
inferences in the work of [87] with the implementation
of the HDP in LDA model as it sets the number of
latent factors or topics into infinite. Furthermore, the
SMM and latent SMM [89,90] have also provided in-
sights on the possibilty of using the concept of distri-
butions within the discriminative platform itself. They
have good mathematical foundations and formulations
about the space that could allow such implementations
as they apply their work in the RKHS (reproducing ker-
nel Hilbert space) that is equipped with an embedding
kernel and inner product; however, these techniques in
overall could be very complex and require knowledge
of vector spaces such as Hilbert spaces which are gen-
eralizations of the Euclidean space in finite or infinite
dimension. These methods are not hybrids of the type
generative-discriminative. They are dedicated discrimi-
native classifiers working indirectly (implicitly) on dis-
tributions by using standard kernels in the RKHS [89,
90] where the probability distributions are represented
as mean embeddings [89]. Because these methods oper-
ate on standard kernels, nonlinear probabilistic kernels
such as symmetric KL (Kullback-Leibler) divergence
could not be defined directly on the RKHS because of
the inner product operation on the Hilbert space.
As we consider all the di↵erent characteristics within
previous methods that include generative models, (es-
pecially topic models), discriminative approaches using
SVM, kernels, and hybrid (generative-discriminative)
techniques, we propose, in this paper, an extension in
topic modeling framework using finite mixtures, simi-
lar to LDA. We especially implement a new approach
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(hybrid method) that integrates the flexibility of our
generative topic model into a powerful discriminative
classifier (SVM). It is equipped with well-defined non-
linear probabilistic kernels that allow analysis in distri-
bution space using empirical likelihood (EL) framework
for generative topic models in SVM. Within our pro-
posed approach, the use of EL provides distribution es-
timations. Importantly, with a combination of two dif-
ferent priors (asymmetric GD and BL) used simultane-
ously within the same generative process, our proposed
method introduces a collapsed representation through
the collapsed variational Bayesian inference that allows
estimation of exact posteriors and easy access to con-
vergence. Most previous generative topic models are
either variational-based inference [92] techniques (pro-
vide convergence, but posterior estimations are often
not exact [38,39,42]) or collapsed Gibbs sampling-based
methods (posterior distributions estimations are exact;
however, they su↵er from convergence [42]). In contrast,
our proposed generative topic model is obtained from
a combination of two inferences: VB and CGS. It fol-
lows the work in [42] which introduced the CVB (col-
lapsed variational Bayesian inference) for LDA. It is
one of the state-of-the-art inferences in topic model-
ing. Though, because of the limitations of the Dirichlet
distribution in LDA [14,15,40], we provide alternatives
with the use of Beta-Liouville and generalized Dirichlet
conjugate priors.
The generative topic model in our proposed approach,
because, based on LDA, automatically introduces hier-
archies in the observed data with the use of topics as in-
termediate representations. So, the topic representation
in our proposed method could be for instance an alter-
native to generative models using Beta-Liouville mix-
tures and generalized Dirichlet mixtures [8]. Using our
proposed framework with nonlinear probabilistic ker-
nels, we obtain a system that finally gives us tools to
represent any object or document as a distribution pa-
rameterized by two mean variables: the document-topic
parameter and the topic-word parameter.

3 Proposed Approach

We implement a classification framework where the clas-
sifier, the SVM, gets its features from our generative
topic models which simultaneously use asymmetric BL
and GD as conjugate priors to the multinomial distribu-
tions. Documents (images, texts) are first represented
as distributions using characteristics of our generative
topic models, and then they are presented to the sup-
port vector machine for classification. This setting ulti-
mately constitutes our generative-discriminative method

XZ

c

e q

z j

m

C

D
N

K

Fig. 1 Generative stage using topic (latent) graphical model.
The shaded circle denotes observed variables x and the class
c

.

that utilizes nonlinear probabilistic kernels. The gen-
erative topic models implemented in this paper follow
the graphical representation previously proposed in [5,
4,32,41] for object classification using intermediate rep-
resentations such as topics [32] as shown in Fig.1. Based
on the LDA architecture [31], the extensions (genera-
tive topic models) we are also providing in this paper
are a result of sampling documents and corpus param-
eters using asymmetric GD and BL priors, simultane-
ously. In this scenario, the proposed generative process
uniquely o↵ers the possibility to either 1) draw the doc-
uments parameters from the BL while the corpus pa-
rameters are sampled from GD or 2) sample the doc-
uments parameters from GD while the corpus parame-
ters are drawn from the BL distribution. This leads to
the implementation of two topic models in our proposed
generative framework.

3.0.1 Research objectives

Many techniques related to classification using the hy-
brids, generative topic models-discriminative methods
do not always fulfill the following requirements: 1) the
flexibility and the structure (symmetric or asymmet-
ric) of the prior 2) the robustness of the generative pro-
cess including inference techniques and 3) the choice
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of kernels. In a supervised topic modeling, these char-
acteristics and requirements are intimately related to
each other [93]. However, many hybrid techniques us-
ing topic models are just partially robust because they
lack some of these essential requirements. In our pro-
posed method, we are mainly implementing a system
of integration that takes into account each of these re-
quirements where we provide a combination of much
capable and flexible priors (than the Dirichlet) that
first helps improving the generative process and infer-
ences. A much improved inference technique is essen-
tial for an accurate parameter estimation that increases
the coherence and robustness of our generative features
and kernel functions formulation. This is the essence
of our hybrid model as we formulate a complete frame-
work where we combine two di↵erent and flexible priors
(BL and GD) within the collapsed variational inference
that enables robust generative features for our kernel
machine. In addition, the flexibility of our priors and
inferences allow us to handle with e�ciency inter and
intraclass variation problems due to the ability of our
method to deal with correlation and semantic analysis
e↵ectively. And this includes the possibility of work-
ing with a variety of datasets. Our proposed method in
its hybrid setting guarantees the best generative topic
model and the best discriminative method as we also
believe that the SVM is the appropriate candidate in
large scale processing compared to the standard Naive
Bayes classifier widely used in classification framework
that implements topic models [32].

3.0.2 Beta-Liouville and generalized Dirichlet
distributions

The generalized Dirichlet (GD) distribution was already
introduced and defined in [5,4,15]. In this paper, we
also present the Beta-Liouville (BL) distribution (an-
other flexible conjugate prior with a more versatile co-
variance structure) [40,15,6,8]. Compared to LDA [31],
both priors (GD and BL) are now replacing the Dirich-
let distribution in topic modeling. We also emphasize
on the use of asymmetric priors compared to symmetric
ones as they have a direct impact on the robustness of
the generative topic models [93].
In a (K + 1)-dimensional space, the BL distribution
with parameters " = (↵1, ...,↵K ,↵,�) also written as

BL(") could be defined as:

p(P|") =
�

⇣PK
k=1 ↵k

⌘
� (↵+ �)

� (↵)� (�)

⇥
KY

k=1

P
↵k�1
k

� (↵k)

 
KX

k=1

Pk

!↵�
PK

k=1 ↵k  
1�

KX

k=1

Pk

!��1

(1)

where P = (P1, ..., PK) is a K-dimensional random vari-
able. Using the notion of conjugate prior to the multi-
nomial, if P = (P1, ..., PK) follows a Beta-Liouville dis-
tribution with parameter ✓ while the vector of counts
Xi = (X1, ..., XD+1) is drawn from a multinomial dis-
tribution with parameter P, then the posterior distri-
bution p(P|",Xi) is also a Beta-Liouville. It therefore
leads to the following updates in the posterior distribu-
tion p(P|",Xi).

8
><

>:

↵
0
k = ↵k +Xk

↵
0 = ↵+

PK
k=1 Xk

�
0 = � +XK+1

(2)

As previously mentioned, the implementation of our
proposed approach using two conjugate and asymmet-
ric priors (BL and GD) simultaneously, leads to two
generative topic models: the first model draws the doc-
ument parameter from GD while the corpus is sam-
pled from the BL. In addition, it uses the collapsed
variational inference (CVB), that is one of the state-
of-the-art inference techniques in topic modeling [5,4,
42]. We call it the CVB-GD-BL-based topic model or
topic model I. On the other hand, similarly, the sec-
ond method uses BL for the document parameter and
GD for the corpus parameter within the CVB infer-
ence leading to CVB-BL-GD-based topic model. This
is topic model II.

3.0.3 Generative Processes

LDA is recognized as the simplest topic model where
each document is a mixture of K topics in di↵erent pro-
portions. Documents while being maintaining K topics
in di↵erent proportions must belong to same class. This
to characterize the observe data. Though in our pro-
posed approach, the BL and GD priors replace the Dir
distribution. For instance, in the GD-BL topic model,
the generative process is now expressed as follows:
1-We draw topics from 'k 2 BL(⇣) for k 2 {1, 2, 3, ...,K}
where ⇣ = (�kv, ...,�kV ,�, ⌘)
2-We draw each document j 2 {1, ..., D}
(a) Draw topic proportions ✓c ⇠ GD(")
where " = (↵c1,�c1, ...,↵cK ,�cK) and c 2 {1, 2, ..., C}
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(b) For each word x 2 {1, ..., N}
i) Draw topic assignments
zjn ⇠ Multinomial (✓cd)

ii) Draw word
xjn|zjn,'k ⇠ Multinomial ('kzjn)

We could therefore provide a generative of the BL-GD-
topic model as well following the same scheme.

3.1 CVB-GD-BL-based topic model

Using concepts such as patches for images [5,4] (simi-
lar to words for text analysis) within the BoW, we im-
plicitly elaborate on document representation as visual
features in topic modeling framework. In contrast to
the standard Naive Bayes classifier for topic modeling,
we simply implement in our proposed approach an im-
proved supervised topic model that uses SVM in single-
label classification problems. One major contribution is
that our proposed method is ultimately done with (a
combination of) better priors that provide much flex-
ible generative processes leading to robust inferences
and generative features for our kernel functions formu-
lation. In this framework, we can use the variable X and
W interchangeably to denote the collection of words or
patches (visual words) in a document or object within
the BoW.

3.1.1 Bayesian inference using asymmetric GD and
BL priors

From the work presented in [5,4], the generative equa-
tion in the fully collapsed space is given by:

p(X , z|", ⇣, c) =
Z

✓

Z

'
p(X , z, ✓,'|", ⇣)d'd✓ (3)

Due to the prior conjugacy between both GD and BL
with respect to the multinomial distribution, Eq.3 be-
comes easy to compute as it is now expressed as a prod-
uct of Gamma functions. As a result, the generative
equation of the proposed model in the collapsed space
of latent variables is:

p(X , z|", ⇣, c) =
DY

j=1

"
KY

i=1

� (↵ci + �ci)

� (↵ci)� (�i)

#

⇥
"

KY

i=1

� (↵0
ci)� (�0

ci)

� (↵0
ci + �0

ci)

#2

4
KY

i=1

�

⇣PV
r=1 �r

⌘
� (�+ ⌘)

� (�)� (⌘)
QV

r=1 � (�r)

3

5

⇥

2

4� (�0)� (⌘0)
QV

r=1 � (�0r)

�

⇣PV
r=1 �

0
r

⌘
� (�0 + ⌘0)

3

5 (4)

The equation provided by the joint p(X , z|c, ", ⇣) finally
shows some updates due to the multinomial distribu-
tions. In the document-topic update in class c, we have:

↵
0
ci = ↵ci +N

i
j(.) �

0
ci = �ci +

K+1X

l=i+1

N
l
j(.) (5)

In the topic-word update, it shows:

8
><

>:

�
0
r = �r +N

i
(.),r

�
0 = �+

PV
r=1 N

i
(.),r

⌘
0 = ⌘ +N

i
(.),V+1

(6)

From this point, performing a Bayesian inference in
the fully collapsed space is equivalent to approximat-
ing the conditional distribution of the latent variable
p(z|X , ", ⇣). By integrating out the parameters, the col-
lapsed Gibbs sampler’s equation is obtained as an ex-
pectation expression:

p(zij = k|X , ", ⇣, c) =

Ep(z�ij |X ,",⇣,c)[p(zij = k|z�ij
,X , ", ⇣, c)] (7)

such that:

p(zij = k|z�ij
,X , ", ⇣, c) /

"
(N�ij

jk. + ↵ck)(�ck +
PK+1

l=k+1 N
�ij
jl. )

(↵ck + �ck +
PK+1

l=k N
�ij
jl. )

#

⇥
"

(�+
PV

r=1 N
�ij
.krij

)

(�+ ⌘ +
PV+1

r=1 N
�ij
.krij

)

#

⇥
"
(�v +N

�ij
.kvij

)(⌘ +N
�ij
.k(V+1)ij

)

(
PV

r=1 N
�ij
.krij

+ �r)

#
(8)

Normalizing the distribution above leads to a posterior
probability defined as:

p(zij = k|z�ij
,X , ", ⇣, c) =

A(k)
PK

k0=1 A(k0)
(9)

such that:

A(k) =

"
(N�ij

jk. + ↵ck)(�ck +
PK+1

l=k+1 N
�ij
jl. )

(↵k + �ck +
PK+1

l=k N
�ij
jl. )

#

⇥
"

(�+
PV

r=1 N
�ij
.krij

)

(�+ ⌘ +
PV+1

r=1 N
�ij
.krij

)

#

⇥
"
(�v +N

�ij
.kvij

)(⌘ +N
�ij
.k(V+1)ij

)

(
PV

r=1 N
�ij
.krij

+ �r)

#
(10)
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3.1.2 CVB inference with asymmetric priors

In general, the main goal in Bayesian inference is the
estimation of models hidden variables (models parame-
ters and latent variables). This is equivalent to comput-
ing the joint posterior distribution p(z, ✓,'|X , ", ⇣, c).
Though, the posterior distribution in topic modeling
framework is often intractable because the denomina-
tor of the posterior equation, the normalizing factor, is
not tractable. This normalizing factor is the marginal
likelihood. Therefore, inference techniques such as VB
and CGS from MCMC (Markov chain Monte Carlo) are
often used for hidden variables estimations. The col-
lapsed variational Bayesian inference implemented in
our proposed approach is essentially a VB in the col-
lapsed space of latent variables induced by the CGS
(Eqs. 7 to 10). As usual, performing VB inference is
equivalent to introducing a set of variational distri-
butions (exponentinal family) Q̂(z, ✓,') that minimize
the Kullback-Leibler divergence (KL) between the joint
variational distribution Q̂(z, ✓,') and the true joint
posterior distribution p(z, ✓,'|X , ", ⇣, c). The scheme
also introduces a lower bound (evidence lower bound or
ELBO) to the log marginal likelihood log p(X|", ⇣, c).
And maximizing the ELBO is equivalent to minimiz-
ing the KL(Q̂(z, ✓,')|| p(z, ✓,'|X , ", ⇣, c)). The lower
bound (ELBO) to the log marginal likelihood can be
considered as an upper bound (negative ELBO) to the
negative log marginal likelihood. So instead of maximiz-
ing the ELBO, we could minimize the negative ELBO.
This negative ELBO is a functional acting on the joint
variational posterior distribution following the work in
[42]. It is called variational free energy (F̃ (Q̃)) in the
joint space and F̂ (Q̂) in the collapsed space).
In CVB, minimizing the variational free energy with re-
spect to Q̂(✓,'|z) and then with respect to Q̂(zij | ̂ij)
leads to F̂ (Q̂(z)) such that:

F̂ (Q̂(z)) , min
Q̂(✓,'|z)

F̂ (Q̂(z)Q̂(✓,'|z)) =

EQ̂(z)[� log p(X , z|", ⇣)]� H (Q̂(z))
(11)

Following the work in [5,4,41,37,42] and using Eqs. 8,
9, and 10, the minimization of the functional F̂ (Q̂(z))
in Eq. 11 with respect to the variational distribution
 ̂ijk finally gives the following CVB update equation

using the Gaussian approximation:

 ̂ijk = Q̂(zij = k) /
n⇣
↵ck + EQ̂[N

�ij
jk. ]

⌘

⇥
⇣
�+ EQ̂[N

�ij
.k. ]

⌘

⇥
 
�ck +

K+1X

l=k+1

EQ̂[N
�ij
jl. ]

!

⇥
⇣
�v + EQ̂[N

�ij
.kxij

]
⌘

⇥
⇣
⌘ + EQ̂[N

�ij
.k(V+1)ij

]
⌘

⇥
 
↵ck + �ck +

K+1X

l=k

EQ̂[Njk.]

!�1

⇥
 
�+ ⌘ +

V+1X

r=1

EQ̂[N
�ij
.krij

]

!�1

⇥
 

VX

r=1

�r + EQ̂[N
�ij
.k. ]

!�1

⇥G

9
=

;

(12)

such that:

G = exp

 
�

V arQ̂(N
�ij
jk. )

2(↵ck + EQ̂[N
�ij
jk. ])
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!

⇥ exp

 
�

V arQ̂(N
�ij
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�ij
.k. ])2

!
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V arQ̂(
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�ij
.kxij
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2(�v + EQ̂[N
�ij
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!
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V arQ̂(N
�ij
.k(V+1)ij
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2(⌘ + EQ̂[N
�ij
.k(V+1)ij
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!
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V arQ̂(
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l=k N

�ij
jk. )

2(↵ck + �ck +
PK+1

l=k EQ̂[N
�ij
jk. ])

2

!

⇥ exp

 
V arQ̂(

PV+1
r=1 N

�ij
.krij

)

2(⌘ + �+
PV+1

r=1 EQ̂[N
�ij
.krij

])2

!

⇥ exp

 
V arQ̂(N

�ij
.k. )

2(EQ̂[N
�ij
.k. ] +

PV
r=1 EQ̂[�r])

2

!

(13)

where:
EQ̂[N

�ij
jk. ] =

P
i0 6=i  ̂i0jk; EQ̂[N

�ij
jk. ] =

P
i0 6=i  ̂ijk(1 �

 ̂i0jk) in a class. The superscript �ij means all the
words except the word ij. It is important to notice
that this update equation in CVB is the result from
implementing a topic model (CVB-GD-BL-based topic
model) where the document and corpus parameters are
drawn from asymmetric GD and BL, respectively.
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3.1.3 Predictive distributions from the CVB-based
topic model

After the sampling process reaches a stationary distri-
bution (convergence), the model parameters that have
been initially marginalized out in the fully collapsed
space are now estimated. For large samples [37,42], the
document predictive distribution in our proposed CVB-
GD-BL topic model is therefore given by:

✓̂
c
jk =

⇣
↵ck + EQ̂[Njk.]

⌘⇣
�ck +

PK+1
l=k+1 EQ̂[Njl.]

⌘

⇣
↵ck + �ck +

PK+1
l=k EQ̂[Njl.]

⌘

(14)

Conditional on the topic k, the predictive distribution
of the words 'kv is:

'̂kv =

 
(�+ EQ̂[N.k.])(�v + EQ̂[N.kxij ])

(�+ ⌘ +
PV+1

r=1 EQ̂[N.krij ])

!

⇥
 

(⌘ + EQ̂[N.k(V+1)ij ])

(EQ̂[N.k.] +
PV

r=1 �r)

! (15)

Following estimation of the predictive distributions (model
parameters), the empirical log likelihood could be com-
puted since it is defined as:

p(Xj |✓cj ,', ", ⇣) =
Y

ij

X

k

✓̂
c
jk'̂kx (16)

following the work in [94][42][36] such that where the
following expected counts, EQ̂[Nj..], EQ̂[N.k.], EQ̂[N.k(V+1)ij ],
EQ̂[Njk.], EQ̂[N.kxij ], and EQ̂[N.krij ] of the unseen doc-
ument are obtained from the CVB-GD-BL sampling
process. The parameters of the unseen document are
then used to predict its likelihood. The EL implemented
in this paper ultimately follows the work in [36,42,5].

3.2 The CVB-BL-GD-based topic model

Using the framework in [5,4,41,42] and the derivations
obtained from subsection 3.1 in this paper, the genera-
tive equation in the collapsed space (for M documents
and K topics) in our second proposed topic model is:

p(X , z|", ⇣, c) =
MY

j=1

2

4
�

⇣PK
i=1 ↵ci

⌘
� (↵c + �c)

� (↵)� (�c)
QK

i=1 � (↵ci)

3

5

⇥

2

4
� (↵0

c)�
⇣
�

0

c

⌘QK
i=1 � (↵0

i)

�

⇣PK
i=1 ↵

0
i

⌘
� (↵0

c + �0
c)

3

5

⇥
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j=1

"
KY

i=1

� (�r + ⌘r)

� (�r)� (⌘r)

KY

i=1

� (�0r)� (⌘0r)

� (�0r + ⌘0r)

#
(17)

where the document-topic update in a class is:
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>:
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0
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PK
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0
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(18)

The topic-word update is:

�
0
r = �r +N

i
(.),r ⌘

0
r = ⌘r +

V+1X

d=v+1

N
i
(.)d (19)

In the collapsed space, as we integrate out the param-
eters, the collapsed Gibbs sampler’s equation is com-
puted as follows:

p(zij = k|z�ij
,X , ", ⇣, c) / [(↵ck +Njk.)]

⇥
"
(�v +N.kvij )(⌘v +

PV+1
d=v+1 N.kdij )

(�v + ⌘v +
PV+1

d=v N.kdij )

#
(20)

So, normalizing the distribution above provides a pos-
terior probability defined as:

p(zij = k|z�ij
,X , ", ⇣) =

A(k)
PK

k0=1 A(k0)
(21)

such that:

A(k) = (↵ck +Njk.)
(�v +N.kvij )(⌘v +

PV+1
d=v+1 N.kdij )

(�v + ⌘v +
PV+1

d=v N.kdij )

(22)

Following similar steps in subsection 3.1, we reach the
final variational update for the CVB-based framework
in the second generative topic model where we use the
BL and GD for document and corpus parameters, re-
spectively:

 ̂ijk = Q̂(zij = k) /
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The parameters estimates for the topic model is as fol-
lows:

✓̂
c
jk =

⇣
↵ck + EQ̂[Njk.]

⌘

⇣
EQ̂[Nj..] +

PK
i=1 ↵ci

⌘ (24)

The predictive distribution of the words 'kw is:

'̂kv =

⇣
�v + EQ̂[N.kvij ]

⌘⇣
⌘v +

PV+1
d=v+1 EQ̂[N.kdij ]

⌘

⇣
�v + ⌘v +

PV+1
d=v EQ̂[N.kdij ]

⌘

(25)

3.3 Discriminative framework: SVM, kernels, and
discrete distributions

A probability kernel is defined as the mapping K :
P ⇥ P ! R with P defined as the space of probabil-
ity distributions [95].
For instance, let Xi = {xi1, xi2, ..., xiM} and Xj =
{xj1, xj2, ..., xjM} be two sequences of vectors for two
multimedia objects Xi and Xj , respectively. Then, each
object is associated with its probablility density func-
tion p(x|⌦i) and q(x|⌦j), respectively. These are para-
metric distributions such that ⌦i is the parameter for
object Xi while ⌦j is the parameter for object Xj .
When implementing topic models especially in com-
puter vision, the bag of visual words scheme leads to the
discretization of the continuous visual features space as
we perform clustering and quantization methods for the
elaboration of the codebook [86,87]. This discretization
causes the reformulation of the kernels using discrete
distributions instead of PDFs (probability density func-
tions).
For our generative topic model framework in the col-
lapsed space, we recover the parameters through sam-
pling process of the topic assignments z. Let ⌦ be
defined as ⌦ = {✓c,'} such that ✓c is 1 ⇥ K vector
(document-topic parameter) and ' is a K ⇥ V (word-
topic) parameter for the corpus such that its entries
are 'kv from ' = {'kv}. Let ⌦̂ be the estimate of ⌦
such that ⌦̂ = {✓̂c, '̂}. With ⌦̂, we can e�ciently repre-
sent the PMF (probability mass function) of each docu-
mentXj . In other words the SVM carries the generative
predictive distributions for each document obtained by
marginalizing out the topic model parameters. With
documents in the generative stage equipped with prob-
abilities (Eq.16), we can define the di↵erent probabilis-
tic kernels in the following section. Let P and Q be two
distributions defined on the space � such that p(x) and
q(x) represent the densities of P and Q, respectively.
For our supervised topic model framework using SVM,

we replace the kernel formulation in the standard (orig-
inal) feature space by the one in the distribution space
that accounts for topic generative features as shown in:

K (Xi,Xj) ) K (P,Q) (26)

There have been many ways of characterizing the gener-
ative structure (features) in topic models. For instance
authors in [35] in 3D object retrieval system use the
LDA document topic proportions ✓ and the KL diver-
gence to compute the distance between two 3D objects.
In their work, the topic proportions ✓ represent an ob-
ject. However, in [67], authors implement the Jensen-
Shannon divergence by considering the topics 'k them-
seleves to evaluate the change in topics between two
successive time slices. Similar choice is suggested in [70]
where authors define the topic as a vector of probabil-
ities over the space of words and then formulate the
KL divergence between two topic distributions to as-
sess their dissimilarity.
As topic mixtures are parameterized by ✓

c while the
topics themselves are parameterized by ', we decide
in our proposed approach to parameterize each docu-
ment with both ✓c and '. This representation is in line
with the definition of a document in topic modeling
which is described as a mixture over topics where each
topic is a mixture over the vocabulary. Therefore, each
discrete document multinomial distribution fed to the
SVM could be described by Eq.16 as a PMF parame-
terized by ✓cj and ' .

3.3.1 The Kullback-Leibler kernel

Based on information divergence measures (where the
measure here is the KL divergence), this probabilistic
kernel computes the dissimilarity between two proba-
bility density functions p(x|⌦i) and q(x|⌦j) defined on
the support (space) �:

DKL(P,Q) =

Z

�
p(x|⌦i) log

✓
p(x|⌦i)

q(x|⌦j)

◆
dx (27)

The KL divergence between P andQ (KL(P ||Q)) could
be seen as the additional amount of bits needed to en-
code samples from P distribution using a Q distribution-
based code [70,17].
From the KL divergence measure, we can evaluate the
symmetric KL divergence as:

DSKL(P,Q) =

Z

�
p(x|⌦i) log

✓
p(x|⌦i)

q(x|⌦j)

◆
dx

+

Z

�
q(x|⌦j) log

✓
q(x|⌦j)

p(x|⌦i)

◆
dx

(28)
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For discrete probability distributions P (x) and Q(x),
we can reformulate DKL(P,Q) over the support � as:

DSKL(P,Q) =
X

x2�

P (x) log

✓
P (x)

Q(x)

◆

+
X

x2�

Q(x) log

✓
Q(x)

P (x)

◆ (29)

Once the symmetric KL divergence measure is defined,
the KL kernel [46] is estimated by exponentiating the
symmetric KL divergence.

K (Xi, Xj) ) K (P,Q)) ) exp (DSKL(P,Q)) (30)

3.3.2 The Jensen-Shannon kernel

It is based on Jensen-Shannon (JS) divergence [96] as it
measures the similarity between two distributions. The
JS divergence between distributions P and Q is defined
as:

JS(P ||Q) = H [�P +(1��)Q]��H [P ]�(1��)H [Q]

(31)

with � a parameter and H [P ] the Shannon entropy of
P over the space� is H [P ] = �

R
� p(x|⌦i) log p(x|⌦i)dx

such that p is the density of distribution P . A discrete
formulation of the Shannon entropy is:

H [P ] = �
X

x2�

P (x) logP (x) (32)

The Jensen-Shannon kernel is obtained by exponenti-
ating the JS divergence.

KJS(P,Q) = exp(�aJS(P ||Q)) (33)

The JS could also be formulated using the KL by setting
g(x) = 1

2p(x) +
1
2q(x) with � = 1/2

JS(P ||Q) =
1

2
KL(P ||G) +

1

2
KL(Q||G) (34)

3.3.3 The Bhattacharyya kernel

It is a member of the probability product kernel (PPK)
family [97] that is defined as:

K⇢(P,Q) =
X

x2�

P (x)⇢Q(x)⇢ (35)

such that ⇢ is a parameter. Following the formulation
in Eq.35, we can define the Bhattacharyya kernel [98]
as a PPK at ⇢ = 1

2 :

K 1
2
(P,Q) =

X

x2�

p
P (x)

p
Q(x) (36)

However, when ⇢ = 1, the PPK becomes the expected
likelihood kernel, also called the correlation kernel as it
measures the corelation between two distributions such
that:

K1(P,Q) =
X

x2�

P (x)Q(x) (37)

Because it is related to traditional linear kernels, the
correlation kernel is called probabilistic linear kernel
[95].

3.3.4 The Renyi kernel

Straight from the Shannon entropy theory, the Renyi
kernel is based on the Renyi divergence measure of or-
der �:

D�(P ||Q) =
1

� � 1
log
X

x2�

P (x)�Q(x)1�� (38)

where � > 0 and � 6= 0
By exponentiating the symmetric Renyi divergence, it
leads to the Renyi kernel that is defined as: KR(P,Q) =
exp{�a(D�(p(x|⌦i)||q(x|⌦j)) +D�(q(x|⌦j)||p(x|⌦i))}
where a > 0.

KR(P,Q) =

"
log
X

x2�

P (x)�Q(x)1��

#

⇥
"
log
X

x2�

Q(x)�P (x)1��

# a
1��

(39)

The Renyi divergence is a generalization of the KL di-
vergence, and both are identical when � ! 1. In addi-
tion, the Renyi kernel becomes a PPK when a = 1��

2 .
It also a Bhattacharyya kernel for � = 1

2 .

3.4 Time and memory complexities

The time and memory complexities have been presented
in many topic model publications [23,99,36,42,5,17].
Though the work of [99] provided the most extensive
details about time and memory complexities when pro-
cessing large collections under LDA. Following the work
in [99], for D documents containing each N words from
a vocabulary of size V , in a particular class c, we ob-
tain a D⇥V matrix where NN0 is the total number of
nonzero elements in this document-word (sparse) ma-
trix. During the formation of K topics, it involves plac-
ing a K +1-dimensional variational distribution on ev-
ery word leading to a K ⇥ NN0 matrix. The parame-
ter estimation provided the predictive document-topic
distribution ✓

c
j of size K ⇥ D and the topic-word pre-

dictive distribution of size K ⇥ V . CVB-LDA carries
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Table 1 Models time complexities

Models Time complexity

L O(⇠ ⇥ 2⇥K ⇥NN0)
S O(M3)
L+S O(⇠ ⇥ 2⇥K ⇥NN0) + O(M3)
I O(⇠ ⇥ 2⇥ (K00)⇥NN0)
II O(⇠ ⇥ 2⇥ (K00)⇥NN0)
I + S O(⇠ ⇥ 2⇥ (K0)⇥NN0) + O(M3)
II + S O(⇠ ⇥ 2⇥ (K00)⇥NN0) + O(M3)

Table 2 Models memory complexities

Models Memory complexity

L O(K ⇥ 2⇥ (V +D) +NN0)
S O(M2)
L+S O(K ⇥ 2⇥ (V +D) +NN0) + O(M3)
I O(K0 ⇥ 2⇥ (V 0 +D) +NN0)
II O(K00 ⇥ 2⇥ (V 00 +D) +NN0)
I + S O(K0 ⇥ 2⇥ (V 0 +D) +NN0) + O(M2)
II + S O(K00 ⇥ 2⇥ (V 00 +D) +NN0) + O(M2)

K ⇥ NN0 matrix along with two copies ✓̂ and '̂ one
for the inference and the second one for the correction
factor using the variance. This leads to a time complex-
ity of O(⇠ ⇥ 2 ⇥ K ⇥ NN0) where ⇠ is the extra cost
for the exponential correction factor. The brute space
complexity is around O(K ⇥ 2⇥ (V +D) +NN0)

In SVM we carry M documents of size 1 ⇥ K for
each class. Let’s callM the documents/topics pairs dur-
ing the training stage. The time complexity of SVM is
O(M3) while the memory complexity is O(M2) where
M  D. Though due to the flexibility of GD and BL in
pruning out irrelevant topics, we usually obtain K

0 
K, K 00  K and V

0  V , V 00  V under BL and GD.
Therefore, the memory and time complexities are im-
proved. For instance, in CVB-GD-BL(topic Model I ),
we have this memory complexity below O(⇠⇥2⇥ (K 0⇥
NN0) O(K 0 ⇥ 2⇥ (V 0 +D) +NN0). We could obtain
the memory and time complexities of topic topic Model
II just by using K” and V

00 which the reduced versions
of the vocabulary and topics.
LDA does not have ability for to retain the most rele-
vant topics due to its Dirichlet prior. It leads to O(⇠ ⇥
2⇥K⇥NN0) O(K⇥ 2⇥ (V +D)+NN0) for LDA as
shown in [99]. Tables 1 and 2 recapitulate complexiy of
the proposed approach compared to the standard LDA.

In these tables L=LDA, S=SVM, I= topic Model
I, II=topic Model II. We can see that under the time
and memory complexities, the LDA is slower and uses
a lot of memory than our proposed models. we can also
observe that the proposed techniques perform almost
equally with their reduced number of topics and vocab-
ulary. In the worst case, our GD-BL and BL-GD topic
models will have the same time complexity as LDA.

However, those are very flexible topic models that ex-
ecute many tasks at the same time including semantic
analysis between word and between topics. This sug-
gests they execute each task faster than LDA. LDA does
not perform in topic correlation. So, it is slower than
our proposed models [5]. Tables 1 and 2 shows how the
topic correlation analysis improve the time and memory
complexities.

4 Experimental results

We show the robustness of our proposed approach by
selecting some real world and challenging applications
in image and text classification. Our framework pro-
vides the generative topic models which are then used in
SVM. The SVM operates on a series of kernels (in distri-
bution space) such as Bhattacharyya kernel (BK), sym-
metric Kullback-Leibler divergence kernel (KLDK), the
Renyi kernel (RK), the Jensen-Shannon kernel (JSK),
and the Expected likelihood kernel (ELK). In our SVM
implementation in this paper, as we are dealing with
a multiclass problem, we select the one-versus-all tech-
nique for the training set modeling: that is, the class
with the largest positive score will ultimately win the
class label. In addition, an 8 fold-cross validation scheme
has been implemented to account for the estimation of
the design parameters within the SVM.
Using the collapsed Gibbs sampling method and the
empirical likelihood scheme, each document distribu-
tion is evaluated over the finite set of topics. As we
are demonstrating the performance of our proposed ap-
proach compared to previous topic models illustrated in
Table 5 using probabilistic kernels, we also include cases
where we compare our proposed topics models to SVMs
operating in the original feature space using standard
kernels such as linear and RBF. Consequently, we in-
clude the performance of our proposed topic models
with a linear kernel-based SVM for the text document
dataset.

4.1 Implementation

This implementation concerns the generative stage where
we construct the topic distributions to be utilized by
the SVM. In this implementation, we are using the col-
lapsed Gibbs sampling method in variational Bayes in-
ference. The variational update equation is similar to
the update equation in the standard CGS. The di↵er-
ence is that here we sample from the variational dis-
tribution instead of sampling from the true posterior
distribution. Immediately, to deal with the digamma
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functions, we can reset the variational update equa-
tion using [100] work. The main idea is to compute
the variational model parameters ✓cj and 'k using the
CVB algorithm which implements this variant of CGS.
To do this, we set a number of iterations such that
at each iteration we sample a topic for each of the N

words in the corpus. We use the variational expected
count variables (the variational statistics). We use these
statistics to estimate the topic model parameters at
the generative stage. The framework requires an ini-
tial setting of the variational expected count variables
along with the model hyper-parameters. We usually set
them randomly. Though, many times for the BL hyper-
parameters, we could also provide initializations in this
way: within a class, at the document level we choose
↵jk = 1

k where k 2{1, 2, ...,K}. We also set ↵j such that

↵j 
PK

k=1 ↵jk or ↵j �
PK

k=1 ↵jk. Then, we choose �j
within the same scale as ↵j . At the corpus level for
BL, we repeat the same process by setting values for
�kv with v 2 {1, 2, ..., V } and � and ⌘ For the GD
hyperparameters at the document level ↵jk = t

i with
i 2 {1, 2, ...,K} and �ji = 1

K+i with i 2 {1, 2, ...,K}.
At the corpus level we also repeat the same process
with �iv and ⌘iv with v 2 {1, 2, ..., V }. We initialize the
number of topics along with the maximum number of
iterations. We also randomly initialize the topic assign-
ment associated to each word in the class in the latent
z (N-dimensional random variable) associated to each
document j. The main expected counts in the sampling
process include Eq[Njk] the number of words assigned
to topic k in document j, Eq[Nj(K+1)] the total num-
ber of words in topic K + 1 in document j, Eq[Nkv]
the number of times the vth word in the vocabulary is
assigned to topic k, Eq[Nk(V+1)] the number of times
the (V + 1)th word in the vocabulary is assigned to
topic k, Eq[Nk] the the number of times any word is
assigned to a topic k Eq[Nj(K+1)] the total number of
words in topic K + 1 in document j. In the document
which is a collection of vocabulary words w organized as
count data, we associate each word to its initial count
(frequency count). In CVB-based CGS algorithm, as
shown in Eq. 12 and 23, we remove the current topic
assignment from these update equations by decreas-
ing the count associated to the current assignment. We
compute the probability of each topic assignment using
Eq. 12 and 23 leading to a discrete distribution, a K-
dimensional variational distribution associated to every
word. We sample from this distribution of latent topic
assignments and choose a topic that is returned to vec-
tor z where it updates the counts. In other words, the
appropriate counts are increased. At the covergence, we
collect the latent variables z, the variational statistics
which allow us to compute the predictive distributions

for the document paramter (document-topic), ✓cj and
corpus (topic-work) parameter 'k.

4.2 Text document classification

4.2.1 Preprocessing and methodology

In this paper, we chose a challenging text classification
problem using our proposed hybrid technique. For this
work, we selected the Yahoo! Answers topic classifica-
tion dataset. This dataset has been constructed from
the original Yahoo! Answers corpus which is a vast col-
lection of text documents containing around 4, 483, 032
questions and their corresponding answers (in .csv for-
mat). This current dataset has been used in a text clas-
sification problem by Zhang et al. in [101]. In fact, the
Yahoo! Answers topic classification dataset has 10 main
categories (Table 3) where the total training set is about
1, 400, 000 samples (140, 000 samples per category). The
testing set contains 60, 000 samples (6000 samples per
category). The dataset has a 4 column text layout where
the first column carries the class labels of each text doc-
ument. The second and third columns provide questions
while the last column shows the best answers to those
questions. In our case, in this particular text classifica-
tion problem, we are interested in documents containing
answers and their corresponding classes from the cor-
pus layout.
Though, in this experiment, we did not use the whole
dataset as we utilized only a subset of the data that
consists of 6000 samples per category, so 60000 sam-
ples in total. This is mainly due to poor initializations
which were slowing down the sampling process. We re-
duced the size to speed up the sampling process.
As usual for text document data, the collections are
initially unstructured or noisy as they carry a lot of un-
wanted materials. Consequently, in the preprocessing
stage, we cleaned up the data by removing irrelevant
items such as stop words and punctuations through
MATLAB. In each class, 90% of the dataset have been
assigned to the training set while the remaining is the
testing set. The training set obtained is then used to
construct the bag of words from the tokenized docu-
ments. Further preprocessing steps have been imple-
mented to remove infrequent words in BoW model (for
instance, words that appear less than two times in doc-
uments). In addition, empty documents have been also
removed from the training data. The characteristics of
the training set following the BoW framework is sum-
marized in Table 4 which shows the frequency count
data represented in a matrix form, the total number of
documents, the vocabulary size, and the total number
of words in the corpus.
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The frequency count data (training set) is then used by
our algorithm where we learn documents topics first:
this is the generative stage. It is important to mention
that our text data using the BoW framework is really
sparse due to the large size of the vocabulary. We pro-
ceeded with a sparse-based data representation for e�-
cient storage management in this batch processing.
For the generative framework, we finally obtain the op-
timal number of topics at K = 60. Once our genera-
tive topic model is built, we represent each document
as a topic distribution. We, in fact, constructed two
generative topic models: the topic model I or CVB-
GD-BL-based topic model and topic model II or CVB-
BL-GD-based topic model, all presented in section 3.
With these topic models, we estimated the predictive
distributions that allow us to express the document dis-
tributions using Eq.16. The topic distribution are then
used by the SVM classifier to perform document catego-
rization with probabilistic kernels. The representation
of each document as probability distribution is fully de-
tailed in subsection 3.3 in this paper. Importantly, there
are no clustering and quantization steps for text doc-
uments during the BoW formation. These steps only
occur when dealing with images in feature represen-
tation. Text documents naturally decompose into bag
of words. This ultimately summarizes our generative-
discriminative approach for text document classifica-
tion.

4.2.2 Results

Initially, the BoW representation of the data shows a
very sparse data, and the first samples used for mod-
eling did not yield good approximates. It means there
is a need to provide more discriminative features that
facilitate classification. As we increase the size of the
documents and the number of latent factors or topics
as shown in Figs. 2, 3, and 4, we saw an immediate
improvement in the estimates for the topics and the
distribution over the topics. The improvement in the
estimates not only shows the characteristics of each doc-
ument, but also exhibits di↵erences between these doc-
uments by observing the topic and distribution struc-
tures.
The experimental results from our proposed approach
with this text dataset using the di↵erent probabilis-
tic kernels utilized in this paper are summarized in
Table 5. These results show that our two generative
(topic) models implemented, (topic model I and topic
model II ) have provided satisfactory performance with
SVM framework compared to their major competitors
(such as LDA, CVB-LDA, CVB-LGDA, and LGDA) in
this text document classification. So, the hybrids ob-

tained from the proposed topic models outperformed
their competitors under these probabilistic kernels.

All the hybrids in this text document classification
have successfully provided good results with the ex-
pected likelihood kernel (ELK) which is a linear prob-
abilistic kernel. Under the ELK-based SVM, the topic
model II had the highest accuracy (68.53%). In overall,
results from hybrids using topic model II were slightly
improved compared to hybrids from topic model I. In
this experiment, the linear kernel was able to outper-
form nonlinear kernels in text document classification.
We think that linear probabilistic kernels could be seen
as alternatives to nonlinear probabilistic kernels in text
document classification. Though, the JSK-based SVM
coupled with topic model II remains the best performer
among nonlinear probabilistic kernel models.
This ultimately demonstrates the robustness of prob-
abilistic linear kernels in text document classification.
However, both topic models proposed in our work outp-
formed an SVM-based classifier using traditional and
standard linear kernel (in the original feature space).
The classification accuracy with topic Model I is 58.43%.
It is 56.38% with topic Model II, and 54.41% with SVM.
Finally, these performances ultimately illustrate the im-
portance of documents representation in distribution
space. And this starts from providing an optimal num-
ber of topics from our generative models from which
distributions are built over the topics structure. The
ability to summarize documents (initially represented
in 8805 dimensional feature space in this paper due to
the size of the vocabulary within the BoW as shown
in Table 4) using e�cient and very few low dimen-
sional features such as topics is an ideal framework for
memory space management in databases. From docu-
ments with initially 8805 features, we obtain at the end
K = 70 topics from the generative model to represent
documents new features in distribution space.

Table 3 10 Categories for text documents

Text Document Categories Class label

Society & Culture 1
Science & Mathematics 2
Health 3
Education & Reference 4
Computers & Internet 5
Sports 6
Business & Finance 7
Entertainment & Music 8
Family & Relationship 9
Politics & Government 10
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Fig. 2 Processing results from increasing documents size and the number of topics
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Fig. 3 Three classes from text corpus documents with associated topic structure

Table 4 BoW information for the text document modeling

BoW Characteristics

Total Counts 53087⇥ 8805
Vocabulary [1⇥ 8805 string]
Total Number of Words 8805
Total Number of Documents 53087

4.3 Natural scene categorization dataset

4.3.1 Preprocessing

In this experiment, we are performing image classifica-
tion using our proposed hybrid framework. We also used
the well-known natural scenes dataset that has 15 cate-
gories as shown in [102]. It is a challenging dataset. Here
is the list of the classes along with their size: (Suburb,
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Fig. 4 Multinomial distributions from 3 text documents of di↵erent classes

Table 5 Hybrid models performances for the text document
dataset

% BK KLDK RK JSK ELK

topic model I 61.45 62.16 62.27 63.49 67.51
LDA 45.56 48.67 49.25 50.67 57.89
CVB-LDA 46.12 49.87 57.43 54.89 55.57
CVB-LGDA 50.78 51.65 52.10 53.09 57.16
LGDA 48.36 48.98 49.67 50.18 56.54
topic model II 63.32 63.67 65.74 66.19 68.53

241), (Living room, 289), (Coast, 360), (Forest, 328),
(Highway, 260), (Mountain, 374), (Street, 292), (O�ce,
215), (Store, 315), (Bedroom, 216), (Inside city, 308),
(Tall buidling, 356), (Open country, 410), (Kitchen, 210),
and (Industrial, 311). The corpus as illustrated in Fig.
5 has in total 4485 images. The dataset is also a col-
lection that contains di↵erent categories (for instance,
mountain and highway) as well as similar categories (for
instance, the 4 indoor categories such as o�ce, living
room , kitchen, and bedroom from [32]) to fully charac-
terize the concept of interclass and intraclass variation
problems.
From each category, the dataset is split in two groups:
the testing set carries 100 samples while the training
set gets the remaining. This is similar to our previous
work with this data in [5,4] where we used the BoW
method to transform the SIFT (scale invariant feature
transform) descriptors (from image patches) into code-
book or vocabulary after clustering and quantization
process [32,6,5,4]. The training set (count data) ob-
tained is then used to build our generative topic models
with asymmetric priors. Following the steps in the text
classification problem in subsection 4.2, we characetrize
each document distribution using subsection 3.3. These
documents are then used by our SVM which performs
with probabilistic kernels. It is noteworthy that based
on our previous work [5,4], the optimal number of top-

ics and vocabulary size are reached at K = 90 and
V = 1000, respectively for the implementation of our
generative topic models.This is because of the ability of
the GD and BL in pruning irrelevant topics and vocab-
ulary size. We therefore obtained a model selection with
very reduced number of topics and vocabulary size.

4.3.2 Results

We showed earlier the low performance of the hybrids
with the expected likelihood kernel (ELK): 58.43% for
topic Model I, 56.38% with topic Model II. This prob-
abilistic linear kernel was not able to carry enough dis-
criminative information or features that could enhance
performances in this image categorization problem. In
general, in this experiment, nonlinear probabilistic ker-
nels used in this hybrid generative-discriminative set-
ting have been observed to outperform the ELK. The
two topic models in our proposed approach combined
with nonlinear probabilistic kernels-based SVM show
robustness of our methods with a result around 85%
in accuracy from topic model II. These two hybrids in
our scheme seem to equally perform well with nonlin-
ear probabilistic kernels especially the JSK. They both
outperform their competitors such as LDA, CVB-LDA,
CVB-LGDA, and LGDA. These results show that non-
linear probabilistic kernels are robust and e�cient in
image classification than in text categorization. In this
experiment, nonlinear kernels are able to characterize
the intrinsic properties in images than linear probabilis-
tic kernels represented by the ELK. This justifies the
poor performance in the ELK for its inability to adapt
to changes in view and illumination in images for in-
stance since such phenomena induce nonlinearity in the
dataset resulting in changes in document distributions.
This instability in the distributions has a negative im-
pact on linear probabilistic kernel function (ELK).
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Fig. 5 Examples from the natural scenes image dataset (15 categories).

In addition, the proposed topic models (implemented
in this paper) performances have been compared to a
Gaussian or RBF kernel-based SVM classifier which op-
erates in the original feature space (75.35% with topic
Model I and 76.65% with topic Model II ). The SVM
with RBF kernel using orginal feature instead topic dis-
tribution provided an accuracy of 68.27%. These topic
models outperform the RBF-based classifier. The per-
formance of our method could also be explained by the
robustness in the generative topic models for their abil-
ity to characterize e↵ectively the documents as proba-
bility distributions with a better parameterization. For
instance, a random selection of 5 documents has been
made whitin the natural scene category dataset. As
shown in Figs. 6 and 7, and similar to the scenario pre-
sented in our text document classification, the first row,
in each figure, illustrates the convergence process while
the second row exhibits the word distribution in the
documents. The last row provides the topic structure
in each document. Under our proposed approach, we
can see that the documents are di↵erent according to
their classes. In Fig. 6 for instance, on the second row,
documents 1, 2, and 4 have similar topics and similar
distributions over topics. Still on the second row, same
observations could be made about documents 3 and 5.
These 5 documents ultimately belong to 2 classes from
their distribution characteristics. This robustness in ap-

proximating e↵ectively the generative topic model fa-
cilitates the task for the probabilistic kernel to perform
accurately as it measures similarity between distribu-
tions within the discriminative framework. As we start
increasing the size of the dataset, the number of top-
ics, and the size of the vocabulary during training, we
notice improvement in the results with our proposed
hybrids. The final optimal number of topics and size of
the vocabulary are obtained at K = 90 and V = 600,
respectively. This constitutes the characteristics of the
generative approach that we use to construct our dis-
criminative classifier.

Table 6 Hybrid models performances for the natural scenes
dataset

% BK KLDK RK JSK ELK

topic Model I 78.31 79.18 82.17 82.32 70.65
LDA 59.34 65.54 68.67 69.43 55.41
CVB-LDA 65.38 70.3 70.86 71.57 57.85
CVB-LGDA 70.51 69.96 75.71 80.53 68.34
LGDA 68.45 70.43 75.35 77.64 63.50
topic Model II 78.54 78.98 80.78 85.47 74.67
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Fig. 6 Five image documents in natural category scene dataset
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Fig. 7 Analysis of 5 image documents in natural scene category dataset

4.4 COREL dataset

For this second experiment of image classification using
our proposed method, we selected the COREL database
as illutrated in Fig. 8 from the Corel Photo Gallery [103]
for our image classification framework. Over thousands
images, the collection contains animals, airplanes, cars,
plants, landscape and textures, artistic objects, vehi-
cles, and people. The database has in fact been summa-
rized into 80 categories in total containing 8000 images
(100 images per class). Each image in the collection has

approximately a size of 325⇥ 255, in JPEG format.
Initially, for feature extraction method, we decided to
follow the method implemented in [46] to collect the low
frequency features provided by the DCT (Discrete Co-
sine Transform) from the patches obtained by the slid-
ing window process over the images using MATLAB.
These low frequencies in DCT are specialized in cap-
turing relevant characteristics in images. As the gener-
ative topic model in our implementation was struggling
to be successful with this feature extraction scheme, we
decided to use SIFT features similar to the work in [32,
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6,5,4] and the one in the previous section in this pa-
per about natural scene categorization. In this work,
we used all the 80 categories. The SIFT method and
BoW architecture are described in [32,6,5,4] for image
representation in feature space.
Once the generative topic models are implemented, we
use probabilistic kernels to carry the document topic
features to the SVM for classification. The technique ul-
timately requires the representation of each document
in the distribution space to facilitate the work for the
probabilistic kernel machine. Then afterwards, we com-
pare the performance of our proposed approach to its
competitors in topic modeling. We also maintain an op-
timal number of topics at K = 70 for a vocabulary size
of V = 600 for the implementation of the generative
topic models.
The implementation of our method has shown the per-
formance of the hybrids with nonlinear probabilistic
kernels compared to linear probabilistic kernels such
as ELK (expected likelihood kernel). From the results
(in terms of accuracy) obtained, we can observe that
these hybrids performances with ELK were less im-
proved compared to the case of nonlinear kernels such
as BK, KLDK, RK, and JSK. This is translated into a
low accuracy value for the ELK. The hybrids provided
by our proposed generative approach, (topic model I
and topic model II ), with the probabilistic kernel-based
SVM have demonstrated higher results. The combina-
tion topic model I and SVM showed an accuracy of
79.83% with the JSK. In overall, these two topic mod-
els perform equally within the discriminative setting
especially with the JSK.
Similar to the natural scene document modeling case
in the previous section, in this COREL dataset also,
we randomly selected 5 documents (Figs. 9 and 10).
Our proposed topic models were able to show the e�-
ciency of the representation of documents as distribu-
tions. Through these distributions characteristics, the
documents were able to exhibit their di↵erences. Here,
each of these documents (by observing the second row)
belongs to a di↵erent class as illustrated in Figs. 9 and
10. Our generative models implemented have shown
better performance when compared to an RBF-based
SVM classifier in the original feature space (topic model
I with an accuracy of 72.70% and topic model II with
70.40%). Implementing the SVM in the original space
provided 65.34% as classification accuracy. By using
topics, we were able to provide a lower dimemsional
space that allows a better compression of the data. The
low dimensional space is used to represent the docu-
ments.

Table 7 Hybrid models performances for COREL dataset

% BK KLDK RK JSK ELK

topic Model I 75.51 76.39 77.98 79.83 67.42
LDA 57.65 60.56 67.43 68.36 55.39
CVB-LDA 60.45 63.78 68.56 69.43 57.54
CVB-LGDA 63.42 65.45 70.12 71.48 58.29
LGDA 62.10 64.33 68.27 70.25 58.87
topic Model II 74.10 74.87 77.21 78.75 70.38

5 Conclusion

In this paper, we demonstrated the e↵ectiveness of doc-
uments or data representation (generative features) from
the proposed topic generative framework coupled with
the implementation of powerful probabilistic kernels-
based SVM classifiers that provided good performance
in classification. The use of asymmetric GD and BL
conjugate priors simultaneously (within the same gen-
erative process) in our topic modeling framework led to
two models: the CVB-GD-BL-based topic model (topic
model I ) and the CVB-BL-GD-based topic model (topic
model II ). This ultimately characterizes the generative-
discriminative setting in our proposed approach. The
discretization of the continuous visual feature space due
to clustering and quantization schemes for the forma-
tion of the visual codebook led to the reformulation
of probabilistic kernels from continuous space to dis-
crete space as we deal with empirical (discrete) distri-
butions. Using some challenging datasets in machine
learning and computer vision, we are able to extract in-
trinsic characteristics from text and image documents
for the implementation of our hybrid models. Topic rep-
resentation is an e↵ective summarization method to al-
low topic models to work in finite dimensional spaces
(low dimensional spaces). This automatically presents
the advantage of solving memory space (storage) issues
in databases. In other words, the space complexity is
refined and improved within our proposed framework.
The implementation of generative models in the fully
collapsed space of latent variables provided a framework
(sampling) that allows the computation of probabilistic
kernels through empirical likelihood scheme. This set-
ting facilitates the representation and parameterization
of our documents (texts and images) as distributions for
the kernel machine. This representation has been ben-
eficial for the modeling of our hybrids as documents
now have ability to carry e↵ectively local information
from generative topic models into discriminative classi-
fiers that operate with distributions. Distributions are
always seen as accurate and compact representations
of the data since they can e�ciently hold some use-
ful properties such as semantics within the observed
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Fig. 8 Corel dataset (15 out of 80 categories)

data. This reality is demonstrated in our experiment
as we successfully show that despite the performance
of standard kernels-based SVMs in the original fea-
ture space, probabilistic kernels-based SVMs provide
the best performance and results especially when com-
bined with robust topic models. These characteristics il-
lustrate the e↵ectiveness of our hybrid models and their
performance within a wide variety of datasets show-
ing therefore the ability for our proposed framework
to generalize. The fully collapsed representation was
also key to the success of our generative approach by
connecting a hybrid inference (the collapsed variational
Bayes, seen as one of the state-of-the-art inference tech-
niques in topic modeling with its flexibility to combine
both the performance of the variational Bayes and the

collapsed Gibbs sampler) to hybrid model (generative-
discriminative). The hybrid techniques using CVB-LGDA
and CVB-LDA in this generative-discriminative approach
have shown better performances compared to the LDA-
based hybrids in uncollapsed space. As generalized Dirich-
let and Beta-Liouville distributions are more flexible
than the Dirichlet, using these priors in topic modeling
presents some advantages in the generative-discriminative
setting. This ultimately justifies the good performance
in our proposed approach as we implement our topic
models with these two di↵erent priors (asymmetric)
used simultaneously within the same generative pro-
cess. Compared to previous hybrid models, our pro-
posed approaches mostly outperform them in our datasets.
As a result, the edge is given to our current proposed
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Fig. 9 Analysis of image documents in Corel dataset
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Fig. 10 Characteristics of image documents in Corel dataset

methods. With the right probabilistic kernel, the hybrid
methods from topic Models I and II could also perform
almost similarly with the majority of our datasets in a
sense that they both provide mostly, robust and co-
herent generative topic features to the SVM as shown
in the performance results compared to their competi-
tors. However, within our proposed methods, the hy-
brid, topic model II/SVM provides a better performance
in terms of time complexity in comparison to the hy-
brid, topic model I/SVM. This is mainly due to the in-

trinsic characteristics of the (asymmetric) Beta-Liouville
conjugate prior for the document parameter’s modeling
besides robustness and flexibility. To its advantage, the
distribution (BL) has generally few parameters com-
pared to the GD. As a result, inferences were observed
to be faster with the hybrid topic model II/SVM as
it e↵ectively characterizes or models the document pa-
rameter with (asymmetric) BL while also providing ro-
bust generative features to the kernel machine. This is
in contrast to the hybrid topic model I/SVM which
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samples the document parameter from (asymmetric)
GD, and it is observed to be slower in estimations de-
spite its robust performance.
The relationship between our topic generative features
and kernel formulations for SVM also demonstrate that
our nonlinear probabilistic kernels implemented per-
formed well with images than linear probabilistic ker-
nels such as ELK. Images often provide features that
are too complex to be linearly separated. Changes in
view and illumination for instance could have impacts
on image feature characteristics and therefore on the
distributions. Nonlinear probabilistic kernels have abil-
ity to adapt to these changes better than linear kernels.
On the other hand, text documents classification tends
to be well characterized with linear probabilistic ker-
nels. Our models were able exhibit these characteris-
tics through our datasets showing therefore the robust-
ness of the framework. This explains the importance of
knowledge about the data as it can influence the choice
of the kernel functions in the discriminative framework.
Therefore, the strong performance of the JSK (Jensen-
Shannon kernel) on our proposed topic models could be
explained by the capability of this nonlinear probabilis-
tic kernel in handling and characterizing e↵ectively gen-
erative features represented as empirical distributions
such as the ones implemented in our topic models. We
witnessed, during implementation that the models re-
quire many parameter and hyperparameters to initial-
ized. The complexity of the models has been increased.
Initialization a↵ect the results. Importantly, our pro-
posed approach remains an alternative to nonparamet-
ric models in finite dimensional space (with finite mix-
tures) for classification. However, as topic models in
finite dimensional space always struggle in providing
very e�cient and accurate model selection criteria, a
future work could be about investigating on the pos-
sibility to implement a nonparametric model due the
high complexity in our datasets. We could also empha-
size on inference based on hyperparameter estimation
to reduce problems related to poor initializations.
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