Skip to main content

Advertisement

Log in

Multi-modal virtual environments for education with haptic and olfactory feedback

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

It has been suggested that immersive virtual reality (VR) technology allows knowledge-building experiences and in this way provides an alternative educational process. Important key features of constructivist educational computer-based environments for science teaching and learning, include interaction, size, transduction and reification. Indeed, multi-sensory VR technology suits very well the needs of sciences that require a higher level of visualization and interaction. Haptics that refers to physical interactions with virtual environments (VEs) may be coupled with other sensory modalities such as vision and audition but are hardly ever associated with other feedback channels, such as olfactory feedback. A survey of theory and existing VEs including haptic or olfactory feedback, especially in the field of education is provided. Our multi-modal human-scale VE VIREPSE (virtual reality platform for simulation and experimentation) that provides haptic interaction using a string-based interface called SPIDAR (space interface device for artificial reality), olfactory and auditory feedbacks is described. An application that allows students experiencing the abstract concept of the Bohr atomic model and the quantization of the energy levels has been developed. Different configurations that support interaction, size and reification through the use of immersive and multi-modal (visual, haptic, auditory and olfactory) feedback are proposed for further evaluation. Haptic interaction is achieved using different techniques ranging from desktop pseudo-haptic feedback to human-scale haptic interaction. Olfactory information is provided using different fan-based olfactory displays (ODs). Significance of developing such multi-modal VEs for education is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akkiraju N, Edelsbrunner H, Ping. F, Qian J (1996) Viewing geometric protein structures from inside a CAVE™. IEEE Comput Graph Appl 16(4):58–61

    Article  Google Scholar 

  • Ammi M, Ferreira A (2004) Virtualized reality interfaces for micro and nanomanipulation. Proc. IEEE Int. Conf. on robotics and automation (ICRA’04) New Orleans, LA

  • Annett J (1996) Olfactory memory: a case study in cognitive psychology. J. Psychol 130(3):309–319

    Google Scholar 

  • Arai F, Ando D, Fukuda T, Nonoda Y, Oota T (1995) Micro manipulation based on micro physics, strategy based on attractive force reduction and stress measurement. Proc. IEEE Int. Conf. on robotics and automation (ICRA’95); 236–241

  • Bach-y-Rita P, Webster J, Thompkins W, Crabb T (1987) Sensory substitution for space gloves and for space robots. Workshop on Space Telerobotics 2:51–57

    Google Scholar 

  • Barfield W, Danas E (1996) Comments on the use of olfactory displays for virtual environments. Presence: Teleoperators and Virtual Environments 5(1):109–121

    Google Scholar 

  • Baron R (1990) Environmentally induced positive effects: its impact on self-efficacy, task performance, negotiation and conflict. J Appl Soc Psychol 20:368–384

    Article  Google Scholar 

  • Basdogan C, Ho C-H, Srinivasan M, Slater M (2000) An experimental study on the role of touch in shared virtual environments. ACM Trans Comput-Hum Interact (TOCHI) 7(4):443–460

    Article  Google Scholar 

  • Biggs S, Srinivasan M (2002) Haptic Interfaces, In: Stanney K. M. (Ed) Handbook of the virtual environments: design, implementation and applications. Lawrence Erlbaum Associates, London 5; 93–116

  • Birmanns S, Wriggers W (2003) Interactive fitting augmented by force feedback and virtual reality. J Struct Biol 144:123–131

    Article  Google Scholar 

  • Bouzit M, Popescu V, Burdea G, Boian R (2002) The Rutgers Master II-ND Force Feedback Glove. Proc. IEEE virtual reality conf. 2002 (VRC’02) Haptics symposium, Orlando FL, March

  • Brady R, Pixton J, Baxter G, Moran P, Potter C, Carragher B, Belmont A (1995) Crumbs: a virtual environment tracking tool for biological imaging. Proc. IEEE Symp. on Frontiers in biomedical visualization, IEEE Computer Society Press, Los Alamitos, USA; 18–25

  • Brooks Jr F, Ming O-Y, Batter J, Kilpatrick P (1990) Project GROPE: haptic displays for scientific visualization. Computer Graphics (ACM) 24(4):177–185

    Google Scholar 

  • Bryson S (1996) Virtual reality in scientific visualization, communications of the ACM 39(5):62–71

  • Burdea G (1996) Force and touch feedback for virtual reality. Wiley, New York

  • Burdea G, Zhuang J, Roskos E, Silver D, Langrana N (1992) A portable dextrous master with force feedback. Presence Teleoperators and Virtual Environments 1:18–28

    Google Scholar 

  • Burdea G, Coiffet P, Richard P (1996) Integration of multi-modal I/Os for virtual environments. Int. J. of Human-Computer Interaction (IJHCI), Special Issue on Human-Virtual Environment Interaction 1:5–24

    Google Scholar 

  • Burdea G, Patounakis G, Popescu V, Weiss RE (1999) Virtual reality-based training for the diagnosis of prostate cancer, IEEE Trans Biomed Eng 46(10):1253–60

    Article  Google Scholar 

  • Burdea G, Coiffet P (1994) Virtual reality technology. Wiley New York

    Google Scholar 

  • Burdea G, Coiffet P (2003) Virtual reality technology, 2nd Ed., Wiley, Hoboken, New Jersey, 444 p

  • Byrne C (1996) Water on tap-the use of virtual reality as an educational tool, Ph. D. thesis, University of Washington

  • Cai Y, Wang S, Sato M (1997) A human-scale direct motion instruction system device for education systems. The IEICE Transactions, E80-D 2:212–217

    Google Scholar 

  • Castelino K (2002) Biological object nanomanipulation. Review report, University of California, Berkeley

  • Cater J (1994) Approximating the senses. Smell/taste: odors in virtual reality. Proc. IEEE Int. conf. systems, man and cybernetics, San Antonio 2; 1781

  • ChangHoon P, Heedong K, Ig-Jae K, Sang Chul A, Yong-Moo K, Hyoung-Gon K (2002) The making of Kyongju VR theatre. Proc. IEEE virtual reality conf. 2002 (VRC’02); 269–273

  • Choi W, Jeong S-J, Hashimoto N, Hasegawa S, Koike Y, Sato M (2004) A development and evaluation of reactive motion capture system with haptic feedback. Proc. of the FGR’04 37:851–856

    Google Scholar 

  • Cobb S, Neale H, Crosier J, Wilson J (2002) Development and evaluation of virtual environments for education, In: Stanney M (eds) Handbook of virtual environments: design, implementation, and applications, Lawrence Erlbaum Associates, London 46; 911–936

  • Crison F, Lecuyer A, Mellet d’Huart D, Burkhardt J. –M, Michel G, Dautin J. –L. (2005) How to use milling machines with multi-sensory feedback in virtual reality. Proc. IEEE virtual reality conf. 2005 (VRC’05); 139–146

  • Cruz-Neira C, Langley R, Bash P (1996) VIBE: a virtual biomolecular environment for interactive molecular modeling. Comput Chem 20(4):469–477

    Article  Google Scholar 

  • Danthiir V, Roberts R, Pallier G, Stankov L (2001) What the nose knows: olfaction and cognitive abilities. Intelligence 29(4):337–361

    Article  Google Scholar 

  • Dede C, Salzman M, Loftin B, Ash K (1997) Using virtual reality technology to convey abstract scientific concepts. In: Jacobson MJ, Kozma RB (Eds) Learning the sciences of the 21st Century: research, design, and implementing advanced technology learning environments. Lawrence Erlbaum Associates, Hillsdale, NewJersey

    Google Scholar 

  • Dede C, Salzman M, Loftin R, Prague D (1999) Multisensory immersion as a modeling environment for learning complex scientific concepts. In: Feurzeig W, Roberts N (eds) Modeling and simulation inscience and mathematics education. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Degel J, Köster E (1999) Odors: implicit memory and performance effects. Chem Senses 26:267–280

    Article  Google Scholar 

  • Dinh H, Walker N, Hodges L, Chang S, Kobayashi A (1999) Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments. Proc. IEEE virtual reality conf. 1999 (VRC’99) Houston, Texas; 222–228

  • Duffy T, Jonassen D (1992) Constructivism; new implications for instructional technology. In: Duffy T, Jonassen D (eds) Constructivism and the technology of instruction. Lawrence Erlbaum Associates, New Jersey

  • Emerson T, Revere D (1997) Virtual reality in training and education: resource guide to citations and online information, University of Washington, HITL, Seattle, WA, technical publication: B-94–1

  • Engen T (1982) The perception of odors. Academic Press, New York

    Google Scholar 

  • Falvo M, Superfine R (2002) Mechanics and friction at the nanometer scale. J Nanoparticle Res 2:237–248

    Article  Google Scholar 

  • Ferreira A, Mavroidis C (2006) Virtual reality and haptics for nano robotics: a review study. IEEE robotics and automation magazine (in press)

  • Fiolhais C, Trindade J (1999) Use of computers in physics education. In Ferrari A (ed.) Proc. Euroconference’98 -new technologies for higher education, Aveiro

  • Fjeld M, Voegtli M (2002) Augmented chemistry : an interactive educational workbench. ISMAR’02

  • Fuchs P, Moreau G, Burkhardt JM-, Coquillart S (2006a) L’interfaçage, l’immersion et l’interaction en environnement virtuel, In: Le traité de la Réalité Virtuelle, Vol. 2, Presses de l’Ecole des Mines, Paris, 520 p

  • Fuchs P, Moreau G, Arnaldi B, Guitton P (2006b) Les applications de la réalité virtuelle, In: Le traité de la Réalité Virtuelle, Vol. 4, Presses de l’Ecole des Mines, Paris, 520 p

  • Fuchs P, Papin J. –P, Richard P, Tijou A (2006c) Les interfaces olfactives, In: Fuchs P, Moreau G (eds) Le Traité de Réalité Virtuelle, Vol. 2: L’interfaçage, l’immersion et l’interaction en environnement virtuel, Presse de l’Ecole des Mines 4 11

  • Gallina P, Rossi A, Williams II R (2000) Planar cable-direct-driven robot. Part I & II. ASME design tech. Conf., Pittsburgh

  • Garratt J, Clow D, Hodgson A, Tomlinson A (1999) Computer simulation and chemical education—a review of project elaborate. Chem Educ Rev; 51–73

  • Gay E (1994) Is virtual reality a good teaching tool? Virtual Reality Special Report 1:51–60

    Google Scholar 

  • Gomez D, Burdea G, Langrana N (1995) Modeling of the Rutgers master II haptic display. Proc. 4th ann. symp. on haptic interfaces for virtual environments and teleoperator systems, ASME; 727–734

  • Gutierrez-Osuna R (2004) Olfactory Interaction, In: Bainbridge W (ed) Encyclopedia of human-computer interaction. Berkshire Pub, pp. 507–511

  • Harel D, Carmel L, Lancet D (2003) Towards an odor communication system. Comput Biol Chem 27:121–133

    Article  MATH  Google Scholar 

  • Hashimoto M, Morioka S, Yamamoyo R. (1997) Force display for atomic bonds. Proc. IEEE int. conf. on robotics and automation (ICRA’97)

  • Hashimoto N, Ryu J, Jeong S.-J, Sato M (2004) Human-scale interaction with a multi-projector display and multimodal interfaces. Proc. PCM’04 3:23–30

    Google Scholar 

  • Heilig M (1962) US Patent 3,050,870 Sensorama stimulator. August 28

  • Herz R, Eich E (1995) Commentary and Envoi. In: Schab F, Crowder R (Eds) Memory for odors. Lawrence Erlbaum Associates, Mahwah, New Jersey, pp159–175

    Google Scholar 

  • Herz R, Engen T (1996) Odor memory: review and analysis. Psychon Bull Rev 3:300–313

    Google Scholar 

  • Herz R (1998) Are odors the best cues to memory? A cross-modal comparison of associative memory stimuli. Annals of the New York Academy of Sciences 855; 670–674

    Google Scholar 

  • Hinckley K, Pausch R, Goble J, Kassell N (1994) Passive real-world interface props for neurosurgical visualization. ACM CHI; 452–458

  • Hirata Y, Sato M (1992) 3-dimensional interface device for virtual work space. Proc. 1992 IEEE/RSJ Int. Conf. on IROS 2:889–896

  • Ihlenfeldt W (1997) Virtual Reality in Chemistry. J Mol Mod 3:386–402

    Article  Google Scholar 

  • Inglese F-X, Jeong S-J, Richard P, Sato M (2005) A multi-modal virtual environment. Proc. Int. Conf. Virtual Concept’05, Biarritz, France, 8–10 November 2005

  • Ishii M, Sato M (1994) 3D spatial interface device using tensed strings. Presence: Teleoperators and Virtual Environments 3(1):81–86

    Google Scholar 

  • Jansson G, Petrie H, Colwell C, Kornbrot D, Fänger J, König H, Billberger K, Hardwick A, Furner S (1999) Haptic virtual environments for blind people: exploratory experiments with two devices. Int. J. Virtual Real 4 1

  • Jones A, Scanlon E, Blake, C (1998) Reflections on a model for evaluating learning technologies, In: Oliver M. (ed) Innovation in the evaluation of learning technology. University of North London; 25–41

  • Kalawsky R (1993) The science of virtual reality and virtual environments, Addison-Wesley, Pub. Co

  • Karr T, Brady R (2000) Virtual biology in the CAVE. Trends Genet 16:231–232

    Article  Google Scholar 

  • Kaye J (2001) Symbolic olfactory display. Master’s Thesis, MIT Media Lab

  • Keller P, Kouzes R, Kangas L, Hashem S (1995) Transmission of olfactory information for telemedicine, In: Morgan K, Satava R, Sieburg H, Matteus R, Christensen J. (eds) Interactive technology and the new paradigm for healthcare. IOS Press and Ohmsha, Amsterdam, pp 168–172

    Google Scholar 

  • Kim S, Hasegawa Y, Koike M, Sato M (2002) Tension based 7 DOF force feedback device: SPIDAR-G. Proc. IEEE virtual reality conf. (VRC’02)

  • Köster E (2002) The specific characteristics of the sense of smell, In: Rouby C, Schaal B, Dubois D, Gervay R, Holley A (eds) Olfaction, taste, and cognition. Cambridge Univ. Press 3, pp. 27–43

  • Langrana N (1997) Human performance using virtual reality tumor palpation simulation. Comput Graph 21(4):451–458

    Article  Google Scholar 

  • Lécuyer A, Coquillart S, Kheddar A, Richard P, Coiffet P (2000) Pseudo-haptic feedback: can isometric input devices simulate force feedback ?, Proc. IEEE virtual reality conf. 2000 (VR’00), New Brunswick, New Jersey; 83–90

  • Lécuyer A, Burkhardt J.-M, Etienne L (2004) Feeling bumps and holes without a haptic interface: the perception of pseudo-haptic textures. Proc. CHI 2004; 239–247

  • Mikropoulos T, Chalkidis A, Katsikis A, Emvalotis A (1998) Student’s attitudes towards educational virtual environments. Educ Inf Technol 3:137–148

    Article  Google Scholar 

  • Mikropoulos T. A, Katsikis A, Nikolou E, Tsakalis P (2003) Virtual environments in biology teaching. J Biol Educ 37(4):176–181

    Google Scholar 

  • Mochizuki A, Amada T, Sawa S, Takeda T, Motoyashiki S, Kohyama K, Imura M, Chihara K (2004) An olfactory display device linked with human gesture. Proc. SCI’04, Kyoto, Japan 48(6004):531–532

    Google Scholar 

  • Morie J, Iyer K, Valanejad K, Sadek R, Miraglia D, Milam D, Williams J, Luigi D.-P, Leshin J (2003) Sensory design for virtual environments, SIGGRAPH 2003 Sketch, San Diego, CA, July

  • Nikolou E, Mikropoulos T, Katsikis A (1997) Virtual realities in biology teaching, In: Bevan M (ed) Proc. Int. conference virtual reality in education and training. Loughborough, UK; 59–63

  • Ouh-Young G, Pique M, Hughes J, Srinivasan N, Brooks Jr. F (1988) Using a manipulator for force display in molecular docking. Proc. IEEE robotics and automation conference, Philadelphia, PA; 1824–1829

  • Ouh-Young M, Beard D, Brooks F (1989) Force display performs better than visual display in a simple 6-D docking task. Proc. IEEE Int. Conf. on robotics and automation (ICRA’89)

  • Paljic A, Tarrin N, Coquillart S, Bouguila L, Sato M (2004) The passive stringed haptic spidar for the worlkbench. EuroGraphics’04, Grenoble, France

  • Papin J.-P, Bouallagui M, Ouali A, Richard P, Tijou A, Poisson P, Bartoli W (2003) DIODE: Smell-diffusion in real and virtual environments. Proc. 5th Int. Conf. on virtual reality (VRIC’03). Laval, France, May; 113–117

  • Richard P, Birebent G, Burdea G, Gomez D, Langrana N, Coiffet P (1996) Effect of frame rate and force feedback on virtual objects manipulation. Presence: Teleoperators and Virtual Environments 15:95–108

    Google Scholar 

  • Richard P, Allain P, Richard E, Le Gall D (2006a) Projet EVACOG–Environnements Virtuels Appliqués aux Sciences Cognitives. Handicap 2006, Proc. 4th Conf. "Nouvelles Technologies au service de l'homme", Handicap 2006, Paris, France, 7–9 June 2006, pp 233–239

  • Richard P, Chamaret D, Inglese F-X, Lucidarme P, Ferrier J-L (2006b) Human-scale haptic virtual environment for product design: effect of sensory substitution. Int J Virtual Real (in press)

  • Richard P, Coiffet P (1995) Human perceptual issues in virtual environments : sensory substitution and information redundancy. Proc. of the IEEE Int. work. on robot and human communication, Tokyo, Japan

  • Riganelli A, Gervasi O, Laganà A, Alberti M (2003) A multi-scale virtual reality approach to chemical experiments. LNCS 2658:324–330

    Google Scholar 

  • Rizzo A (2005) Development of a virtual reality therapy application for Iraq war veterans with PTSD, virtual reality. Associated technologies and rehabilitation, Three-day symposium, University of Haifa, Israel, March 7–9

  • Rizzo A, Jounghyun A (2005) SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence: Teleoperators and Virtual Environments 14(2):119–146

    Article  Google Scholar 

  • Roussos M, Gillingham M (1998) evaluation of an immersive collaborative virtual learning environment for K-12 education, AERA Roundtable session at the American Educational Research Association annual meeting, San Diego, US, April

  • Ruiz I, Espinosa E, Garcia G, Gómez-Nieto M (2002) Computer-assisted learning of chemical experiments through a 3D virtual laboratory. LNCS 2329:704–712

    MATH  Google Scholar 

  • Salzman M, Dede C, Loftin R, Chen J (1999) a model for understanding how virtual reality aids complex conceptual learning. Presence: Teleoperators and Virtual Environments 8(3):293–316

    Article  Google Scholar 

  • Sankaranarayanan G, Weghorst S, Sanner M, Gillet A, Olson A (2003) Role of haptics in teaching structural molecular biology. Proc. 11th Symp. on Haptic interfaces for virtual environment and teleoperator systems. Los Angeles, CA; 365

  • Sato M (2001) Evolution of SPIDAR. Proc. 3rd Int. virtual reality conf. (VRIC’01) Laval, May, France

  • Sauer C, Hastings W, Okamura A (2004) Virtual environment for exploring atomic bonding. Proc. EuroHaptics’04, Munich, Germany 15:232–239

    Google Scholar 

  • Schiffman S, Pearce T (2002) Introduction to olfaction: perception, anatomy, physiology, and molecular biology. In: Pearce T, Schiffman S, Nagle H, Gardner JW (eds) Handbook of machine olfaction: Electronic Nose Technology. Wiley-VCH

  • Shaffer D, Meglan D, Ferrell M, Dawson S (1999) Virtual rounds: simulation-based education in procedural medicine. Proc. 1999 SPIE Battlefield Biomedical Technologies Conf., Orlando, FL 3712:99–108

  • Sharma G, Mavroidis C, Ferreira A (2005) Virtual reality and haptics in nano- and bionanotechnology, In: Rieth M, Schommers W (eds) Handbook of theoretical and computational nanotechnology 10 40; 1–33

  • Srinivasan M (1995) Haptic Interfaces. In: Durlach NI, Mavor AS (Eds) Virtual reality: scientific and technical challenges. National Academic Press, Washington DC, pp 161–187

    Google Scholar 

  • Srinivasan M, Basadogan C (1997) Haptics in virtual environments: taxonomy, research status, and challenges. Comput Graph 21(4):393–404

    Article  Google Scholar 

  • Stanney KM (2002) Handbook of the virtual environments: design, implementation and applications. Lawrence Erlbaum Associates, London

    Google Scholar 

  • Stone R (2001) Haptic feedback: a brief history from telepresence to virtual reality. LNCS 2058:1–16

    MATH  Google Scholar 

  • Stredney D, Wiet G, Yagel R, Sessanna D, Kurzion Y, Fontana M, Shareef N, Levin M, Martin K, Okamura A (1998) A comparative analysis of integrating visual representations with haptic displays, In: Westwood et al. (ed) Proc. MMVR6, IOS Press, Amsterdam; 20–26

  • Sundgren H, Winquist F, Lundstrom I (1992) Artificial olfactory system based on field effect devices. Proc. interfaces to real and virtual worlds, Montpellier, France; 463–472

  • Suzuki A, Kamiko M, Yamamoto R, Tateizumi Y, Hashimoto M (1999) Molecular simulations in the virtual material laboratory. Comput Mater Sci 14:227–231

    Article  Google Scholar 

  • Tarrin N, Coquillart S, Hasegawa S, Bouguila L, Sato M. (2003) The stringed haptic workbench: a new haptic workbench solution. EuroGraphics’03 22; 3

  • Tijou A, Richard E, Richard P (2006a) Using olfactive virtual environments for learning organic molecules. proceedings series: LNCS, Vol. 3942, Pan, Z. et al, (eds), Technologies for e-learning and digital entertainment, first international conference, Edutainment 2006, Hangzhou, China; 1223–33

  • Tijou A, Richard P, Papin J. –P (2006b) Diffusion d’odeurs dans les environnements virtuels: étude préliminaire, IEEE Conf. Int. Francophone d’Automatique (CIFA’06), 30 mai-01 juin, Bordeaux, France

  • Trindade J, Fiolhais C, Gil V (1999) Virtual water, an application of virtual environments as an education tool for physics and chemistry. In: Cumming G et al. (eds.) Advanced research in computers and communication in education. Proc. 7th Int. conf. on computers in education, ICCE’99, Chiba, Japan, IOS Press 2; 655–658

  • Trindade J, Paiva J, Fiolhais C (2001) Visualizing atoms and molecules in on-line simulations and virtual reality. Europhys News 32(11):14–15

    Article  Google Scholar 

  • Von Békésy G (1964) Olfactory analog to directional hearing. J Appl Physiol 19:369–373

    Google Scholar 

  • Walairacht S, Ishii M, Koike Y, Sato M (2001) Two-handed multi-fingers string-based haptic interface device. The IEICE Transactions, E84-D 3:365–373

    Google Scholar 

  • Warm J, Dember W, Parasuraman R (1990) Effects on fragrance on vigilance, performance and stress. Perfumer and Flavorist 15:15–18

    Google Scholar 

  • Washburn D, Jones L, Satya R, Bowers C, Cortes A (2003) Olfactory use in virtual environment training. Modeling and simulation magazine 2 3

  • Washburn D, Jones L (2004) Could olfactory displays improve data visualization?. Computing in science and engineering, Nov-Dec; 80–83

  • Williams II R, Chen M.-Y, Seaton J (2002) Haptics-augmented high school physics tutorials. Int J Virtual Real 5 1

  • Williams II R, Srivastava M, Howell J, Conatser Jr, R, Eland D, Burns J, Chila A. (2004) The virtual haptic back for palpatory training. Proc. 6th Int. Conf. on multimodal interfaces, State College, PA, USA, October

  • Williams II R.L (1999) Planar cable-suspended haptic interface: design for Wrench Exertion. Proc. 1999 ASME design tech. conf., 25th design automation conf., Las Vegas

  • Wilson D, Stevenson R (2003) Olfactory perceptual learning: the critical role of memory in odor discrimination. Neurosci Biobehav Rev 27:307–328

    Article  Google Scholar 

  • Winn W (1993) A conceptual basis for educational applications of virtual reality, University of Washington, HITL, Seattle, WA, technical publication: R-93–9

  • Winn W, Windschitl M (2001) Learning science in virtual environments: the interplay of theory and experience. Themes Educ 1(4):373–389

    Google Scholar 

  • Wu W, Basdogan C, Srinivasan M (1999) The effect of perspective on visual-haptic perception of object size and compliance in virtual environments. Proc. ASME Dynamic systems and control division; 67

  • Yanagida, Y, Kawato S, Nom a H, Tomono A, Tetsutani N (2004) Projection-based olfactory display with nose tracking. Proc. IEEE virtual reality conf. (VRC’04) Chicago, March; 43–50

  • Youngblut C, Johnson R, Nash S, Weinclaw R, Will C (1996) Review of virtual environment interface technology IDA paper P-3186 8:209–216

  • Youngblut C (1998) Educational use of virtual reality technology. Tech. Report. Inst. Defense Analyses, US

Download references

Acknowledgments

We wish to acknowledge the assistance of the student Pierre Guérin, who has developed the “Haptic Atomic” user interface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Richard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, E., Tijou, A., Richard, P. et al. Multi-modal virtual environments for education with haptic and olfactory feedback. Virtual Reality 10, 207–225 (2006). https://doi.org/10.1007/s10055-006-0040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-006-0040-8

Keywords

Navigation