
ORIGINAL ARTICLE

Interaction styles in tools for developing virtual environments

Jesper Kjeldskov Æ Jan Stage

Received: 15 December 2005 / Accepted: 4 February 2008 / Published online: 4 March 2008

� Springer-Verlag London Limited 2008

Abstract This article discusses and compares interaction

styles in development tools for virtual environments (VE).

The comparison relies on a qualitative empirical study of

two development processes where a command language

and a direct manipulation based tool were used to develop

the same virtual environment application. The command

language tool proved very flexible and facilitated an even

distribution of effort and progress over time, but debugging

and identification of errors was very difficult. Contrasting

this, the direct manipulation tool enabled faster imple-

mentation of a first prototype but did not facilitate a shorter

implementation process as a whole. On the basis of these

findings, the strength and weaknesses of direct manipula-

tion for developing virtual environment applications are

explored further through a comparison with a successful

direct manipulation tool for developing interactive multi-

media applications. The comparisons are used to identify

and emphasize key requirements for virtual environment

development tool interface design.

Keywords Virtual environments � Development tools �
Interaction styles � Empirical study

1 Introduction

A virtual environment (VE) is a computer-generated world

in which a user can interact with computer-generated

objects. Generating a virtual environment and the objects

within it is done using multimedia technology with the

purpose of providing the user with a certain experience

while being immersed into a virtual reality. For several

years, virtual environments have been used for experi-

mentation and technological development whereas their

practical relevance and usage have been very limited. This

situation is gradually changing as virtual environments are

increasingly being used in different commercial software

solutions. Over the last few years, this growing adoption of

virtual environment technology has been much more

notable than the technological advances within the area

(Brooks 1999) and hence the need for professional devel-

opment processes is increasing. However, at the moment,

we know very little about the process of developing virtual

environments and the tools used in this process (Smith and

Harrison 2001).

The design of virtual environments has been described

and discussed by several authors, (e.g. Burdea and Coiffet

2003). Such discussions are often based on descriptions of

specific virtual environment applications for example for

professional training (Huang and Gau 2003), general edu-

cation (Allison and Hodges 2000), scientific visualization

(van Dam et al. 2002), medicine (Bartz et al. 1999; Zajtchuk

and Satava 1997), military (Encarnacao et al. 2000), and

entertainment (Mine 2003). There are also experiments with

platforms that provide virtual environments at a much lower

cost than usual (Huang and Gau 2003). Finally, there are

general inquiries into the many-facetted process of

designing virtual environments, including a systematic

overview of research activities that can inform the process

of design (Scaife and Rogers 2001), a categorization of

aspects that characterize effective design of virtual envi-

ronments (Stanney et al. 2003), and a proposal for methods

to support their evaluation (Neale and Nichols 2001).

J. Kjeldskov (&) � J. Stage

Department of Computer Science, Aalborg University,

Aalborg, Denmark

e-mail: jesper@cs.aau.dk

J. Stage

e-mail: jans@cs.aau.dk

123

Virtual Reality (2008) 12:137–150

DOI 10.1007/s10055-008-0091-0

The interaction style deployed in a virtual environment

application is a key element of its design. The fundamental

question is how the user interacts with the virtual envi-

ronment and its objects. Methods and guidelines for user

interface design embody certain computer technologies.

This also applies to interaction styles. Interaction based on

a command language was a relevant solution with the

character-based display. Direct manipulation emerged from

the potentials of the graphical workstation and personal

computer. This inherent relation between interface design

and computer technology implies that our established

guidelines and experiences are challenged when new

technologies emerge.

Several studies have evaluated and discussed the rele-

vance of different interaction styles for users of virtual

environments. A theoretical framework for analysing

manipulation techniques and a test-bed for experimenting

with such techniques are presented in Poupyrev et al. (1997)

followed by taxonomies for virtual environment interaction

styles in Poupyrev et al. (1998). Similarly, a characterization

of interaction tasks in virtual environments is presented in

Bowman (1998) and evaluated in Bowman et al. (1998)

through creation of a highly interactive application, chal-

lenging the view of good interaction techniques for virtual

environments as being ‘‘natural’’ or at least ‘‘similar’’ to the

physical world. Experiments with specific interaction

styles for virtual environments count non-isomorphic three

dimensional (3D) rotational techniques (Poupyrev et al.

2000), HOMER/Go-Go non-linear manipulation techniques

giving the user ‘‘stretchable’’ virtual arms (Bowman and

Hodges 1997; Poupyrev et al. 1996) and World-In-Minia-

ture/Voodoo Dolls techniques providing the user with a

small representation of a subset of the virtual environment

(Pierce et al. 1999; Stoakley et al. 1995). Similar research is

more or less non-existing in relation to interaction styles for

VE development tools.

A VE development tool is a computer application that

supports the construction of a virtual environment and the

definition of objects in that environment. This process is

also referred to as authoring. As the practical use of virtual

environments is increasing, there is a growing demand for

tools that support the development of virtual environment

applications. Different tools and facilities for development

of virtual environments have been presented and discussed.

Traditionally, tools for developing virtual environments

require a substantial amount of programming defining the

virtual environment and its objects through statements in a

programming language. However, the development of

virtual environments often involves groups of people with

no programming competence for whom reliance on pro-

gramming-based development tools is a hindrance to

active participation in the process. In response, a second

category of VE development tools has emerged that do not

require programming skills in a traditional sense but sup-

port rapid development of interactive virtual environment

applications by people without 3D graphics or program-

ming experience by means of a visual key framing and

simple scripting environments (see e.g. Conway et al.

2000). Instead of deploying a programming approach these

tools rely on other interaction styles such as direct

manipulation, menu selection, form filling, and tangible

input devices (Keefe et al 2001; Schkolne et al. 2001).

The tools that do not require any programming provide

effective development support for designers without pro-

gramming skills. However, whether this category of

development tools is equally relevant for knowledgeable

programmers is an open question. From one perspective it

has been argued that development tools for virtual envi-

ronments must necessarily include a major element of

programming support, and that if one wishes to reduce this

need for programming specific development tools will

have to be tailored to specific kinds of applications

(Hendricks et al. 2003). From another perspective, it seems

to be an implicit assumption underlying some direct-

manipulation based development tools that all groups

involved in the design of a virtual environment should

apply them—even those who posses significant program-

ming competence. Yet this assumption has not been

empirically justified.

The purpose of this article is to discuss and compare the

relevance of different interaction styles for developers of

virtual environments. Our focus is on the knowledgeable

programmer. In Sect. 2 we discuss interaction styles and

review selected literature on command language and direct

manipulation. Sect. 3 describes the task of developing a

virtual environment in general. This includes an overview

of the key elements of the implementation of a virtual

environment application. And the presentation of two

example development tools. One is based on command

language as the fundamental interaction style and the other

on direct manipulation. The comparison of these develop-

ment tools is based on an empirical study of two

development processes where knowledgeable programmers

used the tools to develop a virtual environment application.

The study is primarily qualitative. The design of the study

is provided in Sect. 4 and the results are discussed in

Sect. 5. Section 6 compares the VE direct manipulation

tool with a tool that has proved very successful for the

development of two-dimensional multimedia applications.

Finally, Sect. 7 concludes the article and points out ave-

nues for further work.

It is worth noting that it is not the purpose of this paper

to propose one specific tool over another but to investigate

into the pros and cons of two different interaction styles for

virtual environment development as represented by these

specific tools.

138 Virtual Reality (2008) 12:137–150

123

2 Interaction styles in development tools

The interaction style is a key determinant of a user inter-

face design. The four major options available for design of

this characteristic have been denoted as: command lan-

guage, menu selection, form filling, and direct

manipulation (Shneiderman 1998). Below, we will refer to

these as the classical interaction styles.

The traditional category of tools for developing virtual

environments is based on an interaction style where the

virtual environment and its objects are defined by scripted

command statements in a programming language. Com-

mand language is an interaction style, where the user issues

commands in a formalized language and the system

responds by carrying out these commands (Shneiderman

1998). A typical example of this is an operating system

where the user issues commands line by line, and the

operating system responds by executing the commands one

by one. Yet command language is also used to denote

systems with facilities for constructing and executing lar-

ger collections, or scripts, of commands such as macros

and programs (Shneiderman 1998). In accordance with

this, we will characterize the interaction style employed in

the traditional category of tools for developing virtual

environments as command language.

The second category of VE development tools does not

require programming in the traditional sense but is oper-

ated through direct manipulation. Direct manipulation is an

interaction style where the user experiences a representa-

tion that can be manipulated directly (Shneiderman 1998).

In designing a direct manipulation tool, a key challenge is

to find an appropriate representation of key objects and to

provide simple ways of manipulating this representation. A

direct manipulation tool may also rely on other interaction

styles such as menu selection and form filling, but only for

secondary interactions that deal with limited issues, for

example, the specification of properties of a certain object

that is manipulated directly on an overall level. In Sect. 3,

we will present a VE development tool that primarily

employs direct manipulation.

The literature on human–computer interaction includes

numerous attempts to compare command language and

direct manipulation and to shed light on the question of

whether one is superior to the other. Much of this literature

consists of descriptions of the advantages of both approa-

ches whereas the amount of empirical evidence actually

comparing them is more limited (Benbasat and Todd

1993). Exceptions count an early contribution that com-

pared file manipulation commands in MS-DOS with direct

manipulation on a Macintosh. This study concluded that

Macintosh’ users could perform the manipulations faster,

with fewer errors, and they were more satisfied with the

interface (Margono and Shneiderman 1987). In a similar

study, where command line and direct manipulation was

compared, it was concluded that the users of direct

manipulation made only half as many errors and were more

satisfied. In this study, the time to perform the tasks turned

out to be comparable (Morgan et al 1991). These empirical

studies indicate that direct manipulation has an advantage

in terms of error rate and user satisfaction compared to

command language. However, in relation to task comple-

tion time, the conclusions are more varied.

3 Developing virtual environment applications

In this section, we describe key elements of the process of

implementing a virtual environment application and pres-

ent two specific VE development tools.

3.1 The development task

A virtual environment application that visualizes a 3D

world consists of a number of mathematically defined 3D

models that are covered with colours or textures, for

example, pictures or video images. The 3D models are

spatially distributed in a 3D coordinate system that the user

can experience as a 3D world by viewing the 3D models

from a given point in the coordinate system as illustrated in

Fig. 1. The correct perspective is rendered real-time by a

graphics computer and projected by means of a display

system as depicted in Figs. 2 and 3.

A virtual environment application may use a multitude

of display systems to visualize the virtual 3D world.

Examples of display systems are traditional desktop mon-

itors, head-mounted displays, holobenches, large wall-

mounted displays or Caves with three to six sides (Brooks

1999). These display types represent the array of technol-

ogies for creating immersive experiences that range from

‘‘looking at’’ a virtual 3D world to ‘‘being in’’ that virtual

world (Shneiderman 1998). In this article, we will pri-

marily deal with virtual environments for a Cave.

Fig. 1 A virtual 3D environment

Virtual Reality (2008) 12:137–150 139

123

The six-sided Cave Automatic Virtual Environment

(Cave) is currently the display system that offers the

greatest level of immersion into a virtual 3D environment.

The user is placed in a small cubic room, measuring

approx. 3 m on all sides, in which computer-generated

images are back-projected on all four walls, the floor and

the ceiling (Fig. 2).

Navigation or motion in the Cave is accomplished by

means of position tracking or specialized interaction

devices. Tracking the position of the user’s head ensures

that the correct visual perspective is calculated. Interaction

with objects in the virtual environment is typically sup-

ported by techniques for selecting and modifying 3D

objects by simply ‘‘grabbing’’ them just like one would do

in the real world. The 3D experience requires shutter

glasses worn by the user allowing separate images to be

projected to the user’s left and right eye and thereby cre-

ating stereovision.

The benefits of the six-sided Cave for exploration of

virtual environments originate from the vividness of the

virtual environment projected and the very high degree of

immersion. This is caused by the freedom of movement

that is possible inside the Cave and the large horizontal and

vertical field of view covered with computer-generated

images. Exploration of the virtual environment is much

more natural in a six-sided Cave compared to any other

display system because the user can move around physi-

cally and look in any direction without breaking the

illusion of being in a computer-generated world. The pri-

mary downside is that physical objects and the user’s body

itself may occlude the images, thus locally breaking the

visual illusion (Kjeldskov 2001).

Virtual environment applications displayed in a Cave

are very different from many traditional computer appli-

cations. First, the user interface is completely surrounding

the user and is presented in 3D as opposed to conventional

2D interfaces covering only a fraction of the user’s phys-

ical surroundings. Second, the types of applications

running in a Cave are typically offering a complete virtual

3D world for exploration as opposed to traditional tools for

office or home use. Third, applications running in a Cave

are often highly graphical and interactive.

The development of a virtual environment application

for the Cave, or any other display system, includes an

essential task of constructing the 3D world that will be

visualized by the application, which primarily means

mathematically defining the objects that make up the

environment, as well as different objects that may be added

to the environment. Some of these objects are static while

others may exhibit dynamic behaviour when the applica-

tion is running.

Fig. 2 Outside and inside the

six-sided Cave

Fig. 3 Development with CaveLib

140 Virtual Reality (2008) 12:137–150

123

3.2 Two VE development tools

Virtual environment development tools usually run on an

ordinary, yet powerful, desktop workstation with a tradi-

tional 2D display. Existing tools for developing virtual

environment applications can be divided into two catego-

ries according to their interaction style: command language

or direct manipulation. Below we present two specific

examples of tools representing each of these approaches.

Within the first category, libraries for creating Cave

applications are available for the C and C++ programming

languages. One of the most widely used binary libraries for

developing virtual 3D environments is CaveLib. Cavelib is

an advanced development tool that facilitates development

of virtual reality applications characterized by high per-

formance and flexibility. The CaveLib library enables

development of highly immersive 3D interfaces for pro-

jection in a Cave, or any other virtual reality display

system, as well as implementation of a variety of interac-

tion techniques for 3D interaction devices. For preview

purposes, CaveLib offers a simple tool for representing

the Cave display and simulating simple 3D interaction,

cf. Fig. 3.

Using CaveLib to develop a virtual environment appli-

cation is not very different from developing any other

graphical application in a typical programming language.

With CaveLib, the developer constructs a program code

consisting of commands that point at a number of geometry

files and specify the layout of a virtual 3D space as well as

the functionality of the application. The commands are

constructed in a simple text-editor and are typically col-

lected in a number of script files. To see if the code is

working properly, the developer has to compile all the

scripts and run the application either in the Cave itself or in

a preview-tool. If the code contains errors or otherwise

needs to be modified, the developer returns to the text-

editor and repeats the cycle.

A professional tool within the direct manipulation

approach is dvMockup. This tool enables the developer to

create an application by directly manipulating the objects

of the virtual 3D world within the preview window com-

bined with the use of menu selections and fill-in forms

(Fig. 4). With dvMockup an application for the Cave can

be developed by people without programming experience

and without doing any programming at all.

When developing a virtual environment application

using a direct manipulation tool like dvMockup, the

developer imports a number of geometry files and locates

them in the virtual 3D space of the application. This is done

either by direct manipulation in a workspace-window or by

specifying data in forms. The functionality of the appli-

cation is created and modified by selecting 3D objects and

applying behaviours through menu selection. Through the

workspace window, the developer can continuously see if

the application is working properly.

4 Study design

We conducted a qualitative empirical study in order to

compare the support that development tools based on the

two different interaction styles described above provide to

a knowledgeable programmer. This section describes the

design of that study.

Tools. We briefly surveyed potentially relevant tools for

implementing virtual environment applications and related

them to the aim of comparing direct manipulation tools

with command language tools. Based on the survey and the

facilities available, we selected the two tools described

above: CaveLib and dvMockup. The two tools were

already installed, configured, and used extensively by other

developers and researchers at our lab who could be con-

sulted when technical problems arose.

Participants. The participants were two development

team members with recently completed master degrees in

computer science/computer engineering. Thereby they had

considerable experience and knowledge about program-

ming in general. In addition they had previously completed

a one-semester course on computer vision and virtual

Fig. 4 Implementing using dvMockup

Virtual Reality (2008) 12:137–150 141

123

reality and worked with projects within that subject. They

received a 1-day introduction to the tools used in the study

but had no specific experience with any of them.

Overall task. The development team and the two authors

of this article planned and designed the study together. The

development team conducted the implementation using the

two tools. The comparison of the two tools was based on

solving the same overall task. This task was to develop a

virtual environment application that visualized a maze in

which a user could move an avatar around by means of an

interaction device. This task was specified in detail in terms

of 14 milestones. Thus, the overall task was solved when

all milestones were met. The specific milestones involved

tool and Cave set-up (milestones 1 and 2), implementation

of a simple application (milestones 3 and 4), implementa-

tion of the application visualizing the maze (milestones

5–8), implementation of interaction techniques to facilitate

motion of the avatar (milestones 9–12), and adjustment

(milestones 13 and 14). The 14 milestones are described in

detail in the Appendix.

Hypothesis. Based on the literature on interaction styles

reviewed in Sect. 2, we hypothesised that the direct

manipulation tool would be superior to the programming

tools in terms of the efforts required to implement the

virtual environment application specified.

Study procedure. The duration of the study was initially

planned to last 3 weeks but had to be extended by a couple

of days because of technical problems. The two members

of the development team were each assigned to one of the

tools to produce the best possible solution for the overall

task. During the implementation phase, they were not

supposed to communicate with each other about their work,

problems, and solutions.

Data collection. The primary means for data collection

were private diaries kept by the developers (Jepsen et al.

1989; Naur 1983). After each day of work on the imple-

mentation, a developer took an hour to describe the work

done and its relation to the 14 milestones, the problems

faced, and the time spent on tasks related to each of the

milestones. A checklist that emphasized the points that

should be touched upon supported the daily writing of the

diary. One week into the implementation phase, the diary

entries produced so far were reviewed in order to enforce

the use of the checklist and increase consistency. The

diaries totalled 45 pages (Hougaard et al. 2001).

Data analysis. The primary dependent variables were

work practice and development effort. In this article we

focus primarily on development effort. Based on the dia-

ries, we have calculated and compared the efforts spent on

completing the different milestones of the overall task. As

the size and type of application developed is, of course, not

representative of all virtual environment applications, the

exact times spent on each milestone are not important in

themselves but only as measures for comparisons across

the two tools. The results of this are presented in the fol-

lowing section.

5 Results

In this section, we present and discuss the findings from the

study with CaveLib and dvMockup. On the task level, there

were clear differences between the two developers. The

developer who used CaveLib was able to meet all mile-

stones, but the navigation technique specified in the task

had to be changed due to usability issues. The developer

who used dvMockup was not as successful, since collision

detection could not be implemented satisfactorily. Other-

wise, the final solution was acceptable.

The development time spent using CaveLib amounted to

42.3 h, whereas the time spent using dvMockup amounted

to 37.8 h. Thus the total time spent on development with

the two tools differs only by 12%. The distribution of time

spent on each milestone does, however, reveal clear dif-

ferences between the command language (CaveLib) and

direct manipulation (dvMockup) approaches. This distri-

bution is shown in Fig. 5. Below we will highlight

interesting points from this distribution.

Setting up the development tools and the Cave (mile-

stones 1 and 2) amounted to a total of 12 h spent on

CaveLib whereas only 3.75 h was spent on this with

dvMockup. Thus the developer who used dvMockup only

needed about 30% of the time spent using CaveLib. Setting

up CaveLib demanded a series of separate tools to be

configured for individual tasks, for example, scripting,

compiling and previewing, as well as creation of a number

of configuration files on both the workstation used for

development and the graphics computer that was executing

the display system for the Cave. With dvMockup, only one

tool had to be set up, and when an application was running

on the workstation, only a few scripts were needed before it

was also operational in the Cave.

0
1
2
3
4
5
6
7
8
9

10

Milestone

H
o

u
rs

 s
p

en
t CaveLib

dvMockup

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 5 Development time spent on each milestone using CaveLib and

dvMockup

142 Virtual Reality (2008) 12:137–150

123

Implementing a preliminary application with the pur-

pose of testing the development and target platform and the

connection between them (milestones 3 and 4) took 6.5 h

using CaveLib but only 2 h with dvMockup. Again, for

dvMockup this is only about 30% of the time spent using

CaveLib. Thus up to milestone 4 it is clear that the direct

manipulation approach supports a faster kick-off in the

development process.

Implementation of the primary virtual environment

application, which was the maze specified in the overall

task (milestones 5–8), was done in 10.3 h using CaveLib.

With dvMockup the same milestones required 27.5 h. So

here we see the same pattern where one tool requires only

30% of the time spent with the other tool. Yet this time the

roles are reversed, as CaveLib is supporting the faster

development. Thus the command language approach seems

to facilitate a more effective process in this part of the

implementation. The major reason for the considerable

amount of time spent with dvMockup is that the tool pro-

vides no direct support in a situation where making and

running a simple set of commands might avoid numerous

repetitions of simple operations. For example, the devel-

oper using dvMockup faced the task of manually inserting

800 identical cubic objects into the virtual 3D world,

whereas the developer using CaveLib could perform the

same task simply by writing a small piece of code. This

limitation becomes even more serious when we take the

question of scale into consideration. If we compare a small

application to a large one, a major difference in amount of

work will occur precisely on milestones 5–8 whereas the

remaining milestones will largely be unaffected. Therefore,

the difference between the two tools on these milestones

should even be more considerable if we expanded the scale

of the application being developed.

Implementation of interaction techniques (milestones

9–12) took 7.5 h with CaveLib but only 2.5 h using

dvMockup. This is a 30% reduction in favour of

dvMockup. The time spent implementing interaction

techniques with dvMockup is, however, influenced by the

availability of supporting software. In a related project

considerable amount of time had recently been spent

developing off-the-shelf support for implementing user

interaction in dvMockup in order to facilitate a general

reduction of development effort (Kjeldskov 2001). This has

also been denoted as a toolset approach (Willans and

Harrison 2001). Had this support not been available, the

time spent on these milestones would have been consid-

erably higher.

In CaveLib, all interaction techniques were imple-

mented from scratch. However, this had the advantage that

the interaction technique specified in the overall task was

actually implemented. With dvMockup it was necessary to

modify the task specification by selecting one of the

available techniques, which did not fulfil the specification

entirely. If the implementation in dvMockup should have

fulfilled the requirements completely, additionally pro-

gramming on device driver level would have been

necessary.

Final adjustments of the applications (milestones 13 and

14) took 6 h for CaveLib while only 3 h was spent with

dvMockup. The larger amount of adjustments of the

CaveLib application primarily consisted of correcting

errors with the scaling of 3D objects. This was necessary in

order to make the objects fit properly for projections in the

Cave. This kind of error was absent in the application

developed with dvMockup.

5.1 Qualitative findings from diaries

Although this paper focuses primarily on comparing the

different time spent by the two developers on reaching each

milestone of the development process, some comments

should also be made about the more qualitative statements

in the developers’ diaries. In qualitatively analyzing diary

entries regarding the specific challenges facing the devel-

opers during the study, two main themes emerged. These

were related to (1) repetitive sub tasks, and (2) making and

discovering errors. The quotes below are translated from

Danish (Hougaard et al. 2001).

In relation to repetition, the developer using the direct

manipulation tool several times reported frustration about

having to carry out sub tasks involving repeating the same

operation many times over. The most prominent example

of this was, as mentioned earlier, inserting the 800 identical

cubes making up the maze on which the developer

unhappily comments ‘‘The first 10 cubes took 10 min, so I

guess that inserting all the cubes will take between 500 and

1,000 min…’’. Eventually, the lack of support for repetitive

sub tasks in the direct manipulation tool made the devel-

oper turn to command language and write a piece of code

overriding the development tool and automatically gener-

ating the maze. On this he comments, ‘‘The script itself is

pretty simple (…) it basically just tells [dvMockup] where

to insert the cubes in the assembly (…). In this case it was

definitely an advantage to have some programming expe-

rience. It saved me from hours of boring and monotonous

work’’. In relation to making later changes to the elements

and the structure of the maze he continues ‘‘I do not even

want to think about how much time this would have taken

me manually rather than using my C program’’. The

developer working with the command language based

development tool did not report any problems in relation to

repetitive operations. On creating the maze he simply

comments ‘‘The maze is modelled using an array of 0 or

1’s describing if there is a cube or not. From this it is easy

to generate the program code’’. Hence, on the issue of

Virtual Reality (2008) 12:137–150 143

123

repetition, the developers experience the interaction styles

of the two development tools very differently—in favour of

command language.

In relation to the second theme of making and discov-

ering errors, both developers describe some issues

experienced with their assigned development tool. The

developer using the command language tool expresses that

the risk of making errors with this approach is rather high

because the action space of programming is much larger

than with direct manipulation. Furthermore, he expresses

that determining errors can be very difficult because it is

hard to get an overview of the semantics of a piece of code

and its potential side effects. As an example, this developer

experienced some trouble with his implementation of col-

lision detection that remained unsolved for a very long

time. Eventually the problem turned out to originate in a

minor erroneous conversion of coordinates between dif-

ferent coordinate systems due to a small error in the code

that the developer had failed to identify. In his final diary

entry (for milestone 14) he notes, ‘‘Finally realised that the

conversion of coordinates (…) was erroneous and had to

be fixed in order to make the collision detection work’’. In a

similar manner it was very late in the development process

before the command language developer discovered that

the rendering of his 3D world was actually mirrored due to

a similar incorrect transformation of coordinates.

For the developer using the direct manipulation tool, the

issue of making and discovering errors was experienced

quite differently. First the developer did not report many

problems related to making errors in the first place, and

when making some, he reports that most of them were easy

to discover and fix because they were highly visible in the

workspace window of the development tool. As an exam-

ple of this, when working with creating and placing light

sources in the maze, the developer using the direct

manipulation tool reported a highly iterative process of

simply moving and changing the orientation of different

types of light sources directly in the workspace window

until a satisfactory setup had been reached. On his iterative

experimentation with setting up light sources he comments

‘‘I inserted a single cube into a new 3D world and began

experimenting with moving the position and orientation of

single light source. This was done for ‘ambient’, ‘direc-

tional’, and ‘point’ type of sources, and I now feel that I

have a good overview of their individual potentials’’. When

experimenting with setting up light in the actual maze

application he continues ‘‘Tried navigating through the

model and experiment with the effect of light sources on the

different surfaces (…). Can not seem to make them light up

only a delimited area of the maze. When I move it to the

middle of the maze all walls are lit and not the actual

corridor (…). Tried out different program options for

transparencies, materials and textures (…). Turned out

that the problem was related to lack of material on objects.

After having discovered this it is much easier’’.

Hence, on the issue of making and discovering errors,

the developers also experience the interaction styles of the

two development tools very differently—but this time in

favour of direct manipulation.

6 Discussion

Based on the study, we conclude that there was no marked

difference between the total time spent on development

with the two tools. dvMockup supported fast development

on the first milestones related to setting up and testing the

development and target platforms. CaveLib supported

faster development on the milestones that include the core

work on the virtual environment application. dvMockup

supported a faster implementation of interaction, but only

because the developer could use elements that were already

implemented, and this did not entirely fulfil the specifica-

tion. If the developer should have developed the proper

interaction technique, he would have spent more time on

that milestone. Thus the study does not support the

hypothesis that the direct manipulation tool performed

better. Moreover, the command language tool was much

faster on the milestones that would be most affected if the

scope of the application was scaled up. Thus the devel-

opment of a larger application might even be less

favourable for the direct manipulation tool.

6.1 A successful direct manipulation tool

In order to better understand the limitations of the direct

manipulation tool we will compare it with a successful

direct manipulation tool, Macromedia Director, on a

number of characteristics.

For several years Macromedia Director has been con-

sidered state of the art within development tools for

interactive multimedia applications targeted at traditional

desktop computers with 2D displays. Much like

dvMockup, the interaction style in Director is primarily

direct manipulation and form filling. However, there are

also additional facilities for programming. Director is

based on a film and theatre metaphor that puts the devel-

oper in the ‘‘director’s chair’’. The end-user’s screen is

represented as a rectangular surface (the stage) on which

the developer can place and directly manipulate the dif-

ferent elements that make up the interface: graphics, video,

sound, etc. These elements are referred to as the cast of the

application, and they are manipulated with the mouse and

keyboard. The functionality of an application being

developed is defined on a central timeline, called the

‘‘score’’, and in a number of accompanying scripts and

144 Virtual Reality (2008) 12:137–150

123

behaviours that are linked to the appropriate elements on

the screen.

Around the stage there are a number of tools and fill-in

forms for manipulating the elements of the application.

Further tools are available through menus or buttons at the

top of the screen. The application being developed can

rapidly be previewed directly and accurately on the

workstation used for development, because display and

interaction devices used by the developer are comparable

to those of the end-user.

Based on our experiences from teaching Macromedia

Director to university students and industrial software

developers for several years, we have observed that the

direct manipulation interaction style employed in Director

performs very well and fits well with the developers’ needs

during the different phases of the development process.

Because Director and dvMockup appear similar, this

observation seems surprising compared to the results of the

study presented above. However, a systematic comparison

of the two reveals a number of fundamental differences,

which may be useful in guiding the design of successful

direct-manipulation development tools for virtual

environments.

6.2 Creating an application

Applications developed in Director or dvMockup typically

consists of a large number of different elements such as

graphics, 2D or 3D objects, sound and video files, and

scripts/behaviours. When creating a simple application

these elements are put together to form a coherent whole,

which is then presented to the end-user. Director and

dvMockup both provide means for organizing and putting

together application elements for this purpose. However,

their approaches are fundamentally different in relation to

both interface design and support for interaction.

In Director, direct manipulation is used extensively

when creating and modifying an application. Every ele-

ment of the application, for example, images or video, are

represented graphically in the cast window (Fig. 6 left),

and can be used anywhere in the application by simply

dragging them from the cast window on to the preview

window (the stage). This action creates a local instance of

the element at that given point of the application. These

instances can then be modified, for example, scaled or

rotated, either in the preview window using direct manip-

ulation or in the timeline window (the score) using fill-in

forms. In this way, multiple independent instances can be

created and modified at multiple points of the application

simply by using the mouse. In the timeline (the score)

window the dynamic state of the application over time is

represented graphically (Fig. 6 left). The developer can

interact with this representation and modify its properties

by using direct manipulation actions such as dragging,

dropping and scaling or by using form filling.

All phases of creating and modifying a simple applica-

tion in Director are supported by various and coherent

direct manipulation interaction styles. Furthermore, the

separation between cast and score allows the developer to

concentrate only on the elements in use at one particular

time point of the application and ignore the rest.

In dvMockup, direct manipulation is not used as

extensively during the creation and modification of a

simple application as in Director. The elements of an

Fig. 6 Cast and Score windows

in Director (left) and Assembly

Manager in dvMockup (right)

Virtual Reality (2008) 12:137–150 145

123

application developed in dvMockup are grouped hierar-

chically within a ‘‘scene graph’’, which can be accessed

through the assembly manager (Fig. 6 right). The structure

of the scene graph can be compared to the structure of the

file system on a computer. Every entry in the assembly

manager corresponds to a unique element in the application

with unique parameters. If the same 3D object is used twice

in the application, it will, contrary to Director’s cast win-

dow, appear twice in the assembly manager. The scene

graph facilitates manipulation of whole ‘‘branches’’ of

virtual 3D objects without affecting the mutual spatial

relationship between the sub-objects in the branch. This is

very helpful when working with virtual 3D worlds that can

easily consist of more than a thousand 3D objects.

Manipulating the scene graph, for example, moving an

element from one branch to another or turning the visibility

of an element on or off, is done with menu-selection. The

developer cannot directly manipulate the layout of the

scene graph with actions such as drag and drop.

Creating and modifying a simple application in

dvMockup is thus supported by an interaction style that,

unlike Director, does not exploit the potentials of direct

manipulation much further than simple selection of objects

and activation of buttons and menus. The cast window in

Director can be considered a central placeholder, whereas

the state of the application at a given point in time is

reflected in the score that can be manipulated directly. In

comparison, the assembly manager in dvMockup acts both

as a placeholder and reflects the state of the application. In

addition, it supports only a low level of direct manipula-

tion. This makes the assembly manager approach in

dvMockup less flexible than the cast and score approach in

Director because all elements of the application have to be

considered at all times of the application while at the same

time having limited means for interaction as a developer.

Moreover, there is no distinction between objects and

classes. This lack of support for working with multiple

instances or objects of the same class contributes to making

the scene graph more complex and complicates the

interaction.

6.3 Previewing an application

There are two fundamental differences between applica-

tions developed in Director and dvMockup. First,

applications developed in Director are targeted at desktop

2D displays while applications developed in dvMockup are

targeted at immersive 3D displays. Second, applications

developed in Director are typically explored screen-by-

screen while applications developed in dvMockup consti-

tute 3D worlds, which the user can explore freely. These

differences affect the previewing of the application as well

as the potentials for direct manipulation in the preview

window provided by the two tools.

In Director, the developer is constantly faced with a

preview that matches exactly what the user will be pre-

sented with at a given time of running the application

(Fig. 7 left). This makes previewing and directly manipu-

lating the elements of the application accurate and non-

problematic. In the preview of dvMockup, however, the

developer can chose to see the virtual 3D world from any

perspective wished, without relation to the perspective

chosen by the end-user in the Cave (Fig. 7 right). More-

over, the preview in Director matches the number of

dimensions used when displaying the final application on a

computer monitor while the 2D preview in dvMockup does

not match the 3D displaying of the virtual environment in

the Cave. This introduces a difference between previewing

Fig. 7 The Director interface

(left) and the dvMockup

interface (right)

146 Virtual Reality (2008) 12:137–150

123

and the user’s experience of the final application, and the

developer is thereby left to imagine how the end-user may

experience the application.

Interaction with the preview constitutes yet another

difference between the two tools. Whereas interaction with

the preview in Director using mouse and keyboard matches

the interaction with the final application, interacting with

the preview of dvMockup does not. In the Cave, interaction

is primarily a question of navigating in a virtual world as

well as selecting and manipulating virtual objects. This is

typically supported using motion tracking and other 3D

interaction devices. However, in the preview of dvMockup

the developer cannot interact as if being in the Cave, but is

limited to use the mouse and keyboard or dedicated control

panels in the interface which the end user will not have

access to. If the developers want to experience the appli-

cation as the end user will see it, they will have to

physically get out of their seats, move in to the Cave, and

run the application here. This further extends the gap

between the preview in dvMockup and the user experience

of the final application, and it makes manipulation of the

elements in the preview window less direct.

6.4 Programming functionality and interaction

Multimedia and virtual environment applications typically

have complex functionality and interaction. Therefore,

tools for developing applications must support creating

such functionality and interaction. In dvMockup, the user

can create simple behaviours consisting of predefined

events and actions and relate these to objects in the virtual

3D world. This is done by the use of menu-selection and

form filling (Fig. 8 right). It is, however, not possible to

extend the functionality of the predefined events and

actions in dvMockup by doing ‘‘real programming’’. If

additional functionality is desired, the application has to be

hooked up to external executables programmed in a

traditional programming language such as C or C++,

which is quite complicated.

A menu-based tool for quick and easy creation of simple

behaviours similar to the one in dvMockup is accessible in

Director. Yet Director also provides a tool for command

language interaction using high level scripting and object-

orientation (Fig. 8 left). With Director, the developer

benefits from a seamless transition between the scripting

tool, the behaviour tool, and the graphical representation of

the application. Observing Director in use by students and

industrial developers clearly reveals a continuous iteration

between these three approaches at different phases of the

development process. The support for advanced program-

ming facilities in Director thus constitutes a significant

difference between the two tools.

The main differences between dvMockup and Director

are summarized in Table 1.

7 Conclusions

We have conducted a qualitative empirical study of the

process of developing a virtual environment application

using two tools with different interaction styles. The results

of the study indicate that implementation of a simple vir-

tual environment application using a command language

tool and a direct manipulation tool required efforts in terms

of time that are comparable. The command language tool,

however, resulted in faster implementation with the core

milestones of the implementation process. Thereby, it

seems more promising than the direct manipulation tool on

large-scale applications. The direct manipulation tool on

the other hand resulted in fewer errors during the process of

creating a virtual world. These results do not support the

hypothesis that a direct manipulation tool is superior to

command language when developing virtual environment

applications. Instead it indicate that VE development tools

Fig. 8 Command language tool

in Director (left) and Behaviour

tool in dvMockup (right)

Virtual Reality (2008) 12:137–150 147

123

that allow for both command line programming interaction

and direct manipulation may provide the best of both

worlds—both from the perspective of addressing the dif-

ferent types of developers as well as the different types of

development tasks that teams involved with the develop-

ment of virtual environments are faced with.

In order to gain a better understanding of the limitations

of the specific direct manipulation tool, we have compared

it with Macromedia Director, which successfully employs

direct manipulation to the development of 2D multimedia

applications. This comparison reveals a number of specific

issues, which may have negatively influenced the perfor-

mance of dvMockup. These include (1) the extent to which

the potentials of direct manipulation has been exploited, (2)

the distance between development platform and target

platform, and (3) the support for combining direct manip-

ulation and collections of commands in a programming

language. The comparison provides a list of requirements

for improving direct manipulation tools for developing

virtual environments.

Our conclusions originate from a study that was limited

in certain ways. First, by focusing on application devel-

opment for a six-sided Cave using tools running on desktop

workstations we have, of course, taken things to an edge.

There is a continuum of virtual reality displays for which

the distance between development tool and target platform

may be less significant than for the six-sided Cave. Second,

the members of the development team were knowledgeable

programmers, but not highly experienced in implementing

virtual environment applications. In relation to this, there

could also have been slight differences between the two

developers’ skills potentially influencing their use of the

tools. Third, the overall task defined a specific application

to be implemented, which may not be representative of all

classes of virtual environments.

Our study involved the development of the same appli-

cation using two different tools. A different approach could

have been to allow the developers to exploit the interaction

mechanisms supported by the tools as best as possible and

then compare the usability of the applications that were

developed. Such evaluation of usability could be based on

the general advice in Sufcliffe and Kaur (2000) and the

specific technique suggested in Neale and Nichols (2001). It

could also involve more general toolsets of interaction

techniques (Willans and Harrison 2001). There are also

other development approaches than those compared in our

study, for example, procedural development. As a topic for

future work, it would be interesting include tools based on

other development approaches in the comparison.

A fundamental question emerges from the conclusion.

How can direct manipulation be further exploited in tools

for developing virtual environment applications? The spe-

cific user interface of the development tools may be

improved by exploiting the potentials of direct manipula-

tion further with applications such as Macromedia

Director, 3D studio Max or Maya as role models. Yet how

can we overcome the more basic problem of distance

between development and target platform when developing

applications for immersive display systems on desktop

workstations? A relevant solution might be making direct

manipulation more direct as discussed in Beaudouin-Lafon

(2000) and Schkolne et al. (2001). As a part of this

approach, it would be interesting to conduct a comparative

study involving an in-Cave development tool. Hereby, one

would be able to compare successful components of 2D

development tools, such as the ones presented in this paper,

to their immersive 3D counterparts in the Cave.

Acknowledgments The authors would like to thank the develop-

ment team: Mike H. Hougaard, Nikolaj Kolbe and Flemming N.

Larsen. We are also grateful to VR-MediaLab at Aalborg University

for granting us access to virtual reality installations and development

tools. Figure 2 left (Five-sided VR-CUBE, Chalmers University)

appears courtesy of Barco/TAN, used with permission.

Appendix: details of the milestones

1. Setting up workstation. This milestone is reached when

the development tool and corresponding utilities are

installed and configured correctly on the developer’s

Table 1 Comparison of Director and dvMockup

Director dvMockup

Creating a simple application The elements of the application are

separated from the state of the

application at a given time

The elements of the application reflect the

state of the application at a given time

Previewing an application Previewing matches the end-user

experience of and interaction with the

application

Previewing does not match the end-user

experience and interaction

Programming functionality and

interaction

Use of both predefined events, actions,

and object-oriented programming

Use of predefined events and actions. No

direct support for programming

148 Virtual Reality (2008) 12:137–150

123

workstation and a pre-developed demonstration

application for the tool can be executed successfully.

2. Setting up the Cave. This milestone is reached when

the Cave has been set up to successfully execute the

pre-developed demonstration application.

3. Creating a simple visualization. This milestone is

reached when the developer can visualize a single cube

by means of his own application.

4. Setting up light. This milestone is reached when the

cube can be correctly lit by a single light source.

5. Creating the maze. This milestone is reached when the

application contains a maze as specified in the task

description. All cubes must be visualised with the

correct colours and lighting but without use of

textures.

6. Simple navigation. This milestone is reached when the

maze is visualized from a moveable point of view

functioning as an avatar that can be navigated by

means of key presses on the keyboard.

7. Collision detection. This milestone is reached when

the application is capable of detecting when the

avatar collides with the walls of the maze and the exit

door.

8. Collision handling. This milestone is reached when the

application is capable of preventing the avatar from

passing through the walls of the maze and ends the

game when the avatar reaches the exit.

9. Setting up 3D input device. This milestone is reached

when the application can read and interpret data from

the 3D input device.

10. Navigation using 3D input device. This milestone is

reached when the avatar can be navigated using the

3D input device.

11. Setting up motion tracking. This milestone is reached

when the application can read and interpret data from

the motion tracker.

12. Viewpoint using motion tracking. This milestone is

reached when the viewpoint of the avatar can be

controlled using the motion tracker.

13. Textures. This milestone is met when the all cubes in

the maze are correctly visualized with textures.

14. Calibration. This milestone is met when the applica-

tion has been calibrated so that the height of each

cube in the maze match the height of physical walls

of the Cave, and when the two applications have been

calibrated to appear consistently with respect to

visualization and user interaction.

References

Allison D, Hodges LF (2000) Virtual reality for education? In:

proceedings of VRST 2000, Seoul

Bartz D, Straßer W, Skalej M, Welte D (1999) Interactive exploration

of extra-and intracranial blood vessels. In: Proceedings of the

conference on visualization ’99. ACM, New York

Beaudouin-Lafon M (2000) Instrumental interaction: an interaction

model for designing post-wimp user interfaces. CHI Lett

3(1):446–453

Benbasat I, Todd P (1993) An experimental investigation of interface

design alternatives: icon vs. text and direct manipulation vs.

menus. Int J Man Mach Stud 38:369–402

Bowman DA (1998) Interaction techniques for immersive virtual

environments: design, evaluation and application. In: Proceed-

ings of human–computer interaction consortium (HCIC)

Bowman DA, Hodges L (1997) An evaluation of techniques for

grabbing and manipulating remote objects in immersive virtual

environments. In: Proceedings of symposium on interactive 3D

graphics, pp 35–38

Bowman DA et al (1998) The virtual venue: user-computer interac-

tion in information-rich virtual environments. Teleoperators

Virtual Environ 7(5):478–493

Brooks FP (1999) What’s real about virtual reality? IEEE Comput

Graph Appl 19(6):16–27

Burdea GC, Coiffet P (2003) Virtual reality technology, 2nd edn.

Wiley, London

Conway M, Audia S, Burnette T, Cosgrove D, Christiansen K, Deline

R, Durbin J, Gossweiler R, Koga S, Long C, Mallory B, Miale S,

Monkaitis K, Patten J, Pierce J, Shochet J, Staack D, Stearns B,

Stoakley R, Sturgill C, Viega J, White J, Williams G, Pausch R

(2000) Alice: lessons learned from building a 3D system for

novices. In: Proceedings of CHI’ 2000, The Hauge, ACM, New

York

van Dam A, Laidlaw DH, Simpson RM (2002) Experiments in

immersive virtual reality for scientific visualization. Comput

Graph 26:535–555

Encarnacao LM et al (2000) Seamless 3D interaction for virtual

tables, projection planes and caves. In Proceedings of the SPIE

AeroSense Conference, Orlando

Hendricks Z, Marsden G, Blake E (2003) A meta-authoring tool for

specifying interactions in virtual reality environments. In:

Proceedings of the 2nd international conference on computer

graphics, virtual reality, visualisation and interaction in Africa,

ACM, New York, pp. 171–180

Hougaard MH, Kolbe N, Larsen FN (2001) Comparison of tools for

developing virtual reality application (in Danish), Intermedia.

Aalborg University

Huang JY, Gau CY (2003) Modelling and designing a low-cost high-

fidelity mobile crane simulator. Int J Hum Comput Stud

58(2):151–176

Jepsen LO, Mathiassen L, Nielsen PA (1989) Back to thinking mode:

diaries for the management of information system development

projects. Behav Inf Technol 8(3):207–217

Kjeldskov J (2001) Combining interaction techniques and display

types for virtual reality. In: Proceedings of OzCHI 2001, Edith

Cowan University Press, Churchlands, pp 77–83

Keefe DF, Feliz DA, Moscovich T, Laidlaw DH, LaVola JJ Jr (2001)

CavePainting: a fully immersive 3D artistic medium and

interactive experience. In: Proceedings of Si3D 2001, ACM,

New York

Margono S, Shneiderman B (1987) A study of file manipulation by

novices using commands vs. direct manipulation. In: Proceed-

ings of the 26th annual technical symposium, ACM,

Washington, DC, pp 57–62

Mine M (2003) Towards virtual reality for the masses: 10 years of

research at Disney’s VR studio. In: Proceedings of the workshop

on virtual environments 2003, Zurich, ACM, New York

Morgan K, Morris RL, Gibbs S (1991) When does a mouse become a

rat? or … comparing the performance and preferences in direct

Virtual Reality (2008) 12:137–150 149

123

manipulation and command line environment. Comput J 34:265–

271

Naur P (1983) Program development studies based on diaries. In:

Green TR et al (eds) Psychology of computer use. Academic

Press, London, pp 159–170

Neale H, Nichols S (2001) Theme-based content analysis: a flexible

method for virtual environment evaluation. Int J Hum Comput

Stud 55(2):167–189

Pierce J, Stearns B, Pausch R (1999) Voodoo Dools: seamless

interaction at multiple scales in virtual environments. In:

Proceedings of symposium on interactive 3D graphics 1997,

pp 141–145

Poupyrev I, Weghorst S, Billinghurst M, Ichikawa T (1996) The Go–

Go interaction technique: non-linear mapping for direct manip-

ulation in VR. In: Proceedings of symposium on user interface

software and technology (UIST) 1996, Seattle. ACM, New York,

pp 79–80

Poupyrev I, Weghorst S, Billinghurst M, Ichikawa T (1997) A

framework and testbed for studying manipulation techniques for

immersive VR. In: Proceedings of symposium on virtual reality

software and technology (VRST) 1997, Lausanne. ACM, New

York, pp 21–28

Poupyrev I, Weghorst S, Fels S (2000) Non-isomorphic 3D rotational

techniques. In: Proceedings of CHI 2000

Poupyrev I, Weghorst S, Billinghurst M, Ichikawa T (1998)

Egocentric object manipulation in virtual environments: empir-

ical evaluation of interaction techniques. Comput Graph Forum

17(3):41–52

Scaife M, Rogers Y (2001) Informing the design of a virtual

environment to support learning in children. Int J Hum Comput

Stud 55(2):115–143

Schkolne S, Pruett M, Schröder P (2001) Surface drawing: creating

organic 3D shapes with the hand and tangible tools. CHI Lett

2(1):261–268

Shneiderman B (1998) Designing the user interface: strategies for

effective human–computer interaction, 3rd edn. Addison Wes-

ley/Longman, Reading

Smith SP, Harrison MD (2001) Editorial: user centred design and

implementation of virtual environments. Int J Hum Comput Stud

55:109–114

Stanney KM, Mollaghasemi M, Reeves L, Breaux R, Graeber DA

(2003) Usability engineering of virtual environments (VEs):

identifying multiple criteria that drive effective VE system

design. Int J Hum Comput Stud 58(4):447–481

Stoakley R, Conway M, Pausch R (1995) Virtual reality on a WIM:

interactive worlds in miniature. In: Proceedings of CHI 1995, pp

265–272

Sufcliffe AG, Kaur KD (2000) Evaluating the usability of virtual

reality user interfaces. Behav Inf Technol 19(6):415–426

Willans JS, Harrison MD (2001) A toolset supported approach for

designing and testing virtual environment interaction techniques.

Int J Hum Comput Stud 55:145–165

Zajtchuk R, Satava RM (1997) Medical applications of virtual reality.

Commun ACM 40(9):63–64

150 Virtual Reality (2008) 12:137–150

123

	Interaction styles in tools for developing virtual environments
	Abstract
	Introduction
	Interaction styles in development tools
	Developing virtual environment applications
	The development task
	Two VE development tools

	Study design
	Results
	Qualitative findings from diaries

	Discussion
	A successful direct manipulation tool
	Creating an application
	Previewing an application
	Programming functionality and interaction

	Conclusions
	Acknowledgments
	Appendix: details of the milestones
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

