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Abstract
Scene Walk is a video viewing technique suited to first-person video recorded from wearable cameras. It integrates a 2D 
video player and visualisation of the camera trajectory into a non-photorealistic partial rendering of the 3D environment 
as reconstructed from image content. Applications include forensic analysis of first-person video archives, for example 
as recorded by emergency response teams. The Scene Walk method is designed to support the viewer’s construction and 
application of a cognitive map of the context in which first-person video was captured. We use methods from wayfinding 
research to assess the effectiveness of this non-photorealistic approach in comparison to actual physical experience of the 
scene. We find that Scene Walk does allow viewers to create a more accurate and effective cognitive map of first-person 
video than is achieved using a conventional video browsing interface and that this model is comparable to actually walking 
through the original environment.

Keywords  First-person video · Body-worn camera · Video viewing · 3D scene reconstruction · Camera trajectory · 
Cognitive Map

1  Introduction

As camera technology becomes more compact, with battery 
life and storage capacity adequate for extensive video record-
ing, wearable and body-worn video cameras are becoming 
increasingly popular. By comparison to static video cameras, 
video recording from wearable cameras introduces new and 
diverse applications. These include social and recreational 

uses (Chen and Jones 2010; Ishiguro and Rekimoto 2012; 
Higuch et al. 2016), law enforcement (Jennings et al. 2014; 
Smykla et al. 2016) and healthcare (De et al. 2015), as well 
as novel utility and creative applications that are constantly 
emerging. However, increasing use of wearable cameras 
generates large archives of first-person videos, much of 
which is never edited, annotated or indexed, leading to dif-
ficulty in viewing and searching such videos. Manual review 
of video archives is extremely time-consuming and labour-
intensive. Before watching a given archive video, the viewer 
often has no idea when and where the content of interest will 
appear. As a result, it may be necessary to watch the whole 
length of a video (possibly at higher speed, if the video does 
not include complex scenes or rapid movement) in order 
to find a single activity or object of interest. Furthermore, 
content of interest is often distributed across multiple videos, 
especially if multiple people wearing cameras were present 
during the same events. In such circumstances, analysts 
often need to view the same video multiple times in order 
to understand the relationships between different points of 
view and object perspectives.

We consider this problem from the perspective of user 
experience of imagery within a virtual 3D environment, 
suggesting that the key problems are (a) information about 
camera pose at the time of capture being lost through the 

The original online version of this article was revised:The 
Acknowledgements section has been included.

 *	 Xiaomeng Wang 
	 xw337@cam.ac.uk

	 Alan F. Blackwell 
	 afb21@cam.ac.uk

	 Richard Jones 
	 richard.jones16@boeing.com

	 Hieu T. Nguyen 
	 hieu.t.nguyen9@boeing.com

1	 Department of Computer Science and Technology, 
University of Cambridge, Cambridge CB3 0FD, 
United Kingdom

2	 Boeing Defence UK, Bristol BS16 1EJ, United Kingdom
3	 Boeing Research and Technology, Huntsville, AL, USA

http://orcid.org/0000-0001-9074-1686
http://crossmark.crossref.org/dialog/?doi=10.1007/s10055-021-00523-4&domain=pdf


1172	 Virtual Reality (2021) 25:1171–1191

1 3

camera projection that renders light from the 3D scene only 
as a series of 2D image frames and (b) successive image 
frames from wearable cameras having complex variations 
as a result of unpredictable “shaky” body movements rather 
than intentional pointing of the camera. We suggest that, 
since the combination of spatial information loss and low 
video quality makes first-person video especially hard to 
understand (del Molino et al. 2017), novel viewing tools 
can be used to compensate for these problems and support 
analytic tasks.

We apply a human factors perspective, based on the neu-
roscience of human spatial reasoning. We propose a novel 
approach in which navigation through an archived video 
that was originally recorded in a 3D environment can be 
understood by analogy to previous research in the field of 
“wayfinding”. According to this analogy, if a previously 
unseen video has been recorded in a space that the viewer 
is not familiar with, then the viewer must implicitly con-
struct a “cognitive map” of that space in order to under-
stand the video. We suggest that the cognitive tasks involved 
in exploring or returning to a specific location in a video 
will draw on many of the same cognitive resources that are 
involved in exploring or returning to a physical place that 
one has visited before, and that this experience can be ana-
lysed and evaluated using methods drawn from wayfinding 
research. As noted by Dalton et al. (2019), “the study of 
wayfinding is central to research on human spatial cogni-
tion”. We provide more detailed explanations of the terms 
“wayfinding” and “cognitive map”, by reference to neuro-
science and human factors literature, in section “Cognitive 
Maps in Virtual Environments”.

Based on this cognitive perspective of video navigation 
as wayfinding within a 3D virtual environment, we propose 
a novel alternative approach to the problem of navigating 
first-person video, demonstrated in an application called 
Scene Walk. Our approach is to help users review first-per-
son videos by reconstructing a partial spatial model of the 
context in which the video was recorded, and presenting this 
through a non-photorealistic virtual scene visualisation. Our 
hypothesis is that visualisation of a 3D scene model can be 
combined with a custom video player to help users generate 
a cognitive map of the contextual and spatial information 
that would otherwise be lost (in standard approaches such 
as video summarisation and fast-forwarding) as a result of 
the 3D to 2D projection inherent in camera recording, exac-
erbated by frame selection or sampling.

In summary, first-person videos are especially demanding 
of the viewer’s cognitive map (because of changing camera 
pose and potential presence of multiple cameras), while also 
making it more difficult to acquire a cognitive map in the first 
place (because of camera shake and lack of editorial guidance). 
We expect that 3D scene-based approaches such as Scene Walk 
will have particular relevance to future proliferation of wearable 

cameras, and the growing archives of first-person video that will 
result. Later, in this paper we illustrate one potential application 
scenario—emergency response where video is recorded when 
walking into an unseen building. However, wearable cameras 
and egocentric videos are also used in a wide variety of other 
settings where users need to review video in relation to their 
movements during recording, including life-logging, memory 
support in dementia, or sports and recreation.

The technical approach of Scene Walk is to use recorded 
data to reconstruct stable elements of the 3D scene in which 
recordings were made by wearable cameras, and combine that 
stable 3D scene with a visualisation of the actual trajectory 
that was followed by the camera-wearer. In addition, a 2D 
video player window is inserted into the 3D scene, showing 
the sequence of 2D image frames that are associated with the 
trajectory, from the perspective of the camera position and pose 
at the time each frame was captured. Users can either view 
the stable 3D scene as a whole and follow the trajectory of 
the camera-wearer, or watch the 2D video projection from the 
reconstructed virtual perspective of the camera-wearer as they 
walked through the scene. The user can switch between these 
two modes, integrating their cognitive map of an egocentric 
first-person view with their location and context within a sta-
ble 3D environment.

In summary, we make the following contributions:

•	 A novel design approach in which a moving 2D playback 
screen is inserted into a non-photorealistic rendering of the 
3D context, thus giving users a direct and intuitive under-
standing of the original camera projection in a way that is 
integrated with contextual virtual environment cues to form 
a cognitive map.

•	 A novel video viewer, Scene Walk, that uses this design 
approach in combination with a visualised trajectory of the 
camera within the virtual scene, allowing the user to either 
gain an overview of the camera path in a stable virtual 
context, or investigate the scene as if they were the camera-
wearer.

•	 An experimental method derived from wayfinding 
research, that can be used to evaluate a viewer’s cognitive 
map of video recorded with a moving camera. We present 
evidence from a user study, demonstrating that the Scene 
Walk system does allow viewers to create a more accurate 
and effective cognitive map of first-person video than is 
achieved using a conventional video browsing interface.

2 � Related work

Previous researchers have explored strategies that could help 
analysts, editors and other users to more effectively and effi-
ciently review or search for relevant content in video from wear-
able cameras (Betancourt et al. 2015; Bolanos et al. 2017). One 
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substantial focus of research is to automatically identify, extract 
and compile the most relevant clips from the archive through 
video summarisation (Lee et al. 2012; Lin et al. 2015; Ho et al. 
2018). Video summarisation systems allow the user to view 
the video quickly, but with the danger that information may be 
lost if the summarisation relevance metric does not correctly 
anticipate the interest of the actual user. Video summarisation 
can also discard many familiar continuity cues that would help 
viewers to form a cognitive map of the 3D scene from chang-
ing camera pose in cinematography, such as “pan” (horizontal 
rotation of the camera pose to help the viewer understand the 
spatial relationship between two viewpoints) and “dolly” (linear 
movement of the camera through the scene).

An alternative strategy, as already mentioned, is to speed 
up the video replay (“fast-forwarding”) by sampling a subset 
of image frames (Poleg et al. 2015; Silva et al. 2018). Fast-
forwarding techniques may be easier to interpret because they 
retain the visible camera movements that are familiar film con-
ventions. Nevertheless, treating all image frames as the same 
importance, without considering the relevance to the viewer, 
means that viewers must attend to all image content when the 
camera is moving. Furthermore, the design and implementa-
tion of frame sampling algorithms is not straightforward—they 
can easily exacerbate problems of camera shake, making close 
attention to a rapidly changing scene even more cognitively 
demanding than viewing a well designed summary (indeed, 
the role of a professional film editor is precisely to assist inter-
pretation through selection of relevant content and transition 
scenes for continuity—although this manual process is in itself 
time-consuming, as well as introducing significant elements of 
editorial interpretation).

The primary goal of research in video summarisation is 
to automatically select key frames or video segments that 
can adequately represent the content of the original video 
when seen by a human viewer. This depends on construct-
ing a relevance model for frames (and segments), in which 
the relevance reflects correspondence between the content 
of each frame, and the (anticipated) user’s understanding 
of the scene content. For application to first-person video, 
researchers have investigated various elements within the 
image frame to evaluate the potential of those elements 
to improve user experience. For example, based on the 
social context of first-person video recording, the people 
and objects that the camera-wearer interacts with can be 
used as a cue to the relative importance of the frames (Lee 
et al. 2012). The scene context can also be estimated, for 
example using a classification approach, inferring a level 
of importance for that category of content in relation to 
expected user interest (Lin et al. 2015). Observed eye-gaze 
information can be used more directly to identify points of 
interest within a frame and thus to predict relative impor-
tance of frames in relation to the user’s understanding 
of that content (Xu et al. 2015). Where such measures 

of the user’s attention to the image are available (or can 
be reliably inferred from other evidence), deep learning 
methods can be used to train the necessary classifiers. For 
example, Yao et al. (2016) propose video summarisation 
using a highlight prediction score that is generated by a 
pairwise deep ranking method. Ho et al. (2018) proposed 
a deep learning framework which learned the distinctive 
spatiotemporal context information across multiple videos. 
However, in all of these methods, the main disadvantage 
of video summarisation is that video content meaningful 
to the user might be incorrectly omitted, either because 
the relevance model fails to generalise to new content, 
or because a new user’s attention may be focused on spe-
cific types of content that have not been captured in prior 
training. In creative or research tasks, where novel inter-
pretation is a key requirement, such failures are almost 
guaranteed.

The other technical approach that has most often been 
applied to browsing first-person videos is the fast-forwarding 
method, with specific enhancements to preserve scene inter-
pretation by the user. Kopf et al. (2014) described the con-
version of first-person videos to “hyperlapse” videos, which 
reduce frequent camera shake by constructing a smoother 
camera path for the output video, cropping and stitching 
frames to be consistent with this virtual camera. Poleg et al. 
(2015) proposed a frame sampling technique which selects 
frames having a similar direction of movement, in order to 
achieve a smooth fast forward video. Other fast forward-
ing technologies incorporate semantic information into the 
frame sampling algorithm, in order to ensure that the play-
back is consistent with the viewer’s understanding of the 
scene. Higuchi et al. (2017) developed an interface providing 
adaptive playback speeds based on egocentric cues for video 
browsing. Silva et al. (2018) combined a weighted frame 
sampling strategy with a transition smoothing method to 
generate a smoother and more consistent video. All these 
methods allow users to watch the resulting first-person 
videos more quickly and comfortably. However, the frame 
selection unavoidably leads to information loss. As with 
video summarisation, an algorithm that correctly recog-
nises and anticipates the user’s attention and interest should 
result in fast-forwarding that is easier to watch so long as it 
is consistent with that model. But if the user has individual 
interests that are not anticipated, fast-forwarding can easily 
make video content more difficult to watch and assimilate.

Previous research has considered the problem of how 
first-person video recording can be related to the 3D context 
in which the recording is made. For example, Sugita et al. 
(2018) describe an approach in which a previously identified 
workspace is scanned in advance, in order to construct a 3D 
model of the environment. Content from a moving camera 
is then indexed against this model, so that the model orien-
tation can be changed to correspond to the current camera 
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view. Use of an explicit scanning phase means that Sugita 
et al. (2018) are able to construct a complete visual model 
of the known space, unlike our own research in which we 
use a non-photorealistic approach to render the necessarily 
incomplete model that results when the environment has not 
previously been scanned. Kono et al. (2017) use image fea-
tures from a BWC to infer the current position of the camera-
wearer on a 2D map of the environment. This approach uses 
videogame conventions to relate local activity to a larger 
area in real time, but does not currently support retrospec-
tive analysis of archived video, or user understanding of a 
3D scene structure.

Other research has explored the use of 3D models to 
browse collections of still photographs (Snavely et al. 2006; 
Ballan et al. 2010; Arev et al. 2014; Nuernberger et al. 
2018). In photograph browsing applications, the main goal 
is to help users understand the angle from which a pho-
tograph has been captured. As with Scene Walk, the 3D 
context is rendered in a non-photorealistic manner, in order 
to emphasise the spatial geometry by contrast to the actual 
images. However, these photograph browsing interfaces do 
not allow the user to directly navigate the 3D model in the 
non-photorealistic virtual style employed in Scene Walk.

3 � Cognitive maps in virtual environments

Cognitive map is the term used to describe the complex 
set of mental representations that are used by humans to 
reason about their surroundings—to integrate observa-
tions and experiences, construct and interpret relation-
ships between places, and plan actions. As a functional 
definition, the term cognitive map does not correspond 
to an isolated brain mechanism, but to the joint operation 
of these diverse capabilities related to spatial reasoning 
and environmental modelling (Kitchin 1994). The multi-
disciplinary areas of research that contribute to the study 
of cognitive maps include, among many others, studies 
of reasoning about space, for example, as in the work of 
Tversky (1993) and Kaplan (1973), computational models 
of spatial reasoning (O’Neill 1991), studies of urban envi-
ronments as in the work of Lynch (Lynch 1960), studies of 
cartographic representations as in the work of MacEachren 
(1992) and studies of developmental deficits and educa-
tional strategies as in the work of Golledge et al. (1985).

Support for cognitive maps is a central consideration in 
the design, evaluation and optimisation of user interfaces 
that represent spatial and environmental data, including 
geographical information systems (GIS), computer-aided 
design (CAD) systems for architectural and urban design, 
navigation systems ranging from satellite route planning 
to VR gaming applications, as well as applications for 
data review and analysis in 3D environments of the kind 

that we present in the current paper. Because cognitive 
maps integrate knowledge across multiple levels of detail, 
experimental tasks explore task performance at different 
granularities, ranging from assessment of local accuracy 
in recall of a map (e.g. McNamara 1986) to integrative 
studies of large-scale understanding of the environment 
(e.g. Herman and Siegel 1978). A large body of empiri-
cal research confirms that cognitive maps do not consist 
of a single representation, but combine different levels of 
sensory and reasoning capabilities, influenced by a range 
of social, educational and developmental factors.

The diverse neuropsychological resources that are stud-
ied as aspects of cognitive mapping are critical to many 
areas of human performance, including reasoning about 
spatial facts, solving problems in relation to spatial con-
straints and planning navigation paths. This last topic 
has been a longstanding concern for applied psychology 
research under the rubric of wayfinding—the human com-
petence that involves finding a path from one’s current 
location to a desired destination, by reasoning about space 
(Golledge 1999). Support for wayfinding is a critical affor-
dance of the built environment and is an important priority 
in architectural practice and information design for public 
spaces (Arthur and Passini 1992; Gibson 2009).

Early research into human performance in virtual envi-
ronments was concerned with understanding navigation 
and route-finding errors in the virtual environment, and 
with understanding how users acquire cognitive maps of 
a virtual environment in order to improve wayfinding. One 
important application of such research was to understand 
whether a virtual environment could be used to train peo-
ple for later wayfinding in the real building that had been 
modelled (e.g. Witmer et al. 1996), a functional area of 
performance that requires transfer of knowledge from the 
virtual to the real environment by constructing and retain-
ing a cognitive map. In order to compare cognitive maps 
in relation to virtual and real environments, past stud-
ies have therefore carried out controlled experiments in 
which participants navigate through either a real building 
or a virtual simulation of that building, and then carry 
out reasoning or memory tasks in order to compare the 
accuracy and completeness of the cognitive maps in the 
two cases, for example, as studied by Ruddle and Payne 
(Ruddle et al. 1997) in a “desk-top” (non-immersive) vir-
tual environment.

Controlled studies carried out with these earlier genera-
tions of technology confirmed that learning of cognitive 
maps in non-immersive virtual environments was impaired 
by technical factors such as poor visual fidelity and reduced 
peripheral vision (aspects that soon improved, and continue 
to be improved in studies of more recent generations of 
immersive VR, e.g. Ruddle et al. 1999). Learning of cogni-
tive maps in the physical world is also dependent on other 
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sensory inputs that have not yet been easily simulated in 
VR, such as vestibular, haptic, locomotor and proprioceptive 
feedback (Lackner and DiZio 2005), and these types of sen-
sory input are shown to improve performance in immersive 
VR when approximated in a walking interface while using 
six-DoF tracker with a head-mounted display (Ruddle and 
Lessels 2009).

A range of experimental tasks have been developed in 
order to compare the accuracy and completeness of cogni-
tive maps acquired in real and virtual environments, some 
adapted from earlier research that compared learning from 
paper maps to actual navigation (e.g. Thorndyke and Hayes-
Roth 1982). We have applied related experimental measures 
for the research reported in this paper, although our research 
focuses on a more specific use case rather than generic 
learning. In typical learning studies, participants repeatedly 
navigate the real and virtual environments, often for several 
hours, in order to recall the full structure of the environment 
(Wilson et al. 1997; Ruddle et al. 1997). As noted by those 
researchers, there are design opportunities to replace the 
need for comprehensive learning with improved guidance, 
interaction and navigation aids (for example, as explored by 
Burigat and Chittaro (2007) for outdoor environments), and 
our own Scene Walk interaction method offers an example of 
such a novel approach. Other recent research has taken a dif-
ferent emphasis, using immersive virtual reality to simulate 
and evaluate improved design for wayfinding. However, it is 
still unclear whether immersive VR will be effective for that 
purpose (Kuliga et al. 2020), or even that common naviga-
tional tools such as street view visualisations offer measur-
able benefits over conventional maps (Qiu et al. 2020).

In summary, research into cognitive maps has been 
carried out using a wide variety of technologies and rep-
resentational techniques, some more realistic than current 
commercially available virtual reality products, and many 
less realistic. At the most realistic extreme, studies involve 
actual real buildings, studying the formation and applica-
tion of cognitive maps as people move around in the real 
physical world. The least realistic representational extremes 
have included studies of cognitive maps in relation to digi-
tal sketch maps and traditional 2D paper maps or building 
plans. Many of the earlier studies that we build on in the 
current project have involved “desktop virtual environ-
ments” (as they are defined in the literature Ruddle et al. 
1997) which are non-immersive 3D perspective renderings, 
that are navigable, and may be more or less photorealistic, 
depending on the maturity of real-time graphics hardware at 
the time of that particular study, and on the degree of detail 
and fidelity in the scene model and rendering algorithms.

Our project extends this previous literature with two 
new variants within this range of virtual and representa-
tional realism. The first is to study acquisition of cognitive 
maps when the scene is represented via first-person video 

recordings of an actual environment. 2D video recordings 
are photorealistic, non-immersive and non-navigable (other 
than playing backward or forward in the video timeline). The 
closest to this approach in previous research is the study by 
(Witmer et al. 1996) which involved presenting the route 
through a building with a series of photographs accompa-
nied by a verbal description of the route being followed.

Our second new contribution within the range of real-
ism options is the Scene Walk method, which is non-pho-
torealistic and non-immersive, but is fully navigable. Our 
evaluation of non-photorealistic interactive scene rendering 
can be compared to the work of Ruddle and Lessels (2009), 
which compared a detailed VR model to an “impoverished” 
model with far less visual detail, and concluded: “Partici-
pants” performance was largely unaffected by the amount 
of detail in the visual scene, indicating that full body-based 
information is necessary for efficient navigation, but a rich 
visual scene is not”.

In the evaluation study reported below, which uses the 
same experimental techniques as many of the studies in the 
previous literature reviewed here, we compare these two new 
representational alternatives (first-person video and Scene 
Walk) to the benchmark of navigation in the actual physical 
world. The physical world is photorealistic, immersive and 
navigable, in addition to offering other aspects of realistic 
sensory experience that are not yet available in commercial 
VR products including haptic, locomotor feedback. Compar-
ison of the physical world to these two alternative methods 
for virtual scene representation allows us to study the extent 
to which photorealism and navigability are important factors 
in the formation of cognitive maps, as design parameters that 
can be varied in future virtual reality applications.

4 � Scene Walk

The goal of the Scene Walk project is to enhance a user’s 
ability to form a cognitive map of the 3D environment 
within which first-person video has been recorded. We use 
non-photorealistic rendering to help viewers understand how 
the images they are seeing relate to the 3D spatial context in 
which the video was recorded, and to the route that was fol-
lowed by the person wearing the video camera. Such capa-
bilities are likely to be useful in tools for indexing or edit-
ing recreational first-person video, or for situations where 
analysts must review archives of video that has been cap-
tured from wearable cameras, for example, during forensic 
analysis of recordings made by body-worn cameras (BWCs) 
on the uniforms of police or emergency service personnel 
during crime-scene investigation or emergency response.

In forensics or emergency response situations, as in 
many kinds of sport and recreational activity, wearers of 
BWC devices are not primarily focused on making video 
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recordings—they are engaged in other tasks, and capture of 
video is incidental to those tasks. As a result, the captured 
video has little systematic survey or narrative structure. As 
the camera-wearer moves and turns their body, some points 
in the environment are likely to be recorded multiple times, 
while other points may never be captured at all. Informa-
tion about the environment is thus necessarily incomplete, 
and watching such video can be confusing for the viewer. 
Other quality challenges inherent in footage recorded from 
wearable cameras, such as camera shake, are also more 
severe in situations where the person wearing the camera 
is engaged in other tasks, and not primarily attending to the 
quality of the video recording.

As an example of a scenario where first-person video of 
this kind might be recorded, emergency response person-
nel must often enter buildings that they have not previously 
visited, and for which they do not have access to maps or 
plans of internal layout. Prior information is limited to the 
location of the building itself, and its external dimensions. 
The path taken by emergency personnel through the build-
ing is therefore exploratory, with some sections of their path 
motivated by route-finding, and some directed towards spe-
cific objects of interest (for example, an appliance that was 
the origin of a fire, casualties, safety hazards, weapons or 
other illegal materials). Points of interest are likely to be far 
more strongly represented in the recorded video, because 
personnel walk back and forth in areas that are most relevant 
to their task. Video recorded in those localities will therefore 
include considerable redundancy and will capture pictures 
of the same objects from many different angles. Relatively 
featureless parts of the environment (such as passages with 
no doors) are likely to be only partially recorded in this kind 
of scenario, because personnel move more quickly through 
contexts that have no features of interest and do not require 
exploratory path-finding.

In scenarios of this type, the person who later views the 
recorded video is likely to be a different person from the 
one who was wearing the camera during recording. Typical 
examples might be a reporter, a forensic analyst, or mem-
bers of a legal team. The viewer is likely to watch extended 
recordings that were made while camera-wearers were walk-
ing back and forth in the same area, often including multiple 
separate videos recorded during the same period (by several 
members of an emergency response team, each wearing their 
own BWC). Finding all the information potentially relevant 
to particular locations, or particular objects of interest, will 
involve reviewing the full length of every individual video, 
probably repeatedly, in order to recognise and annotate 
points at which the camera-wearer returns to the same loca-
tions. As with wayfinding tasks, successful recognition and 
labelling depends on the viewer forming a (probably incom-
plete) cognitive map of the internal layout of the building, 
in order to decide which 2D images correspond to which 3D 

locations. The Scene Walk system aims to provide users with 
the necessary tools to form a cognitive map of the internal 
layout of a building, and relate this to the 2D image frames 
that were captured from wearable cameras, in order to per-
form analytic tasks with the resulting video archives.

4.1 � Implementation

In our motivating scenario of emergency response person-
nel exploring an unknown building while wearing BWCs, a 
typical exploration path in one room of this building might 
be as shown in Fig. 1, with each camera pose rendered as 
a green cone. The tip of the cone is the direction that the 
camera was facing. As discussed, multiple images will often 
be captured that capture the same regions within the 3D 
frame of reference, but have been recorded by the BWC from 
different view angles, as the camera-wearer turns around, 
retraces steps or walks back and forth. These multiple view-
points, while occurring incidentally, are a resource that can 
be used to reconstruct the 3D scene. In order to construct a 
3D model, we therefore use a combination of camera sensor 
data and feature-based post-processing of the image frames 
to identify and match corresponding image patches that have 
been captured from different viewpoints.

The wearable camera market is currently very dynamic, 
with rapid development of device specification and feature 
sets. We make the assumption that future devices in this 
class will include at least a minimal level of low-cost and 
low-power sensors, including motion sensors, such as gyro-
scope and accelerometer, as in BWC models such as Pana-
sonic Arbitrator-BWC and Philips DVT3120 VideoTracer 
BWC. We note that geographic location sensors such as 
compass and GPS, even if sufficiently accurate to be used 
for image localisation at the scale of our motivating scenario, 
would not be reliable or effective in indoor settings. We also 
note that other motion sensors (e.g. barometer) may pro-
vide additional motion information of BWC, such as vertical 
movement. However, following the design of Scene Walk 
relying on a minimal level of sensors, we only assume the 
necessary motion sensors, gyroscope and accelerometer are 
available in order to provide motion information with six 
full degrees of freedom (DoF). For our study, we used a pro-
grammable Android platform (Huawei P20) to implement 
an image capture protocol including these sensor annota-
tions. The camera sensor is with field of view of 66◦ . The 
frame rate is 30 frames/second, and its image resolution is 
1280 × 720 . The motion sensors are microelectromechanical 
systems (MEMS) gyroscope and accelerometer, which are 
widely available, especially on mobile devices, for monitor-
ing the device movement. We developed a simple data col-
lection application using the ARCore library, which captures 
the image frame sequence, timestamp at which each frame 
was captured, and the six-DoF camera pose at that time.
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In post-processing, we applied the patch-based multiple 
view stereo (PMVS) method (Furukawa and Ponce 2010) to 
reconstruct the 3D scene using the recorded image frames 
and the camera poses. Given a sequence of image frames, 
the features of each image are detected using Harris and 
difference of Gaussians operators. For each feature in an 
image, matching features that satisfy an epipolar consistency 
constraint are found in other images. Reconstructed scene 
patches are then initialised by triangulating from the match-
ing feature pairs. Only reconstructed scene patches which 
are visible in at least three image frames are regarded as a 
successful reconstruction. This initial set of reconstructed 
scene patches is usually sparse, with the patch centres and 
normal vectors optimised by minimising a photometric dis-
crepancy function. The whole reconstruction process of the 
scene patches includes three steps: matching, expansion and 
filtering. In the expansion step, the PMVS method generates 
new scene patches utilising the parameters of their neigh-
bouring existing patches. The neighbouring relationship is 
determined by the position of the image projection of the 
patches. After the expansion, a filtering step is applied to 
delete outliers from the reconstructed patches by consider-
ing consistency of visibility (for example, removing patches 
estimated to be outside the spatial bounds of the building, 
or outside the viewing angle of the camera). Further itera-
tions of expansion and filtering can be performed to add 
more reconstructed patches, which are rendered within the 
3D scene as a cloud of coloured image patch fragments, 
as shown in Fig. 1. The reconstructed scene more focuses 
on the static structure and elements of an environment cap-
tured by BWCs. Note that presence of specular highlights 
and obstacles (e.g. people walking through the scene) will 
be discarded in patch optimisation of PMVS method and 

will not appear in the reconstructed scene model. Note also 
that since the PMVS method is feature-based, it may not 
work well when reconstructing featureless scenes such as 
blank walls (although such scenes may include very little 
contextual information of any kind).

The 3D rendering and view control facilities of the Scene 
Walk prototype are provided by the Godot open source 
game engine. The elements of the Godot scene are the 
cloud of coloured image patch fragments, and the trajectory 
of camera pose vectors, as shown in Fig. 1. We note that 
this rendering is not intended to be a photorealistic scene 
reconstruction (for example, as might conventionally be 
constructed using 3D scanning, structure from motion and 
texture mapping), but a non-photorealistic partial recon-
struction that is designed to provide sufficient information 
about the 3D context so that viewers can form a cognitive 
map supporting their interpretation of the video.

Each image frame from the recorded sequence is indexed 
by timestamp to correspond with one camera pose location. 
At any time, a single image frame is rendered within the 3D 
scene as a 2D video player, projected onto a virtual screen 
from the perspective of the corresponding camera pose, as 
shown in Fig. 2. The position, shape and orientation of the 
virtual screen are determined by the camera projection, while 
the distance from the camera position to the virtual screen 
(and thus size of the projected image) can be adjusted by 
the user with keyboard controls. When the video plays, the 
projection point of the virtual screen image advances to each 
successive location along the motion trajectory, giving the 
impression of a video screen that is moving forward along 
the trajectory while the video plays. This moving screen can 
naturally be interpreted by the user as the first-person view 
that was being seen by the camera-wearer walking along 

Fig. 1   The non-photorealistic 3D scene reconstruction, with trajec-
tory of camera poses within the scene. The 3D scene is rendered 
as a cloud of coloured image patch fragments, and the sequence of 
six-DoF camera poses as a trail of green cones, each pointing in 
the direction the camera was facing at that location. View (a) cor-
responds to a portion of the scene in which the camera-wearer was 

walking around a single room (a kitchen/common room in a student 
residence), looking towards objects at the sides of the room, and on 
a table in the centre of the room. View (b) is a close-up of the area 
bounded by the red rectangle in view (a), showing the level of detail 
maintained by the model—here, an object that is resting on the table
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that route when the recording was being made. The user can 
either press a “play” key on the keyboard to let this virtual 
screen move automatically along the trajectory in time with 
video playback, or else manually step forward and backward 
to review the content of specific image frames. The Scene 
Walk with all rendered elements (the cloud of image patch 
fragments, the 2D video player and the camera trajectory) 
is shown in Fig. 3a. A stitched photograph of the real scene 
(the kitchen and dining area of a common room) is shown 
in Fig. 3b to give readers a general idea of what was shown 
in the Scene Walk.

Scene Walk offers two modes in which the moving video 
playback screen can be followed. In one, the user’s view-
point stays static relative to the 3D building coordinates 
and reconstructed point cloud. From this “God-view” per-
spective, the virtual projection screen moves around in the 
building as they watch, as shown in Fig. 4a. The God-view 
mode allows users to understand the moving viewing posi-
tion in relation to the overall scene and trajectory. Alterna-
tively, the user can choose to follow the point of view of 
the person wearing the camera. In this “first-person view” 
mode, the virtual projection screen stays static at the centre 
of the display, and the building coordinates and point cloud 
move around to show the 3D location and context around 
the screen, as shown in Fig. 4b. The first-person view mode 

allows more detailed inspection of the image frames cap-
tured by the camera and also allows the viewer to understand 
which aspects of the overall scene were visible to the person 
wearing the camera.

All user controls, as shown in Table 1 (including step-
ping back and forth along the video timeline, and switching 
between view modes), use standard keyboard and mouse 
game controls, as implemented in the Godot engine. Users 
are not restricted to simply following the path of the pro-
jected video, but can use game controls to view the 3D 
model from any angle.

A useful further affordance of the Scene Walk interaction 
paradigm is that semantic labels can be applied to objects 
and scene elements when the video is paused in first-per-
son view, by clicking on the plane of the virtual projection 
screen. In order to label an object, the user draws a bound-
ing polygon in this plane, defining the area within the video 
frame that corresponds to the object of interest, as shown in 
Fig. 5. Projection from the current camera viewpoint allows 
this appearance model to be associated with the part of the 
3D scene model that is projected onto this polygon, and to 
derive features of its appearance that can be used to train a 
classifier, or for retrieval of similar content in related videos. 
Note that evaluation of this labelling facility as an analysis 

Fig. 2   The rendered camera trajectory (a sequence of green cones) 
and the 2D video player screen as projected from one of the camera 
positions. The current projection point and player screen can move 
along the trajectory as the video plays. View (a) shows only the cam-
era trajectory and projected screen, without the rendered 3D scene, 
and corresponds to a video recorded while walking along several cor-
ridors of an office building, turning to look into rooms and at distinc-
tive objects such as the fire extinguisher that is currently visible on 
the projection screen. View (b) includes the image patches of the ren-
dered 3D scene, and corresponds to a portion of the video recorded as 
the camera-wearer had walked around a single room, and is about to 
walk out through the doorway that is currently visible on the projec-
tion screen. In this figure, the red lines (not part of the actual system 
display) have been added to explain the projection geometry from the 

current green cone to the current screen position. Note that the dis-
tance between the projection point and the projected screen can be 
adjusted by the user via keyboard controls, enlarging the video pro-
jection at the expense of obscuring scene context, to optimise the 
balance of projection and context according to the required level of 
detail versus context in different parts of the video. The large dark 
green arrow visible beneath the floor in view (a) provides a global 
north reference orientation within the coordinate system of Scene 
Walk. The typical video scenes chosen for this figure emphasise the 
relative lack of informative detail that is present in such recordings, 
and the difficulty that is faced by viewers in trying to establish a cog-
nitive map from images of relatively featureless walls interspersed by 
images of recognisable or distinctive objects that the camera-wearer 
may have stopped to look at (Color figure online)
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Fig. 3   a The complete rendered elements of the Scene Walk. The 2D 
video player was brought slightly backward to show its matching with 
the rendered cloud of image patch fragments. b This stitched image 

shows the real scene (the kitchen and dining area in a common room) 
corresponding to that shown in a 

Fig. 4   Two views of the same kitchen/common-room scene that is 
shown in Fig.  1. View (a) shows the God-view mode, in which the 
geometry of the camera path can be seen relative to the point cloud 
rendering of the walls and benches at the sides of the room and the 
table in the centre. The projection screen moves around within this 
3D model, and can be interpreted as an image of what the camera-
wearer was looking at (within the field-of-view constraint of the cam-
era) at a given point in time. View (b) shows the same point in time, 
but as seen in first-person view mode. Here, the projection screen 
is always centred in the display, so that the viewer replays the first-

person visual experience (within the field-of-view constraint of the 
camera) as seen by the camera-wearer when moving around while the 
video was recorded. In first-person view mode, the point cloud ren-
dering at the sides of the video screen (extending the field of view 
of the camera) moves around to give the impression that the viewer 
is moving through a 3D environment while a video screen “floats” 
directly in front of them. As in Fig. 2, the global coordinate reference 
is indicated by the large dark green arrow beneath the floor in View a 
(Color figure online)

Table 1   The user controls in Scene Walk

Description Keyboard control

Global navigation using WSAD and mouse *W-forward *S-back *A-left *D-right 
*Mouse motion—turning left/right/up/
down

Play/pause the video with “play/pause” button P key
Enter or exit the “first-person view” by pressing “Switch View” button Space key
Jump 0.1 seconds along the trajectory by pressing “forward”/“backward” button Period/comma key
Jump 10 seconds along the trajectory by pressing “Shift”+“forward”/“backward” button Shift + period/comma key
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and labelling tool is not a focus of the current paper and will 
be the subject of future work.

5 � Wayfinding evaluation study

As explained in “Introduction”, we characterise the cog-
nitive benefits of the Scene Walk interaction paradigm in 
terms of helping the user to construct a cognitive map. On 
that basis, as explained in “Introduction”, we propose that 
the cognitive task of finding locations within a first-person 
moving video that has been recorded in a 3D spatial context 
can be investigated by analogy to wayfinding within that 
3D context.

Many previous experimental investigations of cognitive 
maps have involved wayfinding tasks in which the spatial 
context is presented in several different modalities, in order 
to compare the relative advantages of those modalities 
for constructing cognitive maps. In previous research as 
reviewed earlier in this paper, alternative modalities have 
included paper maps (Thorndyke and Hayes-Roth 1982), 
sketch maps (Tversky 1993), photographs with verbal 
description of a route (Witmer et al. 1996), desktop “virtual 
environments” (non-immersive 3D scene renderings) (Rud-
dle et al. 1997), immersive VR headsets (Ruddle et al. 1999), 
Google Street View renderings (Qiu et al. 2020), immersive 
VR with a walking interface (Ruddle and Lessels 2009) and 
physical experience in the real world (Kuliga et al. 2020). 
We introduce first-person video recordings as a further 
modality from which viewers must also acquire an implicit 

cognitive map, if they are going to be able to understand 
the 3D space within which the recording was made, and be 
able to find locations within that space by “wayfinding” to 
a point in the video.

In our evaluation, we designed an experiment that com-
pares cognitive maps acquired in three different modalities. 
The control condition provides the most immersive sensory 
experience, using the modality of walking through a real-
world building. Our expectation is that walking in the real 
world provides maximal sensory cues that could be achieved 
in immersive virtual reality, including full haptic, locomo-
tor and proprioceptive experience of the environment. The 
second condition is a moving first-person video recording, 
which is a photorealistic projection of the same building, 
acquired by making an actual photographic video record-
ing while a person walked through the building, but with 
free movement of the camera-wearer as would occur in the 
emergency response scenario described above. Our expec-
tation is that this modality would be more challenging than 
most previous cognitive map and wayfinding experiments. 
The third condition is the Scene Walk prototype, used to 
navigate the same first-person video as in the second condi-
tion, but rendered non-photorealistically as a scene model 
that has been extracted purely from geometric information 
that was implicit in the video. Our expectation is that the 
3D scene context and navigation tools will assist the cogni-
tive processes involved in forming a cognitive map, and in 
navigating to a specific location in the video.

In comparing these conditions, we expect cognitive map 
formation and wayfinding in the Scene Walk condition to 
be superior to the video condition, and inferior to the fully 
immersive real-world condition. Based on previous find-
ings by (Ruddle and Lessels 2009), that an “impoverished” 
VR model was just as effective as a high-resolution one, 
we anticipate that the non-photorealistic rendering of Scene 
Walk may be as effective as more complete and detailed 
VR models that have been studied in the past. Our design 
goal is to understand to what extent this non-photorealistic 
scene rendering is able to provide sufficient support for 
cognitive map formation, such that user performance might 
approach the fully immersive case of real-world experience. 
The overall structure of the experiment is similar to other 
studies that have used three presentation conditions such as 
(for example) that of (Richardson et al. 1999) or (Witmer 
et al. 1996). However, where these more conventional stud-
ies of wayfinding have typically compared a virtual environ-
ment to a 2D map and to real-world experience, we compare 
real-world experience to our Scene Walk viewer rather than 
a conventional VR environment and to a video recording 
rather than a map.

Fig. 5   An object of interest can be labelled by the user drawing a pol-
ygon onto the projection screen. This frame from the video shows a 
close-up of the same kitchen/common-room scene already shown in 
Figs. 1 and 4, at a point in the video where the camera-wearer was 
standing in front of a kitchen table (kitchen chairs, a sauce bottle, and 
a cooker can be seen in the background). Note that the wider con-
text of the room, previously seen in the point-cloud rendering, is not 
so easy to recognise in this close-up of the video alone. The yellow 
highlight shows where the user has drawn a polygon around one of 
the objects on the table, to label this part of the image as representing 
an object of interest
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5.1 � Experimental design

Our goal in this project was to create a video viewer that 
would assist users to formulate a cognitive map of the 3D 
environment in which first-person video had been recorded. 
Our two primary hypotheses were, firstly, that the Scene 
Walk prototype would help users to develop a cognitive map 
that was comparable to the experience of actually walking 
through a physical scene and, secondly, that the Scene Walk 
prototype would help users develop a cognitive map that is 
superior to watching the equivalent video in a conventional 
video player.

Drawing on methods from wayfinding research (e.g. Rich-
ardson et al. 1999; Witmer et al. 1996), we designed a study 
to compare three experimental conditions: physically walk-
ing through a building; watching a first-person video that 
was recorded by someone walking along the same route; and 
using the Scene Walk prototype to “walk” along the route. 
Video recordings were made of three different routes, and a 
within-subjects design involved each participant following 
one of the routes in a physical walk, one with Scene Walk, 
and one by watching the video. Assignment of routes to each 
condition, and presentation order of the conditions, was bal-
anced across participants. After following each route, the 
participant completed simple tasks so that we could assess 
the accuracy of the resulting cognitive map, including recall 
of the route, and reporting on the position and direction of 
a distinctive object.

5.2 � Preparation

Three different routes were designed, each of equivalent 
difficulty and length (as validated in a pilot study), in a 
university campus building that was unfamiliar to experi-
ment participants. Each route included multiple turns, since 
changes in direction are the key feature in route-learning 
tasks, and included two flights of stairs, since navigating dif-
ferent levels in a building requires formation of a 3D model. 
We carried out several pilot studies to decide suitable length 
and level of difficulty for the routes. Each route was approxi-
mately 200 meters along indoor corridors, starting at the end 
of one corridor, including 8 or 9 turns, and two flights of 
stairs, before ending at an office door. The directions of the 
individual turns in the sequence were different, but equiva-
lent in complexity, for all routes. Recordings were made 
by the experimenter, using the capture software previously 
described, running on a Huawei P20 phone worn in the mid-
dle of the chest. The 3D scene models of three routes were 
reconstructed from recorded image sequences and camera 
poses using PMVS method. The number of 3D patches in 
each scene model is 800,000 on average. Each patch is 7 × 7 
pixels. Each route covers a volume of about 1.6 × 2.4 × 200 
m3, as it is mostly office corridors along the route.

We recruited 12 participants from the students and staff 
at the University of Cambridge, including five females and 
seven males, aged from 18 to 40 years old (M = 28, SD 
= 4.65). All participants were physically able. All three 
routes used in the experiment were in an office building of 
the Department of Physics. None of the participants was 
familiar with the routes or the building. All participants 
reported informally that they found the route learning task 
to be challenging.

The experiment procedure was approved by the ethics 
committee of the University of Cambridge Department of 
Computer Science and Technology. Participants were com-
pensated for their participation with a gift voucher.

5.3 � Procedure

Each participant completed sessions in three conditions, 
navigating one route in a Walking session, one in a Video 
session, and one in a Scene Walk session. In the Walking 
session, the participant was asked to walk through the build-
ing, following the experimenter. The experimenter walked 
at a comfortable normal speed, averaging about 1.4 m/s. In 
the Video session, the participant was asked to watch the 
video played once through, using a default video player on 
a standard laptop model (Dell P75F003). The screen size of 
the laptop is 15.6”, and its screen resolution is 1920 × 1080 . 
The frame rate of the video is 30 frames/second, and its 
image resolution is 1280 × 720 . The video was recorded by 
the same experimenter while walking with the same speed 
as that in the Walking session. Participants were allowed 
to play and pause the video player at any time, but not to 
rewind and play back.

The Scene Walk session used the same Dell P75F003 lap-
top, with the Scene Walk prototype running under the Godot 
game engine, and the complete 3D reconstructed scene, the 
camera trajectory and the 2D video player rendered. At the 
start of the Scene Walk session, the experimenter briefly 
explained the operation of Scene Walk, and the participant 
was able to refer to a reference list of Godot navigation con-
trols (attached in “Appendix 1”) while practicing on a short 
trial video (with only two turns). All participants learned to 
use the Scene Walk controls within 2–5-min practice. When 
the participant was ready, he/she was asked to navigate the 
route from the beginning to the end using Scene Walk. They 
were able to switch freely between first-person mode and 
God-view mode whenever they wished. They completed the 
route only once and were not allowed to navigate backward, 
or to repeat sections.

Before the experiment started, the participants read a 
detailed explanation of the procedure, and signed a consent 
declaration. Participants then completed three sessions, 
with presentation order of the three conditions balanced 
across participants. Each session followed the previous one 
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immediately, with no break interval. At a predetermined 
point in each route, the experimenter would tell the partici-
pant to note a distinctive object, by pointing to it and saying 
that “This is the distinctive object, the XXX [saying the name 
of the object]”. The participant did not know the distinc-
tive object in advance, and the distinctive object in each 
route is different. There was no other interaction between 
the experimenter and the participant during the route naviga-
tion. After following each route in a session, the participant 
completed the three wayfinding assessment tasks for that 
session. Mean completion time for the whole experiment 
was 54 min, within which each of the three sessions lasted 
for about the same duration.

5.4 � Tasks

In each session, after following a route either physically 
or virtually, we tested the cognitive map of the participant 
using a variety of recall and judgment tasks. The first task 
was to verbally describe the route, as if telling another per-
son to follow the same route. The sequence of instructions 
given was recorded for further analysis. For the second task, 
participants were taken into a room of known dimensions—
this room was used for measurement only and had no over-
lap with any route in either session. They stood at a fixed 
location in the room and were asked to imagine that they 
were facing forwards at the start point of the route. They 
were then asked to point with a laser pointer in the direc-
tion that they imagined for the distinctive object, while the 
experimenter took a photograph of the laser spot for later 
measurement. The third task was to estimate the length of a 
direct line (in meters) from the start of the route (the point 
where the participants imagined standing) to the location 
of the distinctive object. The ground-truth distance and the 
ground-truth direction of the distinctive object were deter-
mined using the construction plans of the building where the 
route recordings were made.

There was an additional task for the Video and Scene 
Walk conditions, which was to find an image frame in the 
video that contained the distinctive object. In the Video 
condition, the participant located the image frame by click-
ing on the progress bar in the video player. In the Scene 
Walk condition, the participant located the image frame by 
jumping along the trajectory using navigation keys. For this 
task, elapsed time was measured from when the participant 
started the search to when they found an image frame con-
taining the object.

Finally, after the Scene Walk condition, we asked the 
participant how often they had played video games with the 
navigation controls as used in Godot and in Scene Walk. 
All participants claimed never to have played a game of this 
type, although some had played first-person games with a 

God-view mode. None of these had played games regularly 
in recent years.

6 � Results

6.1 � Route recall accuracy

Accuracy of route recall was measured by comparing the 
sequence recalled by the participant to the actual route. 
For comparability between routes, the accuracy statistic 
is the ratio of the number of turns correctly described, to 
the actual number in the route. Although the participant 
reported the turns in the route sequentially, we counted 
the largest number of continuously correctly described 
turns. For example, if only the fifth turn was missed in 
the route recall of a ten-turn route, and other turns were 
reported correctly, then the accuracy of route recall would 
be 0.9 rather than 0.4. Figure 6 shows the distributions 
of route recall accuracy in three conditions (Walking, 
Video and Scene Walk). We have attached the raw data 
in Appendix 1. Table 2 reports mean and standard devia-
tion for each of the three methods (Walking, Video and 
Scene Walk) and also the differences between conditions 
for each participant, corresponding to our two hypotheses 
comparing Scene Walk to actual walking and to conven-
tional video browsing. Figure 7 shows the distributions 
of the hypothesised differences in accuracy between the 
paired samples in these conditions: “Walking−Scene 
Walk” and “Video−Scene Walk”. A Shapiro–Wilk test 

Fig. 6   Distribution of route recall accuracy in three conditions: Walk-
ing, Video and Scene Walk. In these standard Matlab box plots, the 
box extends from the first to third quartile, the red line shows the 
median, whiskers show the data range excluding outliers (approxi-
mately 99th percentile), and a red plus shows outliers that are more 
than 1.5 box lengths away from the bottom or top of the box (Color 
figure online)
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confirms that these differences are normally distributed. 
Table 3 shows the results of the paired-sample t-tests for 
the two hypotheses.

The mean accuracies for the Walking and Scene Walk 
conditions are very similar, and the paired-samples 
t-test does not find evidence for a significant difference 
( M = 0.86 and M = 0.90 , p = 0.24 ). Recall accuracy in 
the Video condition is significantly poorer by comparison 
to Scene Walk ( M = 0.82 , p = 0.02).

6.2 � Distance estimation

We asked participants to estimate the distance from the 
beginning of the route to the location of the distinctive 
object. Figure 8 shows the distributions of distance estima-
tion in three conditions (Walking, Video and Scene Walk). 

We calculate an error statistic as the difference (in metres) 
between their estimate and the actual ground-truth distance. 
Figure 9 shows the distribution of the differences in the error 
statistic between the paired samples for our two hypotheses: 
“Walking−Scene Walk” and “Video−Scene Walk”. A Shap-
iro–Wilk test confirms that the differences of Video−Scene 
Walk are normally distributed. However, one extreme value 
in the differences of Walking−Scene Walk means that this 
statistic cannot be assumed to follow a normal distribu-
tion. We therefore used the nonparametric Wilcoxon signed 
ranks test to test the hypothesis for “Walking−Scene Walk”. 
Descriptive statistics are shown in Table 4. Results of the 
Wilcoxon signed ranks test and paired-sample t-tests are 
shown in Tables 5 and 6, respectively.

Fig. 7   Distribution of differences in route recall accuracy, comparing 
Scene Walk to the two comparison conditions: Walking and Video

Table 2   Descriptive statistics for route recall accuracy

Condition Mean SD N

Walking 0.86 0.09 12
Video 0.82 0.11 12
Scene Walk 0.90 0.11 12
Walking−Scene Walk −0.03 0.16 12
Video−Scene Walk −0.08 0.11 12

Table 3   Paired-sample t tests for route recall accuracy

Hypothesis t-value p-value

Walking versus Scene Walk −0.75 0.24
Video versus Scene Walk −2.44 0.02

Fig. 8   Distribution of error of distance estimation in three conditions: 
Walking, Video and Scene Walk. In standard Matlab box plots, a red 
plus shows outliers that are more than 1.5 box lengths away from the 
bottom or top of the box (Color figure online)

Fig. 9   Distribution of differences in error of distance estimation, 
comparing Scene Walk to the two comparison conditions: Walking 
and Video
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In distance estimation, the mean error for the Scene Walk 
condition ( M = 31.84 ) is lower than that for the Video con-
dition ( M = 40.72 ). However, the standard deviation of 
error for Scene Walk ( SD = 45.95 ) is considerably higher 
than for Video, which also has a large standard deviation 
( SD = 35.23 ). As a result of this high variance, the paired-
sample t-test does not allow us to report a significant dif-
ference in means ( p = 0.18 ). While we expected perfor-
mance using Scene Walk to be comparable to that when 
walking physically through the building, performance on 
this task in the Walking condition has even larger mean error 
( M = 45.12 ) and greater variability ( SD = 62.98 ) than either 
of the other conditions. Both Wilcoxon signed ranks test 
and paired-sample t-test find that this difference in means is 
significant ( p = 0.01 and p = 0.02 , respectively).

6.3 � Angle estimation

The third task required the user to estimate the angle at 
which the distinctive object was located, relative to the 
position and orientation where they were standing at the 
start of the route. Figure 10 shows the distributions of angle 
estimation in three conditions (Walking, Video and Scene 
Walk). We calculate an error statistic as the difference (in 
degrees) between vectors representing their estimate (as cal-
culated from the position of the laser spot in a photograph) 
and the actual direction. Figure 11 shows the distribution 
of the differences in the error statistic between the paired 
samples for our two hypotheses: “Walking−Scene Walk” 

and “Video−Scene Walk”. A Shapiro–Wilk test confirms 
that these differences are normally distributed. Descriptive 
statistics and results of paired-sample t-tests are shown in 
Tables 7 and 8, respectively.

The mean of the errors in the Scene Walk and Walking 
conditions is similar, ( M = 23.58◦ and M = 23.02◦ ), with 
the difference non-significant ( p = 0.47 ). Mean error in 
the Video condition is significantly larger than in the Scene 
Walk condition ( M = 36.89◦ , p = 0.03).

Table 4   Descriptive statistics for distance estimation error (metres)

Condition Mean SD N

Walking 45.12 62.98 12
Video 40.72 35.23 12
Scene Walk 31.84 45.95 12
Walking−Scene Walk 13.28 20.90 12
Video−Scene Walk 8.88 31.79 12

Table 5   Wilcoxon signed ranks tests for distance estimation error

Hypothesis z-value p-value

Walking versus Scene Walk −2.51 0.01
Video versus Scene Walk −0.82 0.21

Table 6   Paired-sample t tests for distance estimation error

Hypothesis t-value p-value

Walking versus Scene Walk 2.20 0.02
Video versus Scene Walk 0.97 0.18

Fig. 10   Distribution of error of angle estimation in three conditions: 
Walking, Video and Scene Walk. In standard Matlab box plots, a red 
plus shows outliers that are more than 1.5 box lengths away from the 
bottom or top of the box (Color figure online)

Fig. 11   Distribution of differences in error of angle estimation, com-
paring Scene Walk to the two comparison conditions: Walking and 
Video
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6.4 � Time to locate target frame

For the Video and Scene Walk techniques, we measured the 
time taken to locate a frame containing the distinctive object. 
Figure 12 shows the distributions of object location time in 
two conditions (Video and Scene Walk). The distribution 
of difference between times in the Video and Scene Walk 
condition is presented in Fig. 13. A Shapiro–Wilk test finds 
that the differences between the paired samples are not from 
a normal distribution, so a nonparametric Wilcoxon signed 
ranks test is used for hypothesis testing. Descriptive statis-
tics and results of the Wilcoxon signed ranks test are shown 
in Tables 9 and 10, respectively. The mean time taken to 
locate a target frame was 12.49 s for the Video condition and 
24.07 s for the Scene Walk condition. The Wilcoxon signed 
ranks test finds that this difference is marginally significant 

( p = 0.10 ), meaning that while no statistically reliable con-
clusions can be drawn, the observed difference cannot be 
discounted as resulting from random variation.   

6.5 � Discussion of quantitative results

The results reported in the previous section show that route 
recall accuracy in the Scene Walk condition is significantly 
better than in the Video condition. This confirms the find-
ing of previous studies where navigating in a virtual envi-
ronment supported improved route recall by comparison to 
photographs of the route (Witmer et al. 1996). Our finding 
that the non-photorealistic rendering style of Scene Walk has 
no disadvantage by comparison to fully photorealistic video 
recording confirms the finding by (Ruddle and Lessels 2009) 
that virtual environments with “impoverished” visual detail 
are equally effective for the acquisition of cognitive maps.

In addition, the error in estimating the direction of the 
distinctive object is significantly smaller in the Scene Walk 
condition by comparison to the Video condition. These 

Table 7   Descriptive statistics for angle estimation error (degrees)

Condition Mean SD N

Walking 23.02◦ 16.45◦ 12
Video 36.89◦ 18.06◦ 12
Scene Walk 23.58◦ 15.69◦ 12
Walking−Scene Walk −0.56◦ 24.21◦ 12
Video−Scene Walk 13.31◦ 22.11◦ 12

Table 8   Paired-sample t tests for angle estimation error

Hypothesis t-value p-value

Walking versus Scene Walk −0.08 0.47
Video versus Scene Walk 2.09 0.03

Fig. 12   Box plots showing the distribution of time taken to locate a 
video frame containing a distinctive object in two conditions: Video 
and Scene Walk

Fig. 13   Box plots showing the distribution of differences in time 
taken to locate a video frame containing a distinctive object between 
two conditions: Video and Scene Walk

Table 9   Descriptive statistics for object location time (seconds)

Condition Mean SD N

Video 12.49 5.24 12
Scene Walk 24.07 19.59 12
Video−Scene Walk −11.58 19.39 12

Table 10   Wilcoxon signed ranks test for object location time

Hypothesis z-value p-value

Video versus Scene Walk −1.26 0.10
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results support our hypothesis that Scene Walk allows users 
to create a more accurate cognitive map of the recorded 
scene, by comparison to watching first-person video. In 
contrast, comparing Scene Walk to the Walking condition 
where participants actually walk through the physical build-
ing, we observed that the mean values are similar and that 
tests for difference of means are non-significant. This does 
not allow us to discount any effect, but lends support to our 
hypothesis that the cognitive map formed by using Scene 
Walk is comparable to that formed when walking physically 
through a building. This suggests that value of Scene Walk 
in supporting this task is at least as effective by comparison 
to real-world navigation as has been demonstrated for VR 
displays in studies such as (Kuliga et al. 2020).

In the task estimating the distance to the distinctive 
object, comparison of errors between the Scene Walk con-
dition and the Video condition does not find a significant 
difference. We noted that the mean error in the Scene Walk 
condition is lower than in Video condition; however, the 
standard deviation in the Scene Walk condition is higher 
than in the Video condition. This result suggests that par-
ticipants do not have a consistent basis for estimation of 
distance. We note that in the physical Walking condition, 
the error in distance estimation is even larger than the other 
two conditions, suggesting that estimating the distance to 
an object located elsewhere in a multi-storey building is a 
difficult task even in the physical world. This is confirmed 
by participants’ informal reports, since they remarked when 
completing this task that they found it very difficult to make 
estimates of distance in three dimensions, between two 
points that are on different levels of a building. This finding 
can be compared to the observation by Ruddle et al. (1997), 
when comparing participants’ ability to estimate distances 
within a virtual environment (VE). As reported by Ruddle 
et al. “Despite being given a sense of scale, our navigation 
participants showed wide variability in their ability to esti-
mate absolute distances, and this did not correlate with other 
measures of their spatial knowledge (route-finding ability, 
distance correlations and direction estimates). In addition, 
they did not demonstrate a specific tendency to either over- 
or underestimate the distances. Although we do not know 
how well they were able to estimate distances in the real 
world, their mean performance was substantially worse than 
that of the (Thorndyke and Hayes-Roth 1982) navigation 
participants. It may be that absolute distance estimation is 
inherently difficult in a VE.”

Comparison of the time taken to locate an object using 
Scene Walk and a standard Video browser shows that the 
task completion times using Scene Walk are longer on aver-
age, although this difference is only marginally significant. 
This result does not support our hypothesis, in which we had 
expected to observe superior performance in the Scene Walk 
condition. However, we note that performance in this task 

was highly variable, with participants reporting a variety 
of strategies. Some completed the task very quickly in the 
Video condition, but reported that this was accidental. For 
example, after remembering that the object was in the mid-
dle of the route, one participant simply clicked in the middle 
of the video progress bar and found the object there. While 
using the Scene Walk prototype to locate the frame, partici-
pants reported that they did find the spatial position of the 
object instantly by viewing the scene reconstructed in Scene 
Walk, but were not sufficiently familiar with the navigation 
controls to quickly move to that place. For practical appli-
cation of the Scene Walk approach, implementing a reverse 
index from the 3D model to the camera views contributing 
features at that location could in future make it possible to 
navigate to an object by clicking in the scene, which would 
make this task trivially easy.

6.6 � Observation of user strategies

We observed the participants to see how they used the two 
view modes of Scene Walk (God-view and first-person 
view) during the route navigation session. Eight of the 12 
participants used the God-view more than the first-person 
view during the session. Participants reported that God-view 
helped them observe the complete scene and route. With the 
moving video player, they can know their position relative 
to the whole route easily, demonstrating that Scene Walk is 
able to retain the advantage observed by Ruddle et al. (1997) 
for overall view of building layout in a floor plan. In addi-
tion, they reported that the visualised trajectory of camera 
poses was helpful in route recall, confirming route encod-
ing strategies observed by Taylor and Tversky (1992). The 
first-person view provided more details when the detailed 
information was required, for example, when the viewer 
was approaching turns. As a result, a typical strategy was to 
use the God-view and switch to first-person view when they 
found this necessary. Four of the 12 participants used first-
person view more than the God-view. As reported by these 
participants, they felt the video viewer was a safe choice 
because it seemed more familiar in their daily life. Neverthe-
less, these participants reported that God-view was helpful 
when locating the distinctive object, and they switched to 
this view when trying to understand the spatial location of 
the distinctive object. They also reported that at each turn, it 
was helpful to use God-view to understand their present spa-
tial position and that in first-person view, it became difficult 
to remember their direction and position in the spatial envi-
ronment after a few turns. This confirms that Scene Walk 
retains the advantages of cognitive map acquisition when 
aided by a map or floor plan (Thorndyke and Hayes-Roth 
1982; Ruddle et al. 1997).
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We noted the number of times that participants switched 
between views during each session. The Scene Walk sys-
tem always started in God-view by default, after which we 
counted each cycle that the user switched to first-person 
view and back. The mean number of view switch cycles 
across all participants is 4.56 (SD = 2.59). We conclude 
from this frequency of switching that both God-view (rich in 
3D information) and first-person view (rich in 2D informa-
tion) are of value to the user when completing wayfinding 
tasks.

7 � Discussion of Scene Walk

Overall, we found statistical evidence that the Scene Walk 
interface was beneficial for participants, in performing tasks 
that depend on a cognitive map of the scene where first-per-
son videos had been recorded. We summarise three impor-
tant benefits that are provided by Scene Walk.

7.1 � Reconstructed 3D scene and spatial structure

The non-photorealistic rendering of a reconstructed 3D 
scene means that the viewer has immediate access to the 
whole of the 3D model and can also use viewing controls 
to view it freely from different angles. An important ben-
efit by comparison to conventional video players is that the 
complete spatial structure of the 3D scene is available to the 
viewer. The performance observed in the user study dem-
onstrates clear benefits. The available spatial structure: (a) 
helped users to form an accurate cognitive map of the route 
they had followed; and (b) assisted them in understanding 
the spatial position of a distinctive object that had been 
observed on the route. These benefits resulted in superior 
performance for route learning and angle estimation tasks 
when using Scene Walk, confirming advantages that have 
been observed for VR environments over photographs with 
verbal route descriptions (Witmer et al. 1996), while retain-
ing the advantages observed for maps and floor plans (Rud-
dle et al. 1997).

7.2 � Complete 2D image details with free view 
control

The Scene Walk system keeps all recorded image frames, 
meaning that no recorded information is lost in this interac-
tion method. However, the navigation approach in Scene 
Walk means that the user does not have to review all image 
frames in order to view first-person video content. By using 
the 3D scene and spatial structure to navigate the video, the 
user can decide when they need specific image details and 
what image details they are looking for. This confirms that it 
is productive to apply a “wayfinding” analogy to the problem 

of navigating within a first-person video recording to find 
images captured from a specific location. Free switching of 
view mode allows users to access image details at any time, 
by switching to first-person view mode.

7.3 � Camera trajectory registration to 3D structure

The camera trajectory in Scene Walk is rendered into the 
3D scene as a visualisation of the locations and poses from 
which the video was recorded. The visualised camera tra-
jectory offers the viewer an overview of the path followed 
by the camera-wearer, providing orientation cues that assist 
with navigation and formation of cognitive maps as dem-
onstrated by (Burigat and Chittaro 2007). The 2D video 
player, moving forward along the camera trajectory, allows 
the viewer to directly understand the spatial position of the 
camera-wearer relative to their point of view within the 
scene and thus to construct a cognitive map that corresponds 
to the experience of walking through a physical scene.

7.4 � Possibility of extending to outdoor videos

In this usage scenario and experimental evaluation, we have 
applied Scene Walk to video collected in the interior of a 
building. However, the interaction method can straightfor-
wardly be applied in outdoor environments, either where 
existing models are available [for example, using CityGML 
models (Kolbe et al. 2005; Gröger and Plümer 2012)], or 
where partial surface models are constructed using the meth-
ods described in this paper. The 3D reconstruction technique 
that we have described is not limited to indoor scenes, and 
an interesting question for future research will be whether 
similar patch-based non-photorealistic rendering would be 
equally valuable for users to construct cognitive maps from 
first-person video, for VR-assisted wayfinding in outdoor 
settings. Previous research by Burigat and Chittaro (2007) 
demonstrates the value of desktop virtual environments in 
an outdoor navigation application and also confirms that 
orientation cues such as our God-view reference direction 
and camera pose markers support navigation performance 
in that context.

8 � Limitations and future work

In order to evaluate the accuracy of users’ cognitive maps, 
we used several different performance measures, only some 
of which demonstrated advantages for the Scene Walk 
approach. While route recall and angle estimation were 
both assisted by Scene Walk, the third measure (distance 
estimation to a distinctive location) was not assisted, so this 
may be a limitation of the system as described (although 
we note that previous research has also found this task to be 



1188	 Virtual Reality (2021) 25:1171–1191

1 3

challenging). Given that users specifically report how diffi-
cult it is to estimate direct distance between points within a 
building, we note that it would be relatively straightforward 
to add a scale reference into the Scene Walk viewer in the 
future. If future applications of first-person video did include 
a requirement for distance estimation, the Scene Walk inter-
action model would provide a good basis for enhancement 
with scale reference functionality, offering the same advan-
tages for distance estimation that were found for maps over 
virtual environments, in previous research by Richardson 
et al. (1999) and Ruddle et al. (1997). We note that it would 
be very difficult to add such capabilities to conventional 
video viewers, in which spatial structure is not visualised.

In this work, we have made conservative projections 
regarding the sensor capabilities of mass-market wearable 
cameras in the near future, based on the devices that were 
available in consumer and professional markets at the time 
the research scope was defined. We developed a custom app 
(implemented on a commodity Android device), using only 
the onboard pose sensors that we predict will be deployed in 
models for the target market. We note that this combination 
of sensors is already available on some professional models 
of body-worn cameras, but not yet ubiquitous in low-cost 
consumer models (e.g. entry-level models of the popular 
GoPro “Hero” range). At the conclusion of this phase of 
research, it does appear that recent high-end consumer prod-
ucts are starting to include the sensing capabilities we pre-
dicted. However, if the market for wearable cameras devel-
ops such that ground-truth pose sensors are not included in 
consumer models, this would require additional methods for 
data analysis.

This work has explored the potential advantages of treat-
ing video navigation, from a human cognition perspective, as 
a special case of wayfinding. This perspective motivated the 
creation of the Scene Walk technique, as a new kind of video 
viewing interface where the moving video is inserted within 
a static non-photorealistic 3D scene. We have discussed a 
variety of video viewing use cases in which Scene Walk 
may be valuable. However, this work has not considered 
applications other than video viewing. It is possible that the 
cognitively motivated approach used in Scene Walk could 
also offer benefits in other applications, but we do not sug-
gest here that Scene Walk is a general-purpose approach 
suited to all applications.

In this work, we have specifically investigated the value 
to users of a non-photorealistic scene model, constructed 
using only image patches that triangulate camera views from 
uncalibrated cameras. It is of course possible to create more 

complete and photorealistic VR models, through methodi-
cal scanning, use of calibrated cameras, and supplemental 
range-finding hardware. Many products are already avail-
able, some at the upper end of the consumer price range, 
that support such VR model construction. It therefore seems 
likely that in future, photorealistic 3D models of familiar 
environments will become more widely available. We expect 
that the interaction methods we have described are likely to 
remain effective when better quality data are available, and 
this expectation is confirmed by previous research show-
ing that cognitive map advantages are still observed when 
the level of detail is reduced (Ruddle and Lessels 2009), 
although this expectation would benefit from further assess-
ment using data from actual consumer devices.

Potential future applications of the Scene Walk technique 
include a variety of situations in which first-person video 
is recorded from wearable cameras, and must be retrieved 
or analysed from archives of video content. In future work, 
more sophisticated machine vision methods would allow 
the 3D scene model to be reconstructed more efficiently, 
and with higher accuracy, potentially exploiting new sens-
ing capabilities in future wearable camera products. In the 
limit, a high-accuracy reconstructed 3D scene model might 
be able to provide complete contextual information without 
the assistance of 2D image frames—although this still does 
not solve the problem of time-varying data in cases where 
the structure of the scene is changing in places not within 
the view of any camera at the time of change, or that some 
parts of the scene may never have been observed. We have 
demonstrated the value of non-photorealistic rendering, 
even with partial data, by integrating a 2D rendering of the 
captured photographic frames into a partially reconstructed 
scene. Observation of users during our studies demonstrates 
that users are able to use the Scene Walk technique to switch 
effectively between photographic frames and non-photoreal-
istic visualisation of spatial context, and this approach can in 
future be extended to a variety of non-photorealistic partial 
model content.

Based on current state of the art, it also seems possible 
that partial scene models could be constructed in real time, 
allowing the Scene Walk method to be used for real-time 
mission control or situation assessment from streamed video 
data. Our experimental findings suggest that integrating 2D 
video recordings into an interactive 3D model in this way 
could offer substantial advantages for professional analysts, 
editors and other users of real-time first-person video con-
tent, especially where it is impractical to carry out full 3D 
scans of the environment in advance.
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9 � Conclusion

We have introduced Scene Walk, a video viewing tech-
nique designed for first-person video recorded from wear-
able cameras. The Scene Walk prototype integrates a 2D 
video player and visualisation of the camera trajectory into 
a non-photorealistic partial rendering of the 3D environment 
as reconstructed from image content. We applied methods 
from wayfinding research to assess the effectiveness of this 
approach in comparison to physical experience of the scene. 
Results demonstrate that Scene Walk prototype supports 
construction of a cognitive map that enables performance 
comparable to walking through a physical scene. Results 
also demonstrate that viewing first-person video with the 
Scene Walk prototype allows users to construct a cognitive 
map enabling significantly improved task performance by 
comparison to a conventional video viewer. These results 
support our hypothesis that a partial virtual scene model 
reconstructed from image geometry can be an effective video 
interaction tool, even where fully realistic scene reconstruc-
tion is not feasible.

Appendix

A Raw experimental data

See Tables 11, 12, 13 and 14.

Table 11   The raw data of route recall accuracy in three conditions: 
Walking, Video and Scene Walk

Participants Walking Video Scene Walk

Participant 1 0.78 0.90 1.00
Participant 2 1.00 1.00 1.00
Participant 3 0.78 0.70 1.00
Participant 4 0.78 0.80 0.80
Participant 5 0.90 0.78 1.00
Participant 6 0.90 0.89 0.80
Participant 7 0.90 1.00 1.00
Participant 8 0.90 0.78 0.90
Participant 9 1.00 0.60 0.67
Participant 10 0.70 0.80 0.89
Participant 11 0.80 0.80 0.89
Participant 12 0.90 0.80 0.80

Table 12   The raw data of error of distance estimation in three condi-
tions: Walking, Video and Scene Walk

Participants Walking Video Scene Walk

Participant 1 4.82 13.88 7.08
Participant 2 29.82 16.12 22.92
Participant 3 59.82 57.08 56.12
Participant 4 79.82 57.08 76.12
Participant 5 25.47 43.59 5.77
Participant 6 27.92 0.18 13.88
Participant 7 3.88 79.82 7.08
Participant 8 226.12 109.82 157.08
Participant 9 9.88 15.92 0.82
Participant 10 3.88 12.92 5.18
Participant 11 67.08 76.12 29.82
Participant 12 2.92 6.12 0.18

Table 13   The raw data of error of angle estimation in three condi-
tions: Walking, Video and Scene Walk

Participants Walking Video Scene Walk

Participant 1 11.63 59.70 46.74
Participant 2 0.68 46.09 6.75
Participant 3 21.11 61.82 18.40
Participant 4 27.43 56.94 23.13
Participant 5 25.47 43.59 5.77
Participant 6 16.26 18.15 23.45
Participant 7 15.95 36.60 17.16
Participant 8 23.94 43.27 60.02
Participant 9 9.90 11.73 24.68
Participant 10 50.20 28.76 21.63
Participant 11 58.37 25.40 10.54
Participant 12 15.30 10.60 24.69

Table 14   The raw data of object location time in two conditions: 
Video and Scene Walk

Participants Video Scene Walk

Participant 1 9.67 7.96
Participant 2 9.22 6.5
Participant 3 23.07 23.1
Participant 4 15.26 11.95
Participant 5 10.83 4.08
Participant 6 5.36 29.69
Participant 7 7.5 40
Participant 8 19.68 59.23
Participant 9 10.32 59.25
Participant 10 11.84 9.96
Participant 11 17.14 25.12
Participant 12 9.96 11.94
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B Manual for Scene Walk

•	 Global navigation using WSAD and mouse
	   * W—forward
	   * S—back
	   * A—left
	   * D—right
	   * Mouse motion—turning left/right/up/down
•	 3D scene toggled with “3D scene” (1 button)
•	 2D video toggled with “2D video” (2 button)
•	 Camera trajectory toggled with “trajectory” (3 button)
•	 Play/pause the video with “play/pause” button (P but-

ton)
•	 Enter or exit the “first-person view” by pressing “Switch 

View” button (space button)
•	 Jump 0.1 seconds along the trajectory by pressing “back-

ward” or “forward” button, jump 10 seconds along the 
trajectory by pressing “Shift ”+“backward” or “Shift 
”+“forward” button.
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