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Abstract
Virtual reality (VR) simulation offers significant potential for human factors training as it provides a novel approach which 
enables training in environments that are otherwise dangerous, impractical or expensive to simulate. While VR training has 
been adopted in many environments, such as heavy industry, surgery and aviation, there remains an inadequate understanding 
of how virtual simulations impact cognitive factors. One such factor, which needs careful consideration during the design 
of VR simulations, is the degree of mental or cognitive load experienced during training. This study aimed to validate a 
newly developed measure of workload, based on existing instruments (e.g. the NASA-TLX), but tailored to the specific 
demands placed on users of simulated environments. While participants completed a VR puzzle game, a series of experi-
mental manipulations of workload were used to assess the sensitivity of the new instrument. The manipulations affected the 
questionnaire subscales (mental demands; physical demands; temporal demands; frustration; task complexity; situational 
stress; distraction; perceptual strain; task control; presence) as predicted in all cases (ps < .05), except for presence, which 
displayed little relationship with other aspects of task load. The scale was also found to have good convergent validity with 
an alternate index of task load. The findings support the sensitivity of the new instrument for assessing task load in virtual 
reality. Overall, this study contributes to the understanding of mental workload in simulated environments and provides a 
practical tool for use in both future research and applications in the field.
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1 Introduction

Simulation is well established as an effective method for 
human factors training, particularly in environments such as 
surgery and aviation (Stevens and Kincaid 2015; Sutherland 
et al. 2006). Recently there has been increasing interest in 
the use of virtual reality (VR) technologies for simulation 
training, as VR affords innovative training methods that can 
be applied to otherwise dangerous or impractical environ-
ments. VR allows the user to interact with a simulation of 
some real environment, in real time, using their own senses 
and motor skills (Burdea and Coiffet 2003). A number of 

studies have shown beneficial effects of VR training for 
sport and exercise (Gray 2017; Neumann et al. 2018), sur-
gery (Hashimoto et al. 2018), equipment operators (Dun-
ston et al. 2014), rehabilitation (Adamovich et al. 2009) and 
mental health (Krijn et al. 2004). Currently, however, there 
is limited understanding of how VR environments impact 
the cognitive processes of the user. For instance, it is unclear 
whether the cognitive demands imposed by a virtual task 
are equivalent to that of the real world. As cognitive load 
plays an important role in informational learning and skill 
acquisition (Kirschner 2002; Renkl and Atkinson 2003; van 
Gog et al. 2005), this lack of understanding could limit the 
training effectiveness of VR. Consequently, validated meth-
ods for assessing workload in simulators, and virtual reality 
simulators in particular, are required. This study aims to 
provide a validated method for assessing workload to aid 
future design and assessment of simulated environments.

Workload is a multifaceted construct, which results from 
the interaction of the intrinsic demands of the task and the 
conditions under which the task is performed, as well as the 
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behaviour, skill and perceptions of the performer (DiDo-
menico and Nussbaum 2008). Cognitive load theory (CLT; 
Sweller 1999) describes mental workload as a result of the 
number of informational units that must be held in working 
memory—the domain general limited capacity information 
store (Pollock et al. 2002). CLT suggests that an optimal 
level of load exists for the purpose of informational learning, 
due to effects on engagement and attention. It is, therefore, 
the goal of the instructor to optimise load for the learner, 
by (1) providing a primary task load that is sufficient but 
not excessive and (2) by removing sources of load that are 
extraneous to the target task. The literature describing the 
challenge point framework (see Guadagnoli and Lee 2004) 
suggests that an optimal load is also best for motor learning 
and should be balanced based on the demands of the task 
and the (developing) skills of the learner.

The existing methods for assessing workload or effort 
can be broadly categorised into subjective and objective 
methods. Psychophysiological measures such as heart rate 
and heart rate variability (consistency in beat-to-beat inter-
val) provide an online, objective measure of effort, but can 
also be influenced by physiological demands (Mulder et al. 
2004). Dual tasking also provides an objective index of 
mental effort (Steed et al. 2016), which, based on the prem-
ise of limited working memory capacity, aims to assess the 
extent of spare capacity left by the primary task, through 
performance on a concurrent secondary task. While some 
researchers suggest this method to be a more reliable and 
direct measure of cognitive load (Brunken et al. 2003), it 
ignores the important subjective experience of workload, 
which can only be assessed using self-report. Perhaps 
the most widely used self-report measure of workload in 
human factors research is the NASA-task load index (NASA-
TLX; Hart and Staveland 1988). The NASA-TLX assesses 
workload along six dimensions: mental demand; physical 
demand; temporal demand; own performance; effort; and 
frustration. The NASA-TLX was designed to provide better 
diagnosticity (i.e. to discriminate between different types of 
workload) by assessing multiple sources of load, rather than 
a unidimensional construct, but as it was designed for pilots 
(space flight), it may not reflect the unique demands posed 
by some tasks. Accordingly, it has been adapted for specific 
environments, such as the surgery task load index (SURG-
TLX; Wilson et al. 2011) and the driving activity load index 
(DALI; Pauzie 2008). As VR simulations present a distinct, 
novel environment, which poses unique usability challenges, 
the existing measures may not address all relevant sources 
of workload.

Additional factors which must be considered when 
extending the current methods of assessing workload to VR 
include: (1) degree of immersion, (2) perceptual difficulties 
and (3) novel methods of controlling the environment. The 
level of immersion and presence provided by VR is proposed 

as a particular benefit of virtual training, although immer-
sion may be moderated by individual difference variables 
(Shin 2018). Immersion refers to the sensations induced by 
the technologies creating the VE, while presence refers to 
the user experience that they have left the real world and 
are now present in the virtual world (Mestre et al. 2006). 
The high degree of immersion provided by VR seems to 
be important for increased engagement in virtual training 
(Stanney et al. 2003), but it is unclear how it impacts work-
load. Potentially the immersive nature of VR may reduce 
distractions and the need for effortful focus (Wickens 1992). 
A second factor germane to VR is the perceptual difficul-
ties resulting from virtual presentation of visual stimuli, 
such as mismatched motion and inadequate rendering rates 
which contribute to simulator sickness (Somrak et al. 2019). 
Finally, navigation in VR places new demands on the user, 
meaning trainees may have to learn to control the VR envi-
ronment before they can even begin to access the benefits of 
the simulation for training the target task. These challenges 
are unique to VR and may significantly impact workload 
and learning and hence should be considerations for new 
methods of quantifying load in VR.

Although previous studies have attempted to gauge cog-
nitive load during VR tasks (Bharathan et al. 2013; Fred-
eriksen et al. 2019; Naismith et al. 2015), they fall short by 
using overly simple unidimensional measures, instruments 
that do not address the unique sources of load posed by vir-
tual simulation (e.g. the NASA-TLX), or by ignoring mul-
tiple sources of load. Therefore, the purpose of the present 
study was to address these shortcomings by designing and 
validating a task load index, aimed primarily at virtual real-
ity simulations but relevant to a range of simulated environ-
ments. Adopting the approach of Wilson et al. (2011) in 
developing the SURG-TLX, this study aimed to (1) develop 
a task load index specific to virtual reality simulation and (2) 
demonstrate its validity through experimentally manipulat-
ing relevant sources of workload.

2  Methods

2.1  Scale development

As well-validated task load instruments already exist in 
the form of the NASA-TLX (Hart and Staveland 1988) 
and SURG-TLX (Wilson et al. 2011), the new instrument 
was designed to maintain a similar overall structure, but to 
be more applicable to the demands of simulated environ-
ments. The scale was developed by selecting the relevant 
items from the existing instruments and adding the simula-
tion-specific scales. The new scale adopted the dimensions 
mental, physical, temporal and frustration demands from 
the NASA-TLX, as they were still highly applicable to VR 
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simulations. Additionally, the dimensions complexity, stress 
and distractions were added from the surgery-specific ver-
sion (SURG-TLX), as these captured additional sources of 
load not present in the NASA-TLX. Next, new items were 
added which were specific to workload in simulations. As 
discussed previously, VR poses a challenge in terms of per-
ceptual demands and demands from controlling the envi-
ronment. Hence, perceptual strain and task control scales 
were added to address these issues, using the same format 
at the questions from the original NASA version. Finally, a 
scale relating to presence was added, as feeling present in 
the virtual world is an important part of usability and train-
ing effectiveness of VR. In general, immersion refers to the 
capabilities of the technology in producing the simulated 
environment, while presence refers to the feeling of ‘being 
there’ created by the technology (Mestre et al. 2006). How-
ever, as these terms are often used interchangeably outside 
of academic discourse (and participants were unlikely to be 
aware of the subtle difference), both terms were provided in 
the questionnaire to aid the understanding of the participant. 
Therefore, the proposed dimensions for the SIM-TLX were:

 1. Mental demands—How mentally fatiguing was the 
task?

 2. Physical demands—How physically fatiguing was the 
task?

 3. Temporal demands—How hurried or rushed did you 
feel during the task?

 4. Frustration—How insecure, discouraged, irritated, 
stressed or annoyed were you?

 5. Task complexity—How complex was the task?
 6. Situational stress—How stressed did you feel while 

performing the task?
 7. Distraction—How distracting was the task environ-

ment?
 8. Perceptual strain—How uncomfortable/irritating were 

the visual and auditory aspects of the task?
 9. Task control—How difficult was the task to control/

navigate?
 10. Presence—How immersed/present did you feel in the 

task?1

2.2  Participants

Thirty-seven student participants (20 male, mean 
age = 20.5 years, SD = 3.5) volunteered to take part in the 
study. Participants were recruited from an undergraduate 
population using convenience sampling, through poster 
advertisements and word of mouth. This research complied 

with the American Psychological Association Code of Eth-
ics and was approved by the Institutional Review Board 
at the University of Exeter. All subjects provided written 
informed consent before testing.

2.3  Materials and task

2.3.1  Task

The experimental task was a block stacking puzzle game, 
often known as ‘Jenga’, which requires the player to remove 
blocks from the body of a tower, one at a time, and replace 
them on the top until the tower falls. The block stacking game 
was chosen as it is a perceptual-motor task, which also pro-
vides some cognitive challenge (i.e. game strategy). Addi-
tionally, the task could be easily completed in both real and 
virtual worlds in a laboratory setting. The virtual version of 
the task used an application developed in Unity (2018.2.16f1) 
and was displayed using an HTC Vive head mounted display 
(Fig. 1). Graphics displayed in the Vive were generated on a 
3XS laptop running Windows 10 with an Intel i7 processor 
and Nvidia GeForce GTX 1070 graphics card. Players inter-
acted with blocks using the HTC Vive hand-held controller. 
Blocks could be grasped by squeezing buttons on the side of 
the handle, which was controlled using the dominant hand.

2.3.2  SIM‑TLX

In line with the original NASA-TLX and the SURG-TLX, 
a two-part evaluation was used to complete the SIM-TLX. 
Following each completion of the task, participants rated 
the level of demand on ten scales reflecting each of the 

Fig. 1  Virtual reality block stacking game

1 While the term ‘immersion’ was added to the question to aid under-
standing, this item is aimed at the user experience of being in the 
environment.
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workload dimensions on a 21-point Likert scale, anchored 
between low and high (Part 1; see supplementary materi-
als for the SIM-TLX). Additionally, participants indicated 
the relative importance of each workload dimension for 
the task, by making a series of 45 pairwise comparisons 
between dimensions (Part 2). A weight is assigned based 
on the cumulative score achieved for each dimension 
after the comparisons, which is multiplied with the Likert 
scale score to compute the workload score for each dimen-
sion (scores range from 0 to 189). For example, a weight 
score of 2 and a rating of 10 would equate to a workload 
score of 20. A total (unidimensional) workload score can 
also be calculated by aggregating the scores from the ten 
dimensions.

2.3.3  Additional measures

In order to further validate the SIM-TLX, we aimed to assess 
convergent and divergent validity, in order to establish con-
struct validity of the SIM-TLX (Campbell and Fiske 1959). 
Convergent validity relates to the strength of the relation-
ship between two methods intending to measure the same 
underlying construct. Divergent validity indicates that the 
construct you are measuring is conceptually distinct from 
another, related, construct.

To assess convergence with a rating scale of mental effort, 
we used the rating scale of mental effort (RSME, Zijlstra 1993). 
The RSME is an expedient unidimensional visual analogue 
scale, ranging from 0 to 150, with descriptors along the scale, 
such as ‘absolutely no effort’, ‘considerable effort’ and ‘extreme 
effort’. The RSME has been widely used and has been found to 
be reliable over repeated administrations in laboratory (r = 0.88) 
and work settings (r = 0.78; Zijlstra 1993). If a strong correla-
tion were to be observed between the SIM-TLX and the RSME, 
it would indicate that a similar underlying construct was being 
measured (i.e. convergent validity).

To assess divergent validity, a measure was chosen that 
reflected a construct related to, but conceptually distinct 
from, workload as assessed by the SIM-TLX (Campbell and 
Fiske 1959). The enjoyment subscale of the Intrinsic Moti-
vation Inventory (IMI; McAuley et al. 1989) was chosen, as 
workload was expected to relate to enjoyment (in a negative 
or inverted U pattern), but should remain conceptually dis-
tinct from it, and as such should not show a high correlation 
with enjoyment.

2.4  Procedure

Participants attended the laboratory on one occasion for 
approximately 60 min. Participants first completed the block 
stacking task in the real world, where they played the game 
(with no opponent) for 2 min. They then completed parts 1 

and 2 of the SIM-TLX, IMI enjoyment scale and the RSME. 
Participants were then allowed 2 min to familiarise themselves 
with the VR environment and the controls before they com-
pleted the VR task under the five experimental conditions. 
The order of conditions was counterbalanced using a Latin 
squares design. After each condition, participants completed 
the questionnaires (SIM-TLX part 1, IMI enjoyment scale and 
RSME). After completing all 5 conditions, participants com-
pleted part 2 of the SIM-TLX in relation to all the VR tasks.

Conditions:

1. Control—participants were instructed to play the game 
for 2 min.

2. Multitasking—participants additionally counted back-
wards in sevens from 737, as in Wilson et al. (2011).

3. Time restriction—participants were asked to move 3 
bricks in just 1 min (known to be a challenging target, 
based on pilot testing) and were informed when 30 s had 
passed and when only 5 s remained.

4. Stress—participants were read a script designed to 
induce social evaluative pressure, as in Wilson et al. 
(2011). The script informed participants that their score 
within the 2 min time limit would be entered onto a 
leader board for all participants to see and that the win-
ner would receive a prize. They were also told that their 
performance in the pre-trial practice was poor and that 
they needed to improve.

5. Disruption—participants played the game for 2 min, but 
with a degraded visual display and impaired use of the 
controllers. A plastic insert was placed into the headset 
to reduce visual acuity and degrade the display, and the 
controllers were fixed to the users hand to restrict move-
ment, so had to be used in an inverted orientation, which 
made control more difficult.

2.5  Data analysis

A workload score was computed for each dimension, by 
weighting the scores on the Likert scales of each workload 
dimension with the perceived importance based on the 
paired comparisons. A total workload score was calculated 
by summing the component dimensions. Missing pairwise 
weighting data for 1 participant was imputed based on pre-
dictive mean matching, using the R package ‘mice’ (van 
Buuren and Groothuis-Oudshoorn 2011). Statistical analyses 
were performed using R (v1.0.143, R Core Team 2017). 
The effect of condition on scale scores was analysed with a 
linear mixed effects model, using the lme4 package (Bates 
et al. 2014). Significant effects were explored using Bon-
ferroni–Holm-corrected contrasts. Raw data and analysis 
scripts (as well as the full SIM-TLX scale) are available 
from the Open Science Framework (https ://osf.io/p6de4 /).

https://osf.io/p6de4/
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2.6  Hypotheses

It is predicted that relative to other conditions:

H1: Mental demands will be increased in the multitask-
ing condition.
H2: Physical demands will be increased in the disruption 
condition.
H3: Temporal demands will be increased in the time 
restriction condition.
H4: Frustration demands will be increased in time restric-
tion, disruption and multitasking conditions.
H5: Task complexity demands will be increased in the 
multitasking condition.
H6: Situational stress demands will be increased in the 
stress condition.
H7: Distraction demands will be increased in the multi-
tasking and disruption conditions.
H8: Perceptual strain demands will be increased in the 
disruption condition.
H9: Task control demands will be increased in the disrup-
tion condition.
H10: Presence will be impaired by all conditions apart 
from control.

3  Results

3.1  Mental demands

A linear mixed effects model, with random intercepts for 
participants, was run to examine the effect of condition on 
the mental demands scale (and each subsequent subscale). 
The overall model predicting mental demands score had a 
total explanatory power (conditional R2) of 70.80%, in which 
the fixed effect of condition explained 16.99% of the vari-
ance. The model’s intercept was at 22.51 (SE = 5.70, 95% 
CI [11.34, 33.68]). The effect of condition was statistically 
significant, F(5,180) = 25.72, p < .001. Bonferroni–Holm-
corrected comparisons indicated that, as predicted, mental 
demands were significantly increased in the multitasking 
condition relative to other conditions (ps < .001) (Fig. 2). A 
complete list of all t tests is available with the supplementary 
materials (https ://osf.io/p6de4 /).

3.2  Physical demands

The overall model predicting physical demands score had 
a total explanatory power of 77.82%, in which the fixed 
effect of condition explained 5.30% of the variance. The 
model’s intercept was at 4.51 (SE = 3.29, 95% CI [− 1.96, 
10.99]). The effect of condition was statistically significant, 

F(5,180) = 10.56, p < .001. Bonferroni–Holm-corrected 
comparisons indicated that, as predicted, physical demands 
were higher in the disruption condition than in all other con-
ditions (ps < .05), apart from stress (p = .08) (Fig. 2).

3.3  Temporal demands

The overall model predicting temporal demands score had 
a total explanatory power of 65.55%, in which the fixed 
effect of condition explained 25.69% of the variance. The 
model’s intercept was at 10.11 (SE = 4.33, 95% CI [1.65, 
18.57]). The effect of condition was statistically significant, 
F(5,180) = 32.96, p < .001. Bonferroni–Holm-corrected 
comparisons indicated that, as predicted, temporal demands 
were increased in the time restriction condition relative to 
all other conditions (ps < .001), apart from stress (p = .08) 
(Fig. 2).

3.4  Frustration

The overall model predicting frustration score had a total 
explanatory power of 69.82%, in which the fixed effect of 
condition explained 10.18% of the variance. The model’s 
intercept was at 15.54 (SE = 6.84, 95% CI [2.14, 28.94]). 
The effect of condition was statistically significant, 
F(5,180) = 14.90, p < .001. Bonferroni–Holm-corrected 
comparisons indicated that, as predicted, frustration was 
increased in the time restriction and multitasking condi-
tions, relative to real-world and control conditions (ps < .02). 
Frustration was also increased in the disruption condition, 
relative to the real world (p < .001), but not control (p = .54). 
Additionally, frustration scores were also increased in the 
stress condition, relative to both real-world and control con-
ditions (ps < .02) (Fig. 2).

3.5  Task complexity

The overall model predicting task complexity score had 
a total explanatory power of 78.45%, in which the fixed 
effect of condition explained 19.47% of the variance. The 
model’s intercept was at 23.81 (SE = 6.47, 95% CI [11.10, 
36.52]). The effect of condition was statistically significant, 
F(5,180) = 39.95, p < .001. Bonferroni–Holm-corrected 
comparisons indicated that, as predicted, task complexity 
scores were increased in the multitasking condition relative 
to all other conditions (ps < .009) (Fig. 2).

3.6  Stress

The overall model predicting stress score had a total 
explanatory power of 63.67%, in which the fixed effect of 
condition explained 20.19% of the variance. The model’s 
intercept was at 14.51 (SE = 5.46, 95% CI [3.85, 25.18]). 

https://osf.io/p6de4/
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The effect of condition was statistically significant, 
F(5,180) = 24.57, p < .001. Bonferroni–Holm-corrected 
comparisons indicated that, as predicted, stress scores 
were increased in the social evaluative stress condition, 
relative to disruption, control and real-world conditions 
(ps < .05). Additionally, stress scores were also increased 
in multitasking and time pressure conditions, relative to 
real world, control and disruption (ps < .05). There was no 
difference in stress scores between multitasking, stress and 
time pressure conditions (ps > .36) (Fig. 2).

3.7  Distraction

The overall model predicting distraction score had a total 
explanatory power of 65.71%, in which the fixed effect of 
condition explained 5.92% of the variance. The model’s 
intercept was at 9.35 (SE = 4.53, 95% CI [0.47, 18.23]). 
The effect of condition was statistically significant, 
F(5,180) = 7.63, p < .001. Bonferroni–Holm-corrected 
comparisons indicated that, as predicted, distraction scores 

Fig. 2  Mean workload (and 95% CIs) for experimental conditions for all scales of the SIM-TLX
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were increased in the multitasking and disruption condi-
tions, relative to all other conditions (ps < .05) (Fig. 2).

3.8  Perceptual strain

The overall model predicting perceptual strain score had 
a total explanatory power of 62.25%, in which the fixed 
effect of condition explained 15.53% of the variance. The 
model’s intercept was at 3.84 (SE = 2.65, 95% CI [− 1.34, 
9.02]). The effect of condition was statistically significant, 
F(5,180) = 18.18, p < .001. Bonferroni–Holm-corrected 
comparisons indicated that, as predicted, perceptual strain 
scores were elevated in the disruption condition relative 
to all other conditions (ps < .001) except multitasking 
(p = .10) (Fig. 2).

3.9  Task control

The overall model predicting task control score had a 
total explanatory power of 80.45%, in which the fixed 
effect of condition explained 17.26% of the variance. The 
model’s intercept was at 23.84 (SE = 7.45, 95% CI [9.17, 
38.50]). The effect of condition was statistically signifi-
cant, F(5,180) = 39.03, p < .001. Bonferroni–Holm-cor-
rected comparisons indicated that task control scores were 
elevated in the disruption condition compared to control 
and real-world conditions (ps < .001), but not compared to 
multitasking, stress or time (ps > .07) (Fig. 2).

3.10  Presence/immersion

The overall model predicting presence score had a total 
explanatory power of 81.51%, in which the fixed effect of 
condition explained 1.25% of the variance. The model’s 
intercept was at 57.24 (SE = 7.93, 95% CI [41.62, 72.87]). 
The effect of condition was statistically significant, 
F(5,180) = 3.00, p = .01. Bonferroni–Holm-corrected com-
parisons indicated that there were only small differences 
in presence scores across conditions (see Fig. 2). Presence 
only differed between time and real-world (p = .006) and 
real-world and stress (p = .05) conditions. There were no 
other differences between conditions (ps > .22).

3.11  Convergent validity and divergent validity

A linear mixed model, with random intercepts for partici-
pants, was used to assess convergent validity. The model, 
predicting SIM-TLX overall workload using RSME scores, 
had a total explanatory power of 79.61%. The model’s inter-
cept was at 8.91 (SE = 2.17, 95% CI [4.63, 13.16]). Within 

this model, the effect of RSME was significant (beta = 0.50, 
SE = 0.025, 95% CI [0.45, 0.55], t(214) = 20.27, p< .001) 
and accounted for 60.05% shared variance between the work-
load measures. This indicates a high degree of convergence.

A linear mixed model, with random intercepts for par-
ticipants, was also used to assess divergent validity. The 
model, predicting SIM-TLX overall workload using enjoy-
ment scores from the IMI, had a total explanatory power of 
29.70%. The model’s intercept was at 35.32 (SE = 6.46, 95% 
CI [22.62, 48.17]). Within this model, the effect of enjoy-
ment was not significant (beta = 0.46, SE = 0.58, 95% CI 
[− 0.70, 1.61], t(220) = 0.80, p = .21) and there is only 0.29% 
shared variance, indicating the two constructs to be distinct.

3.12  Correlations

An exploratory analysis of the relationships between the 
scales of the SIM-TLX was run to understand how the dif-
ferent aspects of workload related to each other, and in par-
ticular the VR simulation-specific scales. The correlation 
matrix (Fig. 3) indicates that most scales showed moderate 
correlations with the overall measure, and with each other, 
as expected. The presence scale, however, shows the weakest 
relationship with overall workload and little to no relation-
ship with other scales.

4  Discussion

The aim of this study was to explore the potential of a new 
multidimensional, simulation-specific, task workload meas-
ure (SIM-TLX). Virtual reality is becoming increasingly 
important for human factors training, but there is still lim-
ited understanding of how VR impacts cognitive processes, 
and therefore learning. Appropriate workload measures 
can help to improve VR and simulation training through 
optimising cognitive load for learning (Kirschner 2002). 
Workload measures are also of benefit during the design 
process, to ensure that simulated tasks challenge trainees in 
a way that is akin to ‘real-world’ tasks. Consequently, this 
paper makes an important step by designing and develop-
ing a novel tool that may be useful for assessing task load in 
simulated environments.

To validate the new SIM-TLX, we tested the sensitivity of 
the subscales to a range of manipulations, as in Wilson et al. 
(2011). The experimental manipulations were successful in 
effecting changes in the predicted scales in almost all cases, 
supporting the validity of the instrument. Mental demands 
were elevated when the VR task was supplemented with 
an additional mathematics task, and physical demands were 
increased when use of the VR controllers was impaired, 
although physical demands remained low overall. Tempo-
ral demands were notably increased in the time restriction 
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condition, although they were also elevated in the social 
evaluative pressure condition. This is unsurprising, as in 
this condition participants were also made aware of the time 
limit. Frustration was increased in a number of conditions, 
and task complexity was clearly elevated in the multitask-
ing condition, as expected. Stress scores were increased in 
the social evaluative stress condition, as well as time and 
multitasking conditions. Distraction and perceptual strain 
were affected by multitasking and disruption conditions as 
expected, and task control was impaired by the disruption 
condition, but only in comparison with control. Notably, 
there was little effect of any of the manipulations on reported 
presence/immersion in the task.

Presence was included in the simulation-specific work-
load measure, as presence or immersion is thought to be 
important for motivation and engagement with VR simula-
tion training (Stanney et al. 2003). It has been suggested 
that presence in VR may reduce cognitive load, as less 
attentional effort has to be expended to consciously focus 
on the task (Wickens 1992), and Lackey et al. (2016) found 
that immersion correlated with additional mental demands. 
Alternatively, Rose et al. (2000) have suggested that VR 
might impose additional load when the user has to cope 
with mismatches of visual feedback and vestibular and pro-
prioceptive feedback. The present results, however, suggest 
that presence may have no clear relationship with work-
load. There was little effect of the workload manipulations 
on presence, and the correlation matrix (Fig. 3) indicates 
that presence had little to no relationship with other aspects 
of workload. Certainly, the relationship between presence 

and workload warrants further study, but based on these 
results presence should perhaps be treated as independent 
of workload. Consequently, we have excluded the presence 
scale from the final SIM-TLX and recommend that, when 
assessing the subjective experience of VR, it be considered 
a stand-alone construct (Usoh et al. 2000).

Drawing conclusions about the difference in workload 
between real and simulated tasks was not the primary aim of 
this study, but results indicated workload to be considerably 
higher in the virtual compared to the real block stacking task 
(similar results have been observed during surgical simu-
lation; Frederiksen et al. 2019). As discussed previously, 
cognitive load plays an important role in optimising learning 
(Guadagnoli and Lee 2004; Kirschner 2002), but it is likely 
that the relationship between real and simulated tasks is very 
much specific to the task in question and dependent on the 
fidelity of the VR environment.

Overall, we found good support for the validity of the 
SIM-TLX, once the presence scale had been removed. While 
the results here support the sensitivity of the measure to the 
manipulations, additional validation is still required in other 
populations and tasks. The individual dimensions, other than 
presence, were affected by the manipulations in the manner 
expected and all showed moderate relationships with the 
rest of the workload scale. Workload scores suggested that 
physical demands were low in this task, but this scale has 
been retained as physical effort may be an important fea-
ture of other simulated tasks. Additionally, the overall scale 
showed convergent validity with a unidimensional measure 
of mental effort and divergent validity from an enjoyment 

Fig. 3  Correlation matrix (with 
Pearson correlation coefficients) 
between SIM-TLX subscales 
and overall workload measure
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scale. In summary, although continued testing is required, 
these initial results support the validity of the final SIM-TLX 
(available from the Open Science Framework https ://osf.io/
p6de4 /) as a multidimensional measure that can be employed 
to support the development and validation of simulated envi-
ronments, and virtual reality training in particular.

5  Key points

• Workload plays a significant role in learning, but there is 
currently limited understanding of how simulated train-
ing affects the workload experienced by users.

• A simulation-specific, validated method of assessing load 
is needed to more effectively design and validate simu-
lated environments.

• This study presents and validates a new measure, the 
SIM-TLX, for assessing workload in simulation and vir-
tual reality.

• This new measure can be applied to research and the 
development and validation of simulators for human fac-
tors training.
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