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Abstract

Integrating the outputs of multiple classifiers via combiners or meta-learners has

led to substantial improvements in several difficult pattern recognition problems. In

the typical setting investigated till now, each classifier is trained on data taken or re-

sampled from a common data set, or (almost) randomly selected subsets thereof, and

thus experiences similar quality of training data. However, in certain situations where

data is acquired and analyzed on-line at several geographically distributed locations, the

quality of data may vary substantially, leading to large discrepancies in performance of

individual classifiers. In this article we introduce and investigate a family of classifiers

based on order statistics, for robust handling of such cases. Based on a mathematical

modeling of how the decision boundaries are affected by order statistic combiners, we

derive expressions for the reductions in error expected when such combiners are used.

We show analytically that the selection of the median, the maximum and in general, the

ith order statistic improves classification performance. Furthermore, we introduce the

trim and spread combiners, both based on linear combinations of the ordered classifier

outputs, and show that they are quite beneficial in presence of outliers or uneven classi-

fier performance. Experimental results on several public domain data sets corroborate

these findings.

1 Introduction

Since different types of classifiers have different “inductive bias”, one does not expect

the generalization performance of two classifiers to be identical [22, 25] for difficult

pattern recognition problems, even when they are both trained on the same data set.

If only the “best” classifier is selected based on an estimation of the true generalization

performance using a finite test set [60], valuable information contained in the results of

the discarded classifiers may be lost. Such potential loss of information can be avoided

if the outputs of all available classifiers are used in the final classification decision. This
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concept has received a great deal of attention recently, and many methods for combining

classifier outputs have been proposed [23, 27, 29, 42, 53]. Furthermore, diversity among

classifiers has been actively promoted, by strategies such as bagging [8], arcing [9, 19, 20],

boosting [18, 17, 45, 51, 52], and correlation control [2, 59], as a prelude to combining.

Approaches to pooling classifiers can be separated into two main categories: (i)

simple combiners, e.g., voting [4, 12], Bayesian based weighted product rule [31], or

averaging [41, 58], and, (ii) meta-learners, such as arbitration [11] or stacking [7, 61].

The simple combining methods are best suited for problems where the individual clas-

sifiers perform the same task, and have comparable success. However, such combiners

are more susceptible to outliers and to unevenly performing classifiers. In the second

category, either sets of combining rules, or full fledged classifiers acting on the outputs

of the individual classifiers, are constructed [1, 30, 61]. This type of combining is more

general, but is vulnerable to all the problems associated with the added learning (e.g.,

overparameterizing, lengthy training time).

An implicit assumption in most combining schemes is that each classifier sees the

same training data or resampled versions of the same data. If the individual classifiers

are then appropriately chosen and trained properly, their performances will be (rela-

tively) comparable in any region of the problem space. So gains from combining are

derived from the diversity [32, 40] among classifiers rather that by compensating for

weak members of the pool. However, in real life, there are situations where individual

classifiers may not have access to the same data. Such conditions arise in certain data

mining, sensor fusion and electrical logging (oil services) problems where there are large

variabilities in the data which is acquired locally and needs to be processed in (near)

real time at geographically separated places [13]. These conditions create a pool of clas-

sifiers that may have significant variations in their overall performance. Moreover, they

may lead to conditions where individual classifiers have similar average performance,

but substantially different performance over different parts of the input space.

In such cases, combining is still desirable, but neither simple combiners nor meta-

learners are particularly well-suited for the type of problems that arise. For example,

the simplicity of averaging the classifier outputs is appealing, but the prospect of one

poor classifier corrupting the combiner makes this a risky choice. Weighted averaging of

classifier outputs appears to provide some flexibility [28, 37]. Unfortunately, the weights

are still assigned on a per classifier basis rather than a per sample or per class basis. If

a classifier is accurate only in certain areas of the input space, this scheme fails to take

advantage of the variable accuracy of the classifier in question. Using a meta learner

that provides different weights for different patterns can potentially solve this problem,

but at a considerable cost. In particular, the off-line training of a meta-learner using

substantial amount of data outputted by geographically distributed classifiers, may not

be feasible. In addition to providing robustness, the order statistic combiners presented

in this work also aim at bridging the gap between simplicity and generality by allowing

the flexible selection of classifiers without the associated cost of training meta-classifiers.

Section 2 summarizes the relationship between classifier errors and decision bound-

aries and provides the necessary background for mathematically analyzing order statistic

combiners [58]. Section 3 introduces simple order statistic combiners. Based on these

concepts, in Section 4 we propose two powerful combiners, trim and spread, and de-

rive the amount of error reduction associated with each. In Section 5 we present the

performance of order statistic combiners on Proben1/UCI benchmarks [43]. Section 6
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discusses the implications of using linear combinations of order statistics as a strategy

for pooling the outputs of individual classifiers.

2 Error Characterization in a Single Classifier

In this section we summarize the approach and results of [58]1, that quantify the effect

of inaccuracies in estimating a posterior class probabilities on the classification error

for a single classifier. This background is needed to characterize and understand the

impact of order statistics combiners, as described in Sections 3 and 4.

It is well known that, given one-of-L desired outputs and sufficient training samples

reflecting the class priors, the outputs of certain classifiers trained to minimize a mean

square or cross-entropy error criteria, approximate the a posteriori probability densities

of the corresponding classes [47, 49]. Based on this result, one can model the ith output

of the mth such classifier as:

fm
i (x) = pi(x) + ǫmi (x), (1)

where pi(x) is the true posterior for ith class on input x, and ǫmi (x) is the error of the

mth classifier in estimating that posterior.

Class i Class j

x

f (x)i

f (x)ji
p (x)

p (x)
j

x *

b

xb

Optimum
Boundary

Obtained
Boundary

Figure 1: Error regions associated with approximating the a posteriori probabilities [58].

Now, let us decompose the error into two parts: ǫmi (x) = βm
i + ηmi (x). The first

component does not vary with the input, and provides an offset, or systematic error for

each class. The second component gives the variability from that systematic error, for

each x in each class, and has zero mean and variance σ2
ηm
i
(x). These two components

of the error are similar to the bias and variance decomposition for a quadratic loss

function given in [22], although they are at the individual input level. We will therefore

refer to classifiers as “biased” and “unbiased” implying βm
k 6= 0 for some k,m, and

1This and other related papers can be downloaded from URL http://www.lans.ece.utexas.edu.
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βm
k = 0 , ∀k,m, respectively. Let bm denote the offset between the ideal class boundary,

x∗ (based on pi(x) = pj(x)) and the realized boundary, xm
b (based on fm

i (x) = fm
j (x)),

as shown in Figure 1 [58]. This boundary offset (bm = xm
b −x∗) has mean and variance

given respectively by:

βm =
βm
i − βm

j

s
, (2)

and

σ2
bm =

σ2
ηm
i
(x) + σ2

ηm
j
(x)

s2
, (3)

where s = p′j(x
∗) − p′i(x

∗) as introduced in [58].

Let us further denote the probability density function of this boundary offset by

fb(x). The expected model error associated with the selection of a particular classifier

m, can then be expressed as:

Em
model =

∫

∞

−∞

A(b)fb(b)db, (4)

where A(b) =
∫ x∗+b

x∗
(pj(x)− pi(x)) dx is the error due to the selection of a particular

decision boundary. In general, it is not possible to obtain the density function for

the boundary offset without making assumptions on the distributions of the errors.

However, a first order approximation, derived in [58], leads to:

Em
model =

∫

∞

−∞

1

2
b2sfb(b)db. (5)

Let us define the first and second moments of the boundary offset as follows:

M1 =

∫

∞

−∞

xfb(x)dx and M2 =

∫

∞

−∞

x2fb(x)dx.

If the individual classifiers are unbiased, the offset bm of a single classifier has M1 = 0

and M2 = σ2
bm , leading to:

Em
model =

sM2

2
=

sσ2
bm

2
. (6)

Now, if the classifiers are biased, the variance of b is left unchanged (given by Equa-

tion 3), but the mean becomes β =
βi−βj

s
. In other words, we have M1 = βm and

σ2
bm = M2 −M1

2, leading to the following model error:

Em
model(β) =

sM2

2
=

s

2
(σ2

bm + (βm)2). (7)

To emphasize the distinction between biased and unbiased classifiers, the model error

will be given as a function of β for biased classifiers. A more detailed derivation of class

boundaries and error regions is presented in [58]. For analyzing the error regions after

combining and comparing them to the single classifier case, one needs to determine how

the first and second moments of the boundary distributions are affected by combining.

The following sections focus on obtaining those values for various combiners.
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3 Combining Multiple Classifiers through Order Statis-

tics

3.1 Basic Concepts

In this section, we briefly discuss some basic concepts and properties of order statistics.

Let X be a random variable with probability density function fX(·), and cumulative

distribution function FX(·). Let (X1, X2, · · · , XN ) be a random sample drawn from this

distribution. Now, let us arrange them in non-decreasing order, providing:

X1:N ≤ X2:N ≤ · · · ≤ XN :N .

The ith order statistic denoted by Xi:N , is the ith value in this progression. The cumu-

lative distribution function for the smallest and largest order statistic can be obtained

by noting that:

FXN :N
(x) = P (XN :N ≤ x) = ΠN

i=1P (Xi:N ≤ x) = [FX(x)]N

and:

FX1:N
(x) = P (X1:N ≤ x) = 1− P (X1:N ≥ x) = 1−ΠN

i=1P (Xi:N ≥ x)

= 1− (1−ΠN
i=1P (Xi:N ≤ x) = 1− [1− FX(x)]N

The corresponding probability density functions can be obtained from these equations.

In general, for the ith order statistic, the cumulative distribution function gives the

probability that exactly i of the chosen X ’s are less than or equal to x. The probability

density function of Xi:N is then given by [14]:

fXi:N
(x) =

N !

(i− 1)! (N − i)!
[FX(x)]i−1 [1− FX(x)]N−i

fX(x) . (8)

This general form however, cannot always be computed in closed form. Therefore,

obtaining the expected value of a function of x using Equation 8 is not always possible.

However, the first two moments of the density function are widely available for a variety

of distributions [3]. These moments can be used to compute the expected values of

certain specific functions, e.g., polynomials of order less than two.

3.2 Combining Unbiased Classifiers through Order Statistics

Now, let us turn our attention to order statistics (OS) combiners. For a given input x,

let the network outputs of each of the N classifiers for each class i be ordered in the

following manner:

f1:N
i (x) ≤ f2:N

i (x) ≤ · · · ≤ fN :N
i (x).

Then one constructs the kth order statistic combiner, by selecting the kth ranked output

for each class (fk:N
i (x)), as representing its posterior [57].

In particular, max, med and min combiners are defined as follows:

fmax
i (x) = fN :N

i (x), (9)

fmed
i (x) =







f
N
2

:N

i
(x) + f

N
2

+1:N

i
(x)

2 if N is even

f
N+1

2
:N

i (x) if N is odd,
(10)

fmin
i (x) = f1:N

i (x). (11)
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These three combiners are relevant because they represent important qualitative in-

terpretations of the output space. Selecting the maximum combiner is equivalent to

selecting the class with the highest posterior. Indeed, since the network outputs approx-

imate the class a posteriori distributions, selecting the maximum reduces to selecting

the classifier that is the most “certain” of its decision. The drawback of this method

however is that it can be compromised by a single classifier that repeatedly provides

high values. The selection of the minimum combiner follows a similar logic, but focuses

on classes that are unlikely to be correct, rather than on the correct class. Thus, this

combiner eliminates less likely classes by basing the decision on the lowest value for a

given class. This combiner suffers from the same ills as the max combiner. However, it

is less dependent on a single error, since it performs a min-max operation, rather than

a max-max2. The median classifier on the other hand considers the most “typical” rep-

resentation of each class. For highly noisy data, this combiner is more desirable than

either the min or max combiners since the decision is not compromised as much by a

single large error.

The analysis that follows does not depend on the particular order statistic chosen.

Therefore, we will denote all OS combiners by fos
k (x) and derive the model error, Eos

model.

The network output provided by fos
k (x) is given by:

fos
k (x) = pk(x) + ǫosk (x) , (12)

Let us first investigate the zero-bias case (βk = 0 , ∀k), where we get ǫosk (x) = ηosk (x).

Proceeding as in Section 2, the boundary bos is shown to be:

bos =
ηosi (xb)− ηosj (xb)

s
. (13)

For i.i.d. ηk’s, the first two moments will be identical for each class. Moreover, taking

the order statistic will shift the mean of both ηosi and ηosj by the same amount, leaving

the mean of the difference unaffected. Therefore, bos will have zero mean, and variance:

σ2
bos =

2 σ2
ηos
k

s2
=

2 ασ2
ηm
k

s2
= ασ2

bm , (14)

where α is a reduction factor that depends on the order statistic and on the distribution

of b. For most distributions, α can be found in tabulated form [3]. For example, Table 1

provides α values for all order statistic combiners, up to 10 classifiers, for a Gaussian

distribution [3, 50]. (Because this distribution is symmetric, the α values of l and k

where l + k = N + 1 are identical, and listed in parenthesis).

Returning to the error calculation, we have: Mos
1 = 0, and Mos

2 = σ2
bos , providing:

Eos
model =

sMos
2

2
=

sσ2
bos

2
=

sασ2
bm

2
= α Em

model. (15)

Equation 15 shows that the reduction in the error due to using the OS combiner

instead of the mth classifier is directly related to the reduction in the variance of the

boundary offset b. Since the means and variances of order statistics for a variety of dis-

tributions are widely available in tabular form, the reductions can be readily quantified.

2Recall that the pattern is ultimately assigned to the class with the highest combined output.
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Table 1: Reduction factors α for the Gaussian Distribution, based on [50].

N k α N k α N k α

1 1 1.00 6 2 (5) .280 1 (9) .357

2 1 (2) .682 3 (4) .246 2 (8) .226

3 1 (3) .560 1 (7) .392 9 3 (7) .186

2 .449 7 2 (6) .257 4 (6) .171

4 1 (4) .492 3 (5) .220 5 .166

2 (3) .360 4 .210 1 (10) .344

1 (5) .448 1 (8) .373 2 (9) .215

5 2 (4) .312 8 2 (7) .239 10 3 (8) .175

3 .287 3 (6) .201 4 (7) .158

6 1 (6) .416 4 (5) .187 5 (6) .151

3.3 Combining Biased Classifiers through Order Statistics

In this section, we analyze the error regions for biased classifiers. Let us return our

attention to bos. First, note that the error terms can no longer be studied separately,

since in general (a + b)os 6= aos + bos. We will therefore need to specify the mean and

variance of the result of each operation3. Equation 13 becomes:

bos =
(βi + ηi(xb))

os − (βj + ηj(xb))
os

s
. (16)

Let β̄k = 1
N

∑N

m=1 β
m
k be the mean of classifier biases. Since ηmk ’s have zero-mean,

βk + ηk(xb) has first moment β̄k and variance σ2
ηm
k
+ σ2

βm
k
, with σ2

βm
k

= E[(βm
k )2]− β̄k

2
,

where [·] denotes the expected value operator.

Taking a specific order statistic of this expression will modify both moments. The

first moment is given by β̄k + µos, where µos is a shift which depends on the order

statistic chosen, but not on the class. Then, the first moment of bos is given by:

(β̄i + µos)− (β̄j + µos)

s
=

β̄i − β̄j

s
= β̄. (17)

Note that the bias term represents an “average bias” since the contributions due to the

order statistic are removed. Therefore, reductions in bias cannot be obtained from a

table similar to Table 1.

Now, let us turn our attention to the variance. Since βm
k + ηmk (xb) has variance

σ2
ηm
k
+ σ2

βm
k
, it follows that (βk + ηk(xb))

os has variance σ2
ηos
k

= α(σ2
ηm
k
+ σ2

βm
k
), where α

is the factor discussed in Section 3.2. Therefore, the variance of bos is given by:

σ2
bos =

σ2
ηos
i

+ σ2
ηos
j

s2
=

2 ασ2
ηm
i

s2
+

α(σ2
βm
i
+ σ2

βm
j
)

s2

= α(σ2
bm + σ2

βm), (18)

where σ2
βm =

σ2

βm
i

+σ2

βm
j

s2
is the variance introduced by the systematic errors of different

classifiers.

3Since the exact distribution parameters of bos are not known, we use the sample mean and the sample

variance.
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We have now obtained the first and second moments of bos, and can compute the

model error. Namely, we have Mos
1 = β̄ and σ2

bos = Mos
2 − (Mos

1 )2, leading to:

Eos
model(β) =

s

2
Mos

2 =
s

2
(σ2

bos + β̄2) (19)

=
s

2
(α(σ2

bm + σ2
βm) + β̄2). (20)

The reduction in the error is more difficult to assess in this case. By writing the error

as:

Eos
model(β) = α

s

2
(σ2

b + (βm)2) +
s

2
(ασ2

β + β̄2 − α(βm)2),

we get:

Eos
model(β) = α Em

model(β) +
s

2
(ασ2

β + β̄2 − α(βm)2). (21)

Analyzing the error reduction in the general case requires knowledge about the bias

introduced by each classifier. Unlike regression problems where the bias and variance

contributions to the error are additive and well-understood, in classification problems

their interaction is more complex [21]. Indeed it has been observed that ensemble

methods do more than simply reduce the variance [52].

Based on these observations and Equation 21, let us analyze extreme cases. For

example, if each classifier has the same bias, σ2
β is reduced to zero and β̄ = βm. In this

case the error reduction can be expressed as:

Eos
model(β) =

s

2
(ασ2

b + (βm)2 = αEm
model(β) +

s(1− α)

2
(βm)2,

where α balances the two contributions to the error. A small value for α will reduce the

first component of the error (mainly variance), while leaving the second term untouched.

The net effect will be very similar to results obtained for regression problems. In

this case, it is important to reduce classifier bias before combining (e.g., by using an

overparametrized model).

If on the other hand, the biases produce a zero mean variable, we obtain β̄ = 0. In

this case, the model error becomes:

Eos
model(β) = α Em

model(β) +
s α

2
(σ2

βm − (βm)2)

and the error reduction will be significant if the second term is small or negative. In

fact, if the variation among the biases is small relative to their magnitude, the error will

be reduced more than in the unbiased cases. If however, the variation is large compared

to the magnitude, the error reduction will be minimal. Furthermore, if α is large and

the biases are small and highly varied, it is possible for this combiner to do worse than

the individual classifiers, which is a danger not present for regression problems. This

observation very closely parallels results reported in [21].

4 Linear Combining of Ordered Classifier Outputs

In the previous section, we derived error reductions when the class posteriors are directly

estimated through the ordered classifier outputs. Since simple averaging has also been

shown to provide benefits, in this section, we investigate the combinations of averaging

and order statistics for pooling classifier outputs.
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4.1 Spread Combiner

The first linear combination of ordered classifier outputs we study focuses on extrema.

As discussed in Section 3.2, the maximum and minimum of a set of classifier outputs

carry specific meanings. Indeed, the maximum can be viewed as the class for which

there is the most evidence. Similarly, the minimum deletes classes with little evidence.

In order to avoid a single classifier from having too large of an impact on the eventual

output, these two values can be averaged to yield the spread combiner. This combiner

strikes a balance between the positive and negative evidence, leading to a more robust

combiner than either of them.

4.1.1 Spread Combiner for Unbiased Classifiers:

For a classifier without bias, the spread combiner is formally defined as:

f
spr
i (x) =

1

2
(f1:N

i (x) + fN :N
i (x)) = p(ci|x) + η

spr
i (x) , (22)

where:

η
spr
i (x) =

1

2

(

η1:Ni (x) + ηN :N
i (x)

)

.

The variance of ηspri (x) is given by:

σ2
η
spr

i
=

1

4
σ2
η1:N
i

(x) +
1

4
σ2
ηN :N
i

(x) +
1

2
cov(η1:Ni (x), ηN :N

i (x)). (23)

where cov(·, ·) represents the covariance between two variables (even when the ηi‘s are

independent, ordering introduces correlations). Note that because of the ordering, the

variances in the first two terms of Equation 23 can be expressed in terms of the individual

classifier variances. Furthermore, the covariance between two order statistics can also

be determined in tabulated form for given distributions. Table 2 provides these values

for a Gaussian distribution based on [50]. This expression can be further simplified for

symmetric distributions where σ2
η1:N = σ2

ηN :N (e.g., Gaussian noise model) and leads to:

σ2
η
spr

i
=

1

2
(α1:N +B1,N :N )σ2

ηi(x)
, (24)

where αm:N is the variance of the mth ordered sample and Bm,l:N is the covariance

between the mth and lth ordered samples, given that the initial samples had unit

variance [50]. Because this is a symmetric distribution, the β values are also symmetric

(e.g., β1,2:5 = β4,5:5).

Then, using Equation 3, the variance of the boundary offset bspr can be calculated:

σ2
bspr =

σ2
ηi

spr + σ2
ηj

spr

s2

=
1

2
(α1:N +B1,N :N)σ2

b . (25)

Finally, through Equation 6, we can obtain the reduction in the model error due to the

spread combiner:

E
spr
model

Emodel

=
α1:N +B1,N :N

2
. (26)
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Table 2: Some Reduction Factors B for the Gaussian Distribution, based on [50].

N k, l B N k, l B N k, l B N k, l B

2 1,2 .318 2,3 .189 1,4 .095 1,6 .059

3 1,2 .276 6 2,4 .140 1,5 .075 1,7 .049

1,3 .165 2,5 .106 1,6 .060 1,8 .040

1,2 .246 3,4 .183 1,7 .048 1,9 .031

4 1,3 .158 1,2 .196 1,8 .037 2,3 .154

1,4 .105 1,3 .132 2,3 .163 2,4 .117

2,3 .236 1,4 .099 8 2,4 .123 2,5 .093

1,2 .224 1,5 .077 2,5 .098 2,6 .077

1,3 .148 1,6 .060 2,6 .079 9 2,7 .063

5 1,4 .106 7 1,7 .045 2,7 .063 2,8 .052

1,5 .074 2,3 .175 3,4 .152 3,4 .142

2,3 .208 2,4 .131 3,5 .121 3,5 .114

2,4 .150 2,5 .102 3,6 .098 3,6 .093

1,2 .209 2,6 .080 4,5 .149 3,7 .077

1,3 .139 3,4 .166 1,2 .178 4,5 .137

6 1,4 .102 3,5 .130 1,3 .121 4,6 .113

1,5 .077 1,2 .186 9 1,4 .091

1,6 .056 8 1,3 .126 1,5 .073

Based on Equation 26 and Tables 1 and 2, Table 3 displays the error reductions provided

by the spread combiner for a Gaussian noise model (for comparison purposes, the error

reduction for the min and max combiners is also provided. Note that for the Gaussian

distribution, the error reduction of min is equal to that of max.).

Table 3: Error Reduction Factors for the Spread, min and max Combiners with Gaussian

Noise Model.

N spread min or max

2 .500 .682

3 .362 .560

4 .299 .492

5 .261 .448

6 .236 .416

7 .219 .392

8 .205 .373

9 .194 .357

10 .186 .344

4.1.2 Spread Combiner for Biased Classifiers:

Now, if the classifier biases are non-zero, the spread combiner’s output is given by:

f
spr
i (x) =

1

2
(f1:N

i (x) + fN :N
i (x)) = p(ci|x) + (ηi(x) + βi)

spr . (27)

10



In that case, the boundary offset is given by:

bspr =
(βi + ηi(xb))

spr − (βj + ηj(xb))
spr

s
, (28)

which after expanding each term and regrouping can be expressed as:

bspr =
(βi + ηi(xb))

1:N − (βj + ηj(xb))
1:N

2s

+
(βi + ηi(xb))

N :N − (βj + ηj(xb))
N :N

2s
. (29)

The first moment of bspr can be obtained by analyzing each term of Equation 29.

In fact, the offset introduced by the first and nth order statistic for classes i and j

will cancel each other out, leaving only the average bias between the min and max

components of the error (as in Equation 17), given by βspr =
β1:N
i −β1:N

j +βN :N
i −βN :N

j

s
.

The variance of bspr needs to be derived from Equation 29. Proceeding as in Equa-

tion 18, the variance of the spread combiner can be expressed as:

σ2
bspr = (

1

4
α1:N +

1

4
αN :N +

1

2
B1,N :N)(σ2

bm + σ2
βm). (30)

For a symmetric distribution (where α1:N = αN :N ), we obtain the following error:

E
spr
model(β) =

s

2
M2 =

s

2
(σ2

bspr + M1
2)

=
s

2

(

1

2
α1:N +

1

2
B1,N :N)(σ2

bm + σ2
βm) + (βspr)2

)

=
1

2
(α1:N +B1,N :N )Emodel(β) +

s

4
(α1:N +B1,N :N )(σ2

βm − (βm)2) +
s

2
(βspr)2 , (31)

which is very similar to Equation 21, where the value of α for a single order statistic is

now replaced by
α1:N+B1,N :N

2 , since the mean of the first and nth order statistic is used

in the posterior estimate.

4.2 Trimmed Means

Instead of actively using the extreme values as was the case with the spread combiner,

one can base the posterior estimate around the median values. However, instead of

selecting one classifier output as was done for fmed, one can use multiple classifiers

whose outputs are “typical.” In this scheme, only a certain fraction of all available

classifiers are used for a given pattern. The main advantage of this method over weighted

averaging is that the set of classifiers which contribute to the combiner vary from pattern

to pattern. Furthermore, they do not need to be determined externally, but are a

function of the current pattern and the classifier responses to that pattern.

4.2.1 Trimmed Mean Combiner for Unbiased Classifiers:

Let us formally define the trimmed mean combiner (βk = 0, ∀k) as follows:

f trim
i (x) =

1

N2 −N1 + 1

N2
∑

m=N1

fm:N
i (x) = p(ci|x) + ηtrimi (x) , (32)
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where:

ηtrimi (x) =
1

N2 −N1 + 1

N2
∑

m=N1

ηmi (x) .

The variance of ηtrimi (x) is given by:

σ2
ηtrim
i

=
1

(N2 −N1 + 1)2

N2
∑

l=N1

N2
∑

m=N1

cov(ηm:N
i (x), ηl:Ni (x))

=
1

(N2−N1+ 1)2

(

N2
∑

m=N1

σ2
ηm:N
i

(x)+

N2
∑

m=N1

N2
∑

l>m

2 cov(ηm:N
i (x), ηl:Ni (x))

)

. (33)

Again, using the factors in Tables 1 and 2, Equation 33 can be further simplified. Note

that because the Gaussian distribution is symmetric, the covariance between the kth

and lth ordered samples is the same as that between the N + 1− kth and N + 1− lth

ordered samples. Therefore, Equation 33 leads to:

σ2
ηtrim
i

=
1

(N2 −N1 + 1)2

N2
∑

m=N1

αm:N σ2
ηi(x)

+
2

(N2 −N1 + 1)2

N2
∑

m=N1

∑

l>m

Bm,l:N σ2
ηi(x)

, (34)

where αm:N is the variance of the mth ordered sample and Bm,l:N is the covariance

between the mth and lth ordered samples, given that the initial samples had unit

variance [50]. Using the theory highlighted in Section 2, and Equation 34, we obtain

the following model error reduction:

Etrim
model

Emodel

=
1

(N2 −N1 + 1)2

(

N2
∑

m=N1

αm:N + 2

N2
∑

m=N1

∑

l>m

Bm,l:N

)

. (35)

Based on Equation 35 and Tables 1 and 2, we have generated a sample trim com-

biner reduction table. Because there are many possibilities for N1 and N2, a table that

exhaustively provides all reduction values is not practical. In this sample table we have

selected N1 = 2 and N2 = N − 1, that is, averaging after the lowest and highest values

have been removed. For comparison purposes the reduction factors of the averaging

combiner for N and N−2 classifiers are also provided (for i.i.d. classifiers the reduction

factors are 1/N as derived in [58]; similar results were obtained for regression prob-

lems [42]). As these numbers demonstrate, although N − 2 classifiers are used in the

trim combiner, selectively weeding out undesirable classifiers provides reduction factors

significantly better than simply averaging N − 2 arbitrary classifiers. The trim com-

biner provides reduction factors comparable the the N classifier ave combiner without

being susceptible to corruption by one particularly faulty classifier.

4.2.2 Trimmed mean Combiner for Biased Classifiers:

Now, if the classifier biases are non-zero, the trimmed mean combiner’s output is given

by:

f trim
i (x) =

1

N2 −N1 + 1

N2
∑

m=N1

fm:N
i (x) = p(ci|x) + (ηi(x) + βi)

trim . (36)
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Table 4: Error Reduction Factors for Trim and two corresponding ave Combiners with

Gaussian Noise Model.

N ave (for N) trim (for N1 = 2 ; N2 = N − 1) ave (for N − 2)

3 .333 .449 1.00

4 .250 .298 .500

5 .200 .227 .333

6 .167 .184 .250

7 .143 .155 .200

8 .125 .134 .167

9 .111 .113 .143

In that case the boundary offset is given by:

btrim =
(βi + ηi(xb))

trim − (βj + ηj(xb))
trim

s
. (37)

The first moment of btrim can be obtained from a manner similar to that of the

spread combiner. Indeed, each mean offset introduced by a specific order statistic for

class i will be offset by the one introduced for class j. Only the trimmed mean of the

biases will remain, giving the first moment of btrim:

βtrim =
1

N2 −N1 + 1

N2
∑

m=N1

βm:N
i − βm:N

j

s
. (38)

In deriving the variance of btrim, we follow the same steps as in Sections 3.3 and

4.1.1. The resulting boundary variance is similar to Equation 18, but the since the

reduction is due to the linear combination of multiple ordered outputs, α is replaced by

A, where:

A =
1

(N2 −N1 + 1)2

(

N2
∑

m=N1

αm:N + 2

N2
∑

m=N1

∑

l>m

Bm,l:N

)

. (39)

The model error reduction in this case is given by:

Etrim
model(β) =

s

2
M2 =

s

2
(σ2

btrim + M1
2)

=
s

2

(

A (σ2
bm + σ2

βm) + (βspr)2
)

= A Emodel(β) +
s

2
(A (σ2

βm − (βm)2) + (βspr)2) . (40)

Once again we need to look at the interaction between the two parts of the error

reduction. The first term provides the error reduction compared to the model error of

an individual classifier. The smaller A is, the more error reduction there will be. In the

second term, on the other hand, a small value for A is only useful if the variability in

the individual biases is higher than the biases themselves (σ2
βm > (βm)2).

5 Experimental Results

The order statistics-based combining methods proposed in this article are tailored for

situations where:

13



1. individual classifier performance is uneven and class dependent;

2. it is not possible (insufficient data, high amount of noise) to fine tune the individual

classifiers without using computationally expensive methods.

Such situations occur, for example, in electrical logging while drilling for oil, where

data from certain well sites almost completely misses out on portions of the problem

space, and in imaging from airborne platforms where the classifiers receive inputs from

different satellites and/or different types of sensors (e.g., thermal, optical, SAR). While

we have seen such data from Schlumberger, Austin, and NASA, Houston, unfortunately

the data sets are not standard or public domain. So, in this article we restrict ourselves

to public domain datasets and simulate such variability by using “early stopping” i.e.,

prematurely terminating the training of the individual classifiers4. Thus combining

results are first reported for the case where only half the classifiers are finely tuned.

This procedure produces an artificially created quality variation in the pool of classifiers.

For the experiments reported below, we used a multi-layer perceptron (MLP) with a

single hidden layer, whose weights were randomly initialized for each run. All classifica-

tion results reported in this article are test set error rates averaged over 20 runs, along

with the 95% confidence intervals. Several types of simple combiners such as averag-

ing, weighted averaging, voting, median, products, weighted products (Bayesian), using

Dempster-Schafer theory of evidence, and entropy-based averaging, have been proposed

in the literature. However, on a wide variety of data sets, it has been observed that

simple averaging usually provides results comparable to any of these techniques (and,

surprisingly, often better than most of them) [26, 59]. For this reason, in this study,

we use the average combiner as a representative of simple combiners, for comparison

purposes.

The first two data sets (Tables 5 and 7) are based on underwater sonar signals. From

the original sonar signals of four different underwater objects (porpoise sound, cracking

ice and two different whale sounds), two feature sets are extracted [24]:

• WOC: a 25-dimensional feature set, consisting of Gabor wavelet coefficients, tem-

poral descriptors and spectral measurements; and,

• RDO: a 24-dimensional feature set, consisting of reflection coefficients based on

both short and long time windows, and temporal descriptors.

For both feature sets, an MLP with 50 hidden units was used. These data sets are

available at URL http://www.lans.ece.utexas.edu. Further details about this 4-class

problem can be found in [24, 59].

The next six data sets (Tables 6 and 8) were selected from the Proben1/UCI

benchmarks [43]. The Proben1 benchmarks are particular training, validation and test

splits of the UCI data sets which are available from URL http://www.ics.uci.edu/˜m-

learn/MLRepository.html. The results presented in this article are based on the first

training, validation and test partition discussed in [43], where half the data is used for

training, and a quarter each for validation and testing purposes. Briefly these data sets,

and the corresponding single layer feed-forward neural network architectures are5:

4In all the experiments reported here, “high variability” among classifiers refers to classifiers being trained

exactly half as long as the “fine tuned” classifiers.
5After deciding on a single hidden layered architecture, the number of hidden units was determined

experimentally.
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• Cancer: a 9-dimensional, 2-class data set based on breast cancer data [34], with

699 patterns; an MLP with 10 hidden units;

• Card: a 51-dimensional, 2-class data set based on credit approval decision [44],

with 690 patterns; an MLP with 20 hidden units;

• Diabetes: an 8-dimensional data set with two classes based on personal data from

768 Pima Indians obtained from the National institute of Diabetes and Digestive

and Kidney Diseases [54]; an MLP with 10 hidden units;

• Gene: a 120-dimensional data set with two classes, based on the detection of

splice junctions in DNA sequences [39], with 3175 patterns; an MLP with 20

hidden units;

• Glass: a 9-dimensional, 6-class data set based on the chemical analysis of glass

splinters, with 214 patterns; an MLP with 15 hidden units; and,

• Soybean: an 82-dimensional, 19-class problem [38] with 683 patterns; an MLP

with 40 hidden units.

Table 5: Combining Results in the Presence of High Variability in Individual Classifier

Performance for the Sonar Data (% misclassified ± 95% confidence interval).

Data N Ave Max Min Spread Trim (N1-N2)

RDO 4 11.57± .22 11.94± .25 11.52± .40 11.04± .19 11.34± .28 (3-4)

13.32± 1.66 8 11.64± .18 11.47± .22 11.29± .27 11.51± .18 12.30± .17 (4-5)

WOC 4 8.80± .18 7.84± .20 9.31± .24 8.54± .12 8.43± .26 (3-4)

12.07± 2.23 8 8.82± .17 7.68± .23 8.91± .13 8.24± .22 7.81± .16 (7-8)

Table 6: Combining Results in the Presence of High Variability in Individual Classifier

Performance for the Proben1/UCI Benchmarks (% misclassified ± 95% confidence interval).

Data N Ave Max Min Spread Trim (N1-N2)

Cancer 4 1.38± .13 1.38± .13 1.38± .13 1.38± .13 1.32± .13 (2-3)

1.49± .39 8 1.32± .12 1.44± .14 1.44± .14 1.44± .14 1.32± .12 (2-6)

Card 4 13.60± .22 13.37± .22 13.49± .21 13.37± .22 13.60± .15 (3-4)

14.33± .36 8 13.66± .19 13.08± .14 13.02± .14 12.97± .12 13.20± .18 (7-8)

Diabetes 4 25.26± .37 25.00± .46 25.00± .42 25.00± .42 25.26± .37 (3-4)

26.09± 1.27 8 24.84± .36 25.05± .33 25.05± .33 25.05± .33 24.84± .30 (6-8)

Gene 4 12.90± .23 12.90± .26 12.94± .25 12.66± .21 12.67± .22 (3-4)

15.01± .78 8 12.89± .22 12.76± .24 12.41± .10 12.43± .22 12.56± .20 (7-8)

Glass 4 33.77± .27 40.19± .72 33.21± .44 33.21± .44 33.77± .27 (2-3)

42.78± .75 8 33.96± .06 39.43± .27 33.77± .27 33.40± .41 33.77± .27 (1-6)

Soybean 4 7.76± .11 7.94± .14 12.88± .39 7.71± .15 7.82± .18 (3-4)

10.71± 1.69 8 7.65± .00 7.82± .13 13.41± .53 7.71± .15 7.65± .00 (4-8)

Tables 5 and 6 present the combining results for the Proben1 benchmarks and the

underwater acoustic data sets respectively, when the individual classifier performance
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was highly variable. The misclassification percentage for individual classifiers are re-

ported in the first column. For the trimmed mean combiner, we also provide N1 and

N2, the upper and lower cutting points in the ordered average used in Equation 32,

obtained through the validation set.

On the Sonar data, the results indicate that when the individual classifier perfor-

mance is highly variable, order statistics-based combiners (particularly the spread com-

biner) provide better classification results than simple combiners. This performance

improvement is obtained without sacrificing the simplicity of the combiner. On the

UCI/Proben1 benchmarks, the order statistics based combiners provide better classifi-

cation performance on three of the six sets studied (no statistically significant differences

were detected among the various combiners in the remaining data sets). One important

thing to note, however, is that in all eight data sets studied, the order statistics based

combiners performed at least as well as the simple combiner, implying that no risk is

taken by using this method.

A close inspection of these results reveals that using either the max or min combiner

can provide better classification rates than ave, but it is difficult to determine which of

the two will be more successful given a data set. A validation set may be used to select

one over the other, but in that case, potentially precious training data is used solely

for determining which combiner to use. The use of the spread combiner removes this

dilemma by consistently providing results that are comparable to, or better than, the

best of the max-min duo. It is important to note that the min combiner performs poorly

on the Soybean data. Because this data set has 19 outputs, the posterior estimates of

unlikely classes become extremely small and highly inaccurate. Basing decisions on

such spurious values compromises the combiner’s performance. Notice, however, that

the spread combiner is not adversely affected by this phenomenon.

Table 7: Combining Results with Fine-Tuned Classifiers for the Sonar Data (% misclassified

± 95% confidence interval).

Data N Ave Max Min Spread Trim (N1-N2)

RDO 4 9.26± .32 9.67± .20 9.45± .19 9.33± .20 9.28± .28 (2-3)

9.95± .36 8 8.94± .06 9.62± .16 9.36± .15 9.48± .18 8.92± .10 (1-6)

WOC 4 7.05± .12 7.31± .15 7.44± .17 7.31± .16 7.05± .16 (2-3)

7.47± .21 8 7.17± .08 7.19± .12 7.41± .16 7.22± .07 7.07± .10 (2-6)

When there is ample data, and all the classifiers are finely tuned (i.e., a validation set

is used to determine the stopping time that yields the best generalization performance),

simple combiners are expected to be adequate. However, it is not always possible

to determine whether all conditions that lead to such an ideal situation are satisfied.

Therefore, it is important to know whether the trimmed mean and spread combiners

presented in this article perform worse than simple combiners under such conditions.

To that end, we have combined finely tuned feed forward neural networks using the

methods proposed in this article and compared the results with the traditional averaging

method. In this new set of experiments, all the conditions favor the averaging combiner

(i.e., all possible difficulties for the average combiner have been removed). The results

displayed in Tables 7 and 8 indicate that, even under such circumstances, both the

spread and trim combiners provide results that are comparable to those obtained by the

16



ave combiner. Furthermore, even under such conditions, the order statistics combiners

provide statistically significant improvements on two data sets.

Table 8: Combining Results with Fine-Tuned Classifiers for the Proben1/UCI Benchmarks

(% misclassified ± 95% confidence interval).

Data N Ave Max Min Spread Trim (N1-N2)

Cancer 4 0.69± .11 0.69± .11 0.69± .11 0.69± .11 0.69± .11 (2-3)

.69± .11 8 0.69± .11 0.57± .01 0.57± .01 0.57± .01 0.57± .11 (7-8)

Card 4 13.14± .23 12.91± .11 13.02± .23 12.91± .11 13.14± .23 (2-3)

13.87± .36 8 13.14± .23 12.79± .01 12.79± .01 12.79± .01 12.80± .01 (7-8)

Diabetes 4 23.33± .29 23.23± .30 23.33± .24 23.23± .30 23.33± .29 (3-4)

23.52± .35 8 22.92± .23 23.23± .34 23.12± .34 23.23± .34 22.92± .23 (4-8)

Gene 4 12.41± .21 12.46± .24 12.51± .18 12.41± .17 12.41± .12 (3-4)

13.49± .21 8 12.26± .14 12.46± .18 12.16± .08 12.11± .19 12.16± .09 (1-6)

Glass 4 32.08± .01 32.45± .36 32.08± .01 32.08± .01 32.08± .01 (3-6)

32.26± .27 8 32.08± .01 32.08± .01 32.08± .01 32.08± .01 32.08± .01 (3-6)

Soybean 4 7.06± .00 7.18± .11 8.12± .77 7.06± .00 7.06± .00 (3-6)

7.36± .43 8 7.06± .00 7.18± .05 9.06± .82 7.06± .00 7.06± .00 (3-6)

6 Conclusion

In this article we present and analyze combiners based on order statistics. These com-

biners blend the simplicity of averaging with the generality of meta-learners. They are

particularly effective if there are significant variations among component classifiers in

at least some parts of the joint input-output space. Variations can arise when the indi-

vidual training sets cannot be considered as random samples from a common universal

data set. Examples of such cases include real-time data acquisition and classification

from geographically distributed sources or data mining problems with large databases,

where random subsampling is computationally expensive and practical methods lead to

non-random subsamples [6]. Furthermore, The robustness of order statistics combiners

is also helpful when certain individual classifiers experience catastrophic failures (e.g.,

due to faulty sensors).

The analytical framework provided in this paper quantifies the reductions in error

achieved when an order statistics based ensemble is used. It also shows that the two

methods for linear combination of order statistics introduced in this paper provide

more reliable estimates of the true posteriors than any of the individual order statistic

combiners.

The experimental results of Section 5 indicate that when there is high variability

among the classifiers, the order statistics-based combiners significantly outperform sim-

ple combiners, whereas in the absence of such variability these combiners perform no

worse. Thus the family of order statistic combiners is able to extract an appropriate

amount of information from the individual classifier outputs without requiring tuning

additional parameters as in meta-learners, and without being substantially affected by

outliers.
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A future endeavor, which will be helpful for this work as well as for the study of

classification based on very large datasets in general, is to obtain a suite of public

domain datasets which are intrinsically partitioned into segments with varying quality.

Though such situations sometimes occur in practice (for example in oil logging data

[10] and mortgage scoring [36]; both data sets proprietary), they are not represented

in the standard, venerable databases such as UCI, ELENA and Statlog typically used

by the academic community. Perhaps the recent CRoss-Industry Standard Process for

Data Mining (CRISP-DM) initiative will provide a satisfactory solution to this problem

in the near future.
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