Skip to main content

Advertisement

Log in

The road to surgical simulation and surgical navigation

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

The recent advantage of the power of graphic workstations has made it possible to handle 3D human structures in an interactive way. Real-time imaging of medical 3D or 4D images can be used not only for diagnosis, but also for various novel medical treatments. By elaborating on the history of the establishment of our laboratory, which focuses on medical virtual reality, we describe our experience of developing surgery simulation and surgery navigation systems according to our research results. In the case of surgical simulation, we mention two kinds of virtual surgery simulators that produce the haptic sensation of surgical maneuvers in the user’s fingers. Regarding surgical navigation systems, we explain the necessity of the augmented reality function for the encouragement of the ability of robotic surgery and its trial for clinical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Birkfellner W, Figl M, Huber K, Watzinger F, Wanschitz F, Hummel J, Hanel R, Greimel W, Homolka P, Ewers R, Bergmann H (2002) A head-mounted operating binocular for augmented reality visualization in medicine—design and initial evaluation. IEEE Trans Med Imaging 21(8):991–997

    Article  Google Scholar 

  • Cotin S, Delingette H, Ayache A (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis Comput Graph 5(1):62–73

    Article  Google Scholar 

  • Devernay F, Mourgues F, Coste-Maniere E (2001) Towards endoscopic augmented reality for robotically assisted minimally invasive cardiac surgery. Proc. of the international workshop on medical imaging and augmented reality (MIAR2001); pp 16–20

  • Gehrmann S, Karl Höhne KH, Linhart W, Pflesser B, Pommert A, Riemer M, Tiede Ulf, Windolf J, Schumacher U, Rueger JM (2006) A novel interactive anatomic atlas of the hand. Clin Anat 19(3):258–266

    Article  Google Scholar 

  • Giraldez JG, Caversaccio M, Pappas I, Kowal J, Rohrer U, Marti G, Baur C, Nolte LP, Ballester MAG (2007) Design and clinical evaluation of an image-guided surgical microscope with an integrated tracking system. Int J CARS 1:253–264

    Article  Google Scholar 

  • Guthart GS, Salisbury JK (2000). The intuitive telesurgery system: overview and application. Proc. of the IEEE international conference on robotics and automation (ICRA 2000). San Francisco, CA, April 2000

  • Hattori A, Suzuki N, Hashizume M, Akahoshi T, Konishi K, Yamaguchi S, Shimada M, Hayashibe M (2003) A robotic surgery system (da Vinci) with image-guided function. Medicine Meets Virtual Reality 11:110–116

    Google Scholar 

  • Hattori A, Suzuki N, Hayashibe M, Suzuki S, Otake Y, Tajiri H, Kobayashi S (2005) Development of a navigation function for an endoscopic robot surgery system. MMVR 13:167–171

    Google Scholar 

  • Höhne KH, Pflesser B, Pommert A, Riemer M, Schiemann T, Schubert R, Tiede Ulf (1995) A new representation of knowledge concerning human anatomy and function. Nat Med 1(6):506–511

    Article  Google Scholar 

  • Mendoza C, Laugier C (2003), Tissue cutting using finite elements and force feedback, lecture notes in computer science 2673, Surgery Simulation and Soft Tissue Modeling, pp 175–82

  • Nicolau SA, Pennec X, Soler L, Ayache N (2005) A Complete augmented reality guidance system for liver punctures: first clinical evaluation. MICCAI, LNCS 3749:539–547

  • Petersik A, Pflesser B, Tiede U, Höhne KH, Leuwer R (2003), Realistic haptic interaction in volume sculpting for surgery simulation. In: Ayache N, Delingette H (eds) Surgery simulation and soft tissue modeling, Proc. IS4TM 2003, Lect Notes Comput Sci 2673, Springer-Verlag, Berlin, pp 194–202

  • Pflesser B, Leuwer R, Petersik A, Tiede Ulf, Höhne KH (2002) A computer-based simulation for petrous bone surgery with haptic feedback. Comput Aided Surg 7(2):117

    Article  Google Scholar 

  • Rajagopalan S, Lu L, Robb RA, Yaszemski MJ (2005) Optimal segmentation of microcomputed tomographic images of porous tissue-engineering scaffolds. J Biomed Mater Res 75A(4):877–887

    Article  Google Scholar 

  • Robb RA (1971), Computer-aided contour determination and dynamic display of individual cardiac chambers from digitized serial angiocardiographic film. In: Heintzen PH (ed) Roentgen-, cine-, and videodensitometry. Fundamentals and application for blood flow and heart volume determination. Georg Thieme Verlag, Stuttgart, Germany, pp 170–178

  • Robb RA (1997), Virtual endoscopy: evaluation using the visible human datasets and comparison with real endoscopy in patients. Proceedings of medicine meets virtual reality. In: Morgan KS, Hoffman HM, Stredney D, Weghorst SJ (eds) IOS Press, Netherlands, 39, 195–206

  • Robb RA, Ritman EL, Greenleaf JF, Sturm RE, Liu HK, Chevalier PA, Wood EH (1976) Quantitative imaging of dynamic structure and function of the heart, lungs and circulation by computerized reconstruction and subtraction techniques. Comput Graphics 10(2):246–256

    Article  Google Scholar 

  • Robb RA, Hanson DP, Karwoski RA, Larson AG, Workman EL, Stacy MC (1989) ANALYZE: a comprehensive, operator-interactive software package for multidimensional medical image display and analysis. Comput Med Imaging Graph 13(6):433–454

    Article  Google Scholar 

  • Rosen J, Soltanian H, Redett R et al (1996), Evolution of virtual reality-from planning to performing surgery, IEEE Engineering in Medicine and Biology, pp 16–22

  • Salisbury JK (1998), The heart of microsurgery. Mechanical Engineering Magazine, ASME Int’l.; 120(12):47–51

  • Shahidi R, Bax MR, Maurer CR Jr, Johnson JA, Wilkinson EP, Wang B, West JB, Citardi MJ, Manwaring KH, Khadem R (2002) Implementation, calibration and accuracy testing of an image-enhanced endoscopy system. IEEE Trans Med Imaging 21(12):1524–1535

    Article  Google Scholar 

  • Suzuki N, Hattori A, Kai S et al (1997) Surgical planning system for soft tissues using virtual reality. Proc. of medicine meets virtual reality 5, 159–63

  • Suzuki N, Hattori A, Ezumi T et al (1998) Simulator for virtual surgery using deformable organ model and force feedback system. MMVR 6:227–233

    Google Scholar 

  • Suzuki S, Suzuki N, Hattori A et al (2003a) Dynamic deformation of elastic organ model and the VR cockpit for virtual surgery and tele-surgery. MMVR 11:354–356

    Google Scholar 

  • Suzuki N, Hattori A, Hayashibe M, Suzuki S, Otake Y (2003b) Development of dynamic spatial video camera (DSVC) for 4D observation, analysis and modeling of human body locomotion. MMVR 11:346–348

    Google Scholar 

  • Suzuki N, Sumiyama K, Hattori A, Ikeda K, Murakami EAY, Suzuki S, Hayashibe M, Otake Y, Tajiri H (2003c) Development of an endoscopic robotic system with two hands for various gastric tube surgeries. MMVR 11:349–353

    Google Scholar 

  • Suzuki S, Suzuki N, Hattori A et al (2004) Sphere-filled organ model for virtual surgery system. IEEE Trans Med Imaging 23(6):714–722

    Article  Google Scholar 

  • Suzuki N, Hattori A, Suzuki S, Otake Y, Hayashibe M, Kobayashi S, Nezu T, Sakai H, Umezawa Y (2005) Construction of a high-tech operating room for image-guided surgery using VR. MMVR 13:538–542

    Google Scholar 

  • Tiede U, Schiemann T, Höhne KH (1998), High quality rendering of attributed volume data. In: David Ebert et al (eds) Proc. IEEE visualization 1998. Research Triangle Park, NC, pp 255–262

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, N., Hattori, A. The road to surgical simulation and surgical navigation. Virtual Reality 12, 281–291 (2008). https://doi.org/10.1007/s10055-008-0103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-008-0103-0

Keywords

Navigation