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Abstract: The initialisation of a neural network implementation of Sammon’s mapping, either randomly or based on the principal
components (PCs) of the sample covariance matrix, is experimentally investigated. When PCs are employed, fewer experiments are needed
and the network configuration can be set precisely without trial-and-error experimentation. Tested on five real-world databases, it is shown
that very few PCs are required to achieve a shorter training period, lower mapping error and higher classification accuracy, compared
with those based on random initialisation.
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1. INTRODUCTION

Sammon’s nonlinear mapping [1] is a projection method for
analysing multivariate data. The method attempts to preserve
the inherent structure of the data when the patterns are
projected from a higher-dimensional space to a lower-dimen-
sional space by maintaining the distances between patterns
under projection. Denote the distances between pattern Xi

and pattern Xj in the input space and their projections Yi

and Yj in the projected space as dp
ij and dij, respectively.

Employing Euclidean metric to measure distances, Sammon’s
mapping minimises the mapping error:

E =
1

On

i,j

dp
ij
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i,j

[dp
ij − dij]2

dp
ij

(1)

where n is the number of patterns. The mapping attempts
to fit n points in the lower-space, such that their interpoint
distances approximate the corresponding distances in the
higher-space.

Sammon’s mapping has been designed and usually used
to project high-dimensional data onto one to three dimen-
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sions in order to analyse the data structure [1–4], or for
classification based on two projections [3]. However, there
is no obstacle that prevents extracting more than two or
three projections, and hence the application of the mapping
to feature extraction and classification. Recently, it has been
suggested [5,6] to extract an arbitrary number of projections
of Sammon’s mapping and thereby exploit the ‘classification
potential’ of the mapping. It was found that the classification
accuracy based on Sammon’s projections is comparable with,
and in some cases even superior, to that based on other
feature extractors [5–7]. This classification capability is util-
ised here to study initialisation aspects of the mapping.
Usually, random initialisation is used [2], although initialisa-
tions based on PCs of the sample covariance matrix have
also been suggested [1,3,5]. Nevertheless, to the best of our
knowledge, these initialisations have never been extensively
compared. Therefore, in the present paper, we compare
experimentally random and PC-based initialisations of Sam-
mon’s mapping using two evaluation criteria: Sammon’s
mapping error and the classification accuracy based on an
arbitrary number of projections. Section 2 introduces Sam-
mon’s algorithm and an implementation of the mapping.
Section 3 describes experiments with five real-world data-
bases to evaluate random and PC-based initialisations using
the mapping error and classification accuracy based on the
mapping. Finally, Section 4 concludes the study.
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2. SAMMON’S NON-LINEAR MAPPING

2.1. Sammon’s Algorithm

A general mapping f transforms a pattern X of a d-dimen-
sional input space to a pattern Y of an m-dimensional
projected space, m , d, i.e. Y = f(X), such that a criterion
J is optimised. The mapping f is determined from among
all the transformations g, as the one that satisfies J{f(X)} =
ming J{g(X)}. The mappings vary by the functional forms of
f and the criteria they have to optimise. Although providing
a very well established criterion (Eq. (1)), Sammon’s algor-
ithm does not provide an explicit mapping function, f;
hence, the projection of a new pattern requires re-execution
of the algorithm to the ‘new’ data set.

Besides this lack of generalisation capability, Sammon’s
mapping has two other main drawbacks. The first drawback
is the computational load of the mapping, which is O(n2).
This means that n(n−1)/2 distances (as well as the error
derivatives) must be calculated. The second drawback is
that since the mapping employs steepest descent procedure
to minimise the error, it is prone to be trapped in local
minima, and hence a large number of simulations with
random initialisations is required to yield satisfactory results.
Several methods aim to overcome this problem by making
use of some knowledge of the data. For example, using the
first and second norms (the lengths in l1 and l2) of the
patterns to initialise a mapping into two projections can be
ten times faster than randomly initialised mapping [2].
Another initialisation that is not limited to two projections
is based on mapping the data onto the space spanned by
the PCs [1,3,5]. Nevertheless, in all the research [1–7], the
choice of the initialisation method is arbitrarily made, and
the mapping results are not compared thoroughly with those
based on other initialisation methods. Such an evaluation
however, is the subject of this paper.

2.2. A Neural Network Implementation of
Sammon’s Mapping

Mao and Jain [3] have suggested a neural network (NN)
implementation of Sammon’s mapping. The architecture
they use (Fig. 1) is a two-layer perceptron where the number
of input units is set to be the input space dimension, d,
and the number of output units is specified as the projected
space dimension, m. They derive a weight updating rule for
the multilayer network that minimises the mapping error
(Eq. (1)) based on gradient descent similar to the backpro-
pagation (BP) learning rule. The general updating rule for
all the hidden layers, l = 1, L−1 and the output layer (l =
L) is

Dv(l)
jk = − h

­E
­v(l)

jk
= − h(D(l)

jk (Xs)y(l−1)
j (Xs) − D(l)

jk (Xt)y(l−1)
j (Xt))

(2)

where v(l)
jk is the weight between unit j in layer l−1 and

unit k in layer l, h is the learning rate, y(l−1)
j is the output

of the jth unit in layer l−1 and Xs and Xt are a pair of

Fig. 1. A two-layer perceptron NN for the implementation of Sam-
mon’s mapping.

patterns. Both the errors D(l)
jk and the network outputs

y(l−1)
j are functions of the input patterns Xs and Xt. The

errors D(l)
jk are accumulated in each layer and backpropagated

to a preceding layer, similar to the BP algorithm. Since the
network error is a function of distances between projected
patterns, the learning algorithm does not depend on category
information (as in the BP algorithm), and thus can be
considered as an extension of the BP learning rule to an
unsupervised one [3]. The weights are updated in a BP
manner following the presentation of each pair of randomly
selected patterns, and similar to the BP algorithm, a momen-
tum constant is frequently added to accelerate the conver-
gence.

In Mao and Jain’s NN implementation, the network is
able to project new patterns after training, a property Sam-
mon’s algorithm does not have. They employ a two-stage
training phase using the same configuration. In the first
stage, they perform an initial mapping by employing the
standard BP algorithm and the results of principal compo-
nent analysis (PCA) to approximate PCA by the network.
In the second stage, they use the trained network and their
unsupervised BP algorithm to refine the first stage mapping.
The initialisation and training of our NN-based Sammon’s
mapping implementation are different and simpler than
those of Mao and Jain’s implementation. For the initialis-
ation, we use the eigenvectors of the sample covariance
matrix and not the PCA projected patterns. The eigenvec-
tors are exploited to establish the columns of the initial
input-hidden weight matrix (v) of the implementation, i.e.
v = [w1, w2, %, wm], where wi, i = 1, m are the eigenvectors
corresponding to the m largest eigenvalues. The initial hid-
den-output weight vectors are selected randomly. The net-
work, initialised by these matrices, implements Sammon’s
mapping by performing a one-stage training phase using
Mao and Jain’s unsupervised BP algorithm.

There are several advantages for our implementation com-
pared with that of Mao and Jain’s. First, the long training
of the first stage of Mao and Jain’s implementation [3,4] is
avoided as our implementation performs only a one-stage
training phase similar to Mao and Jain’s second training
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stage. Secondly, although the initialisation is based on the
PCs, and therefore exploits the advantages of PCA, the
initial mapping is neither identical to that of PCA nor is
it restricted to a linear projection. When patterns are pro-
jected using Mao and Jain’s implementation, the maps and
mapping errors are found similar to those of PCA [3,4].
These findings also suggest that after an initialisation using
their first stage, the role of Mao and Jain’s second stage
(Sammon’s mapping itself) is secondary. Moreover, the
implementation of a linear mapping (such as the PCA) by
a nonlinear model, as in the first stage of Mao and Jain’s
implementation, seems inefficient. Third, the configuration
of our network can be determined before initialising the
mapping, during the PCA. A requirement to preserve a
desired variance of the data prescribes a desired number of
(eigenvalues and thus) eigenvectors, and hence specifies the
network configuration and the initial input-hidden weight
matrix. This avoids the conventional trial-and-error exper-
imentation to find an optimal configuration [3,4,6]. Finally,
since the initial input-hidden weight matrix in our
implementation is based on the eigenvectors, the number
of hidden units is restricted to be lower than, or equal to,
the number of input units. Usually, when applied to feature
extraction of real-world applications, this poses no limi-
tations, but it is a flaw of the method.

3. METHODOLOGY AND RESULTS

3.1. The Data Sets

To evaluate the two initialisations, we employ data sets
extracted from five databases. The first two data sets were
derived from chromosome images. In the first set, chromo-
some patterns are represented by 64 density profile (d.p.)
features (integral intensities along sections perpendicular to
the medial axis of the chromosome) [5]. In the second data
set, patterns are represented by four geometrical features,
i.e. length, perimeter, area and the centromeric index (the
ratio of the short arm length to the total length) of the
chromosome [7]. The third data set is extracted from a
satellite image database [8]. Each pattern in the database
corresponds to intensities measured in four spectral bands
of a 3 × 3 neighbourhood of pixels of a sub-scene image,
hence, consists of 36 features. The fourth data set is based
on a Research Assessment Exercise (RAE) database of 72
subject areas in all higher education institutions in the
UK. Variables such as the number of active researchers,
postgraduate students and number of publications formed a
79-dimensional database that is used to assess research, on
a scale of 1 to 5, in each subject area at each institute [9].
The last data set is the much analysed iris data [10], where
the patterns are represented by four attributes (sepal and
petal lengths and widths).

Since in three of the databases (chromosome (d.p.), chro-
mosome (geometrical) and RAE) there are (around) 100
patterns in each class, we also extract for comparison one
hundred patterns per class from the satellite data and use
all the 50 patterns per class which are available in the iris

data. Moreover, since each of the chromosome databases
and the iris data are of three classes, we use for a comparison,
three classes of the satellite and RAE databases. These
classes are chromosome types ‘13’, ‘19’ and ‘x’ in the first
two data sets, three soil types in the third set, the subjects
Physics, Chemistry and Biology in the fourth set, and three
iris types in the last data set.

3.2. The Experiments

We have compared the random and PC-based initialisations
by evaluating the extracted patterns using Sammon’s map-
ping error and the two-layer perceptron probability of correct
classification. The configuration of the NN implementation
consists of 64, 4, 36, 79 or 4 input units for the five data
sets, respectively. The numbers of output and hidden units
are changed according to the experiment. In the first experi-
ment, the network employs two hidden units to evaluate
the mapping error when two and ten projections (outputs)
are extracted. Two projections are appropriate for exploratory
data projection and classification based on a very low-
dimensional feature space, whereas ten projections are an
example for classification based on a higher-dimensional
feature space. In the second experiment, the same number
of hidden units is used and the classification accuracy is
measured based on one to ten projections for the chromo-
some (d.p.), satellite and RAE data sets and one to three
projections for the chromosome (geometrical) and iris data
sets. These ranges of projections are representative for a
wide extent of requirements of classification performances
and compression ratios. The number of hidden units in the
first two experiments is set at two to avoid overtraining. In
the third experiment, the network output is set at two and
the dimension of the hidden layer is changed in the range
1–10 for the chromosome (d.p.), satellite and RAE data sets
and in the range 1–3 for the chromosome (geometrical) and
iris data sets.

Using the PC-based initialisation, eigenvectors corre-
sponding to the largest eigenvalues, instead of random vec-
tors, define the initial input-hidden weight matrix. The
initial hidden-output weight matrix is selected randomly.
Each simulation is repeated using four random initial hidden-
output weight matrices for both the initialisations. In the
case of the random initialisation, four random initial input-
hidden weight matrices are used. The classification accuracy
and mapping error are averaged over these simulations (four
or sixteen, respectively). The mapping parameters are set
according to Lerner et al. [5] to be a learning rate of 0.9
and a momentum constant of 0.5. Since data is limited, we
average the results over 20 replications of random selections
of the training set (using 90% of the patterns) and test set
(10%). Therefore, the mapping error and classification
accuracy reported here are averages over all possible
combinations of 20 randomly chosen data sets, ten random
classifiers (in the classification experiments) and sixteen or
four random initialisations using the random or PC-based
initialisations, respectively.
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3.3. The Classifier

A two-layer perceptron trained by the standard BP learning
algorithm is used as a classifier in the last two experiments.
The number of input units of the classifier, m, is set by the
projected space dimension, the number of output units is
determined by the number of classes (three in all cases)
and the number of hidden units is two. The classifier
parameters are adopted from a previous investigation [5]: a
learning rate of 0.1, a momentum constant of 0.95 and a
training period of 500 epochs. Both the configuration and
the parameters are checked to provide sufficient accuracy
without overtraining. The calculation of the probability of
correct classification is based on the maximum network
output, which approximates the maximum a posteriori prob-
ability decision rule. This probability is averaged over ten
simulations with randomly chosen initial weight matrices.

3.4. Results

Experiment 1: The Mapping Error. Figure 2 shows the
evolution of Sammon’s mapping error based on both initialis-
ations for two and ten projections and the five data sets.
An epoch represents presentation in random order of all
the n(n−1)/2 possible pairs of patterns to the network once.
The results demonstrate that the PC-based initialisation
yields a lower ultimate error and a shorter training period
(for a specific error) than the random initialisation, regard-
less of the projected space dimension or the database*. A
comparable error to that achieved using the random initialis-
ation after 70 epochs is reached using the PC-based initialis-
ation (e.g. for m = 2) after only 66 (chromosome (d.p.)),
62 (RAE), 49 (satellite), 56 (chromosome (geometrical)) or
61 (iris) epochs. These training sessions are 5.7–30% shorter
than those required by the random initialisation, the exact
amount depending on the data. The standard deviation
of the mapping error is between 0.001 and 0.01 for the
different databases.

Experiment 2: Classification Accuracy for Various Num-
bers of Projections. The two-layer perceptron probabilities
of correct classification of the test sets are measured for one
to ten (chromosome (d.p.), satellite and RAE) and one to
three (chromosome (geometrical) and iris) projections of
Sammon’s mapping. Figure 3 shows the superiority of the
PC-based initialisation over the random one for every num-
ber of projections and each of the databases. Usually, and
especially for the PC-based initialisation, a few projections
are required by the classifier to achieve almost the maximum
classification accuracy. The standard deviation of the classi-
fication accuracy in this experiment is between 2% and 4%,
depending on the data.

* The slightly different results on the RAE data are related to the fact that
we obtained and experimented with only one replica of training and test
sets for this data compared to 20 replicas for the other databases.

Experiment 3: Classification Accuracy for Various Num-
bers of Hidden Units. Figure 4 depicts the probabilities
of correct classification for two projections (m = 2) and
various numbers of input-hidden weight vectors. The stan-
dard deviation of the classification accuracy is between 3.9%
and 5.9%. Figure 4 reveals that only a few eigenvectors are
needed to accomplish the highest classification accuracy
based on the PC-based initialisation. As the number of
hidden units increases, however, the benefit of using the
PC-based initialisation is reduced until the two initialisations
yield similar results. This is because using eigenvectors that
relate to smaller eigenvalues adds only a small amount of
uncorrelated information, and at the same time increases the
problem complexity thus reducing the accuracy. However,
projection of the input space using increasing numbers of
random weight vectors extracts (not necessarily
monotonically) increasing amounts of information thus
improving the accuracy.

4. DISCUSSION

We have compared random and PC-based initialisations of
an NN implementation of Sammon’s mapping. Understand-
ing the initialisation benefits is essential in designing appli-
cations that involve Sammon’s mappings. The PC-based
initialisation we suggest exploits the benefits of PCA while
mapping the input space linearly on the hidden layer, but
employing a random hidden-output weight matrix, it also
extends the network initialisation to perform a nonlinear
mapping.

We use Sammon’s mapping error (a data projection ‘tool’)
and the NN classification accuracy (a classification ‘tool’)
to evaluate the initialisations. The PC-based initialisation
has several advantages compared to the random initialis-
ation: (a) fewer experiments are necessary. (b) The network
configuration is set before the implementation; hence, there
is no need for preliminary experimentation. Additional
advantages of the PC-based initialisation that are found
when experimenting with a few eigenvectors and five real-
world databases are: (c) a shorter training period, (d) a
lower mapping error and (e) a higher classification accuracy.
These advantages are the result of extracting useful infor-
mation about the input space using a few principal axes,
which cannot be extracted using a similar number of ran-
dom axes.

In summary, the NN implementation of Sammon’s map-
ping that provides a generalisation capability, and the PC-
based initialisation of the mapping that provides compu-
tational and performance advantages are attractive for both
exploratory data visualisation and classification in real-world
applications. Finally, it would be of interest to extend the
study to applications of more than three classes and to other
domains, and to compare theoretically the two initialisations.
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Fig. 2. The mapping error of Sammon’s mapping based on two initialisation methods for increasing training periods. The error is plotted for
the (a) chromosome (d.p.), (b) RAE, (c) satellite, (d) chromosome (geometrical) and (e) iris data sets and for 2 and 10 projections (a, b
and c) or 2 projections (d and e).
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Fig. 3. The probability of correct classification of the test set based on Sammon’s mapping for increasing numbers of projections and two
initialisation methods for the (a) chromosome (d.p.), (b) RAE, (c) satellite, (d) chromosome (geometrical) and (e) iris data sets.
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Fig. 4. The probability of correct classification of the test set based on Sammon’s mapping for two projections (m = 2), two initialisation
methods and different network configurations for the (a) chromosome (d.p.), (b) RAE, (c) satellite, (d) chromosome (geometrical) and (e)
iris data sets.
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