Skip to main content

Advertisement

Log in

A meta-analysis of the virtual reality problem: Unequal effects of virtual reality sickness across individual differences

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

Practical applications of virtual reality (VR), defined as a three-dimensional digital representation of a real or imagined space, have become increasingly popular and are now applied in workplace training, physical rehabilitation, psychological therapy, and many other settings. Feelings akin to motion sickness, called VR sickness, can arise from interacting with VR programs, and researchers have shown that certain aspects of the user, such as gender and age, may predict the occurrence of VR sickness. The unequal effects of VR sickness are a dire concern and the application of VR is unfair to certain users if they are prone to sickness. For instance, a workplace VR training program could result in disparate treatment if women experience more VR sickness than men. To investigate this notion, we perform a meta-analysis on the relationship between VR sickness and a wide array of potential antecedents. The results demonstrate that motion sickness susceptibility, gender, real-world experience, technological experience, possessing a neurological disorder, and possessing a relevant phobia all significantly relate to VR sickness; however, no moderating effects produced recurrent significant results. These results were partially explained by the current dominant framework for VR sickness, postural instability theory, but some findings were not predicted by the theory. Therefore, we support that (a) VR sickness produces unequal effects across multiple individual differences; (b) these effects appear resilient across applications of VR programs, and (c) further research is needed to develop theory and identify explanatory mechanisms that detail these relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We consider VR to be any three-dimensional digital representation of a space, including both VR presented via non-immersive and immersive hardware. Some consider only VR presented via immersive hardware to be “true VR” and VR presented by non-immersive hardware to be “VR 2.5D”, but we use this broader interpretation due to its prevalence and the study of moderators allows us to provide separate results for VR, “true VR”, and “VR 2.5D”.

References

  • Aggarwal R, Grantcharov TP, Eriksen JR, Blirup D, Kristiansen VB, Funch-Jensen P, Darzi A (2006) An evidence-based virtual reality training program for novice laparoscopic surgeons. Ann Surg 244(2):310

    Article  Google Scholar 

  • Akiduki H, Nishiike S, Watanabe H, Matsuoka K, Kubo T, Takeda N (2003) Visual-vestibular conflict induced by virtual reality in humans. Neurosci Lett 340(3):197–200

    Article  Google Scholar 

  • Akizuki H, Uno A, Arai K, Morioka S, Ohyama S, Nishiike S, Tamura K, Takeda N (2005) Effects of immersion in virtual reality on postural control. Neurosci Lett 379(1):23–26

    Article  Google Scholar 

  • Altena E, Daviaux Y, Sanz-Arigita E, Bonhomme E, de Sevin É, Micoulaud-Franchi JA, Bioulac S, Philip P (2019) How sleep problems contribute to simulator sickness: preliminary results from a realistic driving scenario. J Sleep Res 28(2):e12677

    Article  Google Scholar 

  • Appelbaum M, Cooper H, Kline R, Mayo-Wilson E, Nezu A, Rao S (2018) Journal article reporting standards for quantitative research in psychology: The APA Publications and Communications Board task force report. Am Psychol 73(1):3

    Article  Google Scholar 

  • Arcioni B, Palmisano S, Apthorp D, Kim J (2019) Postural stability predicts the likelihood of cybersickness in active HMD-based virtual reality. Displays 58:3–11

    Article  Google Scholar 

  • Armstrong MB, Landers RN, Collmus AB (2015) Gamifying recruitment, selection, training, and performance management: game-thinking in human resource management. In: Davis D, Gangadharbatla H (eds) Emerging research and trends in gamification. IGI Global, Hershey, pp 140–165

    Google Scholar 

  • Arns LL, Cerney MM (2005) The relationship between age and incidence of cybersickness among immersive environment users. In: IEEE proceedings. VR 2005. Virtual Reality. IEEE, pp 267–268

  • Assaiante C, Mallau S, Viel S, Jover M, Schmitz C (2005) Development of postural control in healthy children: a functional approach. Neural Plast 12(2–3):109–118

    Article  Google Scholar 

  • Aubrey JS, Robb M, Bailey J, Bailenson J (2018) Virtual reality 101: What you need to know about kids and VR [White Paper]. Common Sense Media. http://www.commonsensemedia.org/sites/default/files/uploads/pdfs/csm_vr101_final.pdf

  • Bedwell W, Pavlas D, Heyne K, Lazzara E, Salas E (2012) Toward a taxonomy linking game attributes to learning: an empirical study. Simul Gaming 43(6):729–760

    Article  Google Scholar 

  • Boletsis C (2017) The new era of virtual reality locomotion: a systematic literature review of techniques and a proposed typology. Multimodal Technol Interact 1(4):24

    Article  Google Scholar 

  • Bonato F, Bubka A, Alfieri L (2004) Display color affects motion sickness symptoms in an optokinetic drum. Aviat Space Environ Med 75(4):306–311

    Google Scholar 

  • Bonato F, Bubka A, Story M (2005) Rotation direction change hastens motion sickness onset in an optokinetic drum. Aviat Space Environ Med 76(9):823–827

    Google Scholar 

  • Bonato F, Bubka A, Palmisano S (2009) Combined pitch and roll and cybersickness in a virtual environment. Aviat Space Environ Med 80(11):941–945

    Article  Google Scholar 

  • Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2011) Introduction to meta-analysis. Wiley

    MATH  Google Scholar 

  • Bos JE, Bles W (2004) Motion sickness induced by optokinetic drums. Aviat Space Environ Med 75(2):172–174

    Google Scholar 

  • Bosco FA, Aguinis H, Singh K, Field JG, Pierce CA (2015) Correlational effect size benchmarks. J Appl Psychol 100(2):431

    Article  Google Scholar 

  • Botella C, Fernández-Álvarez J, Guillén V, García-Palacios A, Baños R (2017) Recent progress in virtual reality exposure therapy for phobias: a systematic review. Curr Psychiatry Rep 19(7):42

    Article  Google Scholar 

  • Boxer P, Groves CL, Docherty M (2015) Video games do indeed influence children and adolescents’ aggression, prosocial behavior, and academic performance: a clearer reading of Ferguson (2015). Perspect Psychol Sci 10(5):671–673

    Article  Google Scholar 

  • Bubka A, Bonato F, Urmey S, Mycewicz D (2006) Rotation velocity change and motion sickness in an optokinetic drum. Aviat Space Environ Med 77(8):811–815

    Google Scholar 

  • Buttussi F, Chittaro L (2017) Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Trans Visual Comput Graph 24(2):1063–1076

    Article  Google Scholar 

  • Carl E, Stein A, Levihn-Coon A, Pogue J, Rothbaum B, Emmelkamp P, Asmundson GJ, Carlbring P, Powers M (2019) Virtual reality exposure therapy for anxiety and related disorders: a meta-analysis of randomized controlled trials. J Anxiety Disord 61:27–36

    Article  Google Scholar 

  • Carson KP, Schriesheim CA, Kinicki AJ (1990) The usefulness of the “fail-safe” statistic in meta-analysis. Educ Psychol Measur 50(2):233–243

    Article  Google Scholar 

  • Cavanaugh CS (2001) The effectiveness of interactive distance education technologies in K-12 learning: a meta-analysis. Int J Educ Telecommun 7(1):73–88

    Google Scholar 

  • Chang E, Kim HT, Yoo B (2020) Virtual reality sickness: a review of causes and measurements. Int J Hum Comput Interact 36(17):1658–1682

    Article  Google Scholar 

  • Chesham RK, Malouff JM, Schutte NS (2018) Meta-analysis of the efficacy of virtual reality exposure therapy for social anxiety. Behav Chang 35(3):152–166

    Article  Google Scholar 

  • Chessa M, Maiello G, Borsari A, Bex P (2019) The perceptual quality of the oculus rift for immersive virtual reality. Hum Comput Interact 34(1):51–82

    Article  Google Scholar 

  • Chiari L, Rocchi L, Cappello A (2002) Stabilometric parameters are affected by anthropometry and foot placement. Clin Biomech 17(9–10):666–677

    Article  Google Scholar 

  • Cobb S, Nichols S, Ramsey A, Wilson J (1999) Virtual reality-induced symptoms and effects (VRISE). Presence Teleoper Virtual Environ 8(2):169–186

    Article  Google Scholar 

  • Cortina JM (2003) Apples and oranges (and pears, oh my!): the search for moderators in meta-analysis. Organ Res Methods 6(4):415–439

    Article  Google Scholar 

  • Cruz-Neira C, Sandin D, DeFanti T (1993) Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques. ACM, pp 135–142

  • Dang BK, Palicte JS, Valdez A, O’Leary-Kelley C (2018) Assessing simulation, virtual reality, and television modalities in clinical training. Clin Simul Nurs 19:30–37

    Article  Google Scholar 

  • Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58(9):882–893

    Article  Google Scholar 

  • De Kleyn APHA (1948) The connections between the optokinetic nystagmus and the vestibular system. Acta Otolaryngol 36(sup78):8–13

    Article  Google Scholar 

  • Dennison M, D’Zmura M (2017) Cybersickness without the wobble: experimental results speak against postural instability theory. Appl Ergon 58:215–223

    Article  Google Scholar 

  • Dennison M, D’Zmura M (2018) Effects of unexpected visual motion on postural sway and motion sickness. Appl Ergon 71:9–16

    Article  Google Scholar 

  • Didehbani N, Allen T, Kandalaft M, Krawczyk D, Chapman S (2016) Virtual reality social cognition training for children with high functioning autism. Comput Hum Behav 62:703–711

    Article  Google Scholar 

  • Diemer J, Alpers GW, Peperkorn HM, Shiban Y, Mühlberger A (2015) The impact of perception and presence on emotional reactions: a review of research in virtual reality. Front Psychol 6:26

    Article  Google Scholar 

  • Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463

    Article  MATH  Google Scholar 

  • Ebenholtz SM (1992) Motion sickness and oculomotor systems in virtual environments. Presence Teleoper Virtual Environ 1(3):302–305

    Article  Google Scholar 

  • Era P, Sainio P, Koskinen S, Haavisto P, Vaara M, Aromaa A (2006) Postural balance in a random sample of 7,979 subjects aged 30 years and over. Gerontology 52(4):204–213

    Article  Google Scholar 

  • Fabbri M, Martoni M, Esposito MJ, Brighetti G, Natale V (2006) Postural control after a night without sleep. Neuropsychologia 44(12):2520–2525

    Article  Google Scholar 

  • Farook SA, Singh K, Govind S, Wah YC, Kesavan R, Chinnavan E (2018) Impact of virtual reality training in rehabilitation of stroke patients: a cross sectional review. Res Rev J Neurosci 8(1):16–20

    Google Scholar 

  • Fast K, Gifford T, Yancey R (2004) Virtual training for welding. In: 3rd IEEE and ACM international symposium on mixed and augmented reality. IEEE, pp 298–299

  • Ferguson CJ (2015) Do angry birds make for angry children? A meta-analysis of video game influences on children’s and adolescents’ aggression, mental health, prosocial behavior, and academic performance. Perspect Psychol Sci 10(5):646–666

    Article  Google Scholar 

  • Fernandes AS, Feiner, SK (2016) Combating VR sickness through subtle dynamic field-of-view modification. In: 2016 IEEE symposium on 3D user interfaces (3DUI). IEEE pp 201–210

  • Figura F, Cama G, Capranica L, Guidetti L, Pulejo C (1991) Assessment of static balance in children. J Sports Med Phys Fitness 31(2):235–242

    Google Scholar 

  • Fodor LA, Coteț CD, Cuijpers P, Szamoskozi Ș, David D, Cristea IA (2018) The effectiveness of virtual reality based interventions for symptoms of anxiety and depression: a meta-analysis. Sci Rep 8(1):1–13

    Article  Google Scholar 

  • Fransson P, Patel M, Jensen H, Lundberg M, Tjernström F, Magnusson M, Hansson E (2019) Postural instability in an immersive Virtual Reality adapts with repetition and includes directional and gender specific effects. Sci Rep 9(1):3168

    Article  Google Scholar 

  • Furuya-Kanamori L, Doi SA (2016) Angry birds, angry children, and angry meta-analysts: a reanalysis. Perspect Psychol Sci 11(3):408–414

    Article  Google Scholar 

  • Gignac GE, Szodorai ET (2016) Effect size guidelines for individual differences researchers. Person Individ Differ 102:74–78

    Article  Google Scholar 

  • Golding JF (2006) Motion sickness susceptibility. Auton Neurosci 129(1–2):67–76

    Article  Google Scholar 

  • Golding JF, Bles W, Bos JE, Haynes T, Gresty MA (2003) Motion sickness and tilts of the inertial force environment: active suspension systems vs. active passengers. Aviat Space Environ Med 74(3):220–227

    Google Scholar 

  • Grabowski A, Jankowski J (2015) Virtual reality-based pilot training for underground coal miners. Saf Sci 72:310–314

    Article  Google Scholar 

  • Guerraz M, Bronstein AM (2008) Ocular versus extraocular control of posture and equilibrium. Neurophysiologie Clinique/Clin Neurophysiol 38(6):391–398

    Article  Google Scholar 

  • Hale KS, Stanney KM (2006) Effects of low stereo acuity on performance, presence and sickness within a virtual environment. Appl Ergon 37(3):329–339

    Article  Google Scholar 

  • Hedges LV, Olkin I (2014) Statistical methods for meta-analysis. Academic Press

    MATH  Google Scholar 

  • Hemmerich WA, Shahal A, Hecht H (2019) Predictors of visually induced motion sickness in women. Displays 58:27–32

    Article  Google Scholar 

  • Hettinger LJ, Riccio GE (1992) Visually induced motion sickness in virtual environments. Presence Teleoper Virtual Environ 1(3):306–310

    Article  Google Scholar 

  • Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560

    Article  Google Scholar 

  • Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) (2019) Cochrane handbook for systematic reviews of interventions version 6.0 (updated July 2019). Cochrane, 2019. www.training.cochrane.org/handbook

  • Honrubia V, Downey WL, Mitchell DP, Ward PH (1968) Experimental studies on optokinetic nystagmus II. Normal humans. Acta Otolaryngol 65(1–6):441–448

    Article  Google Scholar 

  • Hough LM, Oswald FL, Ployhart RE (2001) Determinants, detection and amelioration of adverse impact in personnel selection procedures: Issues, evidence and lessons learned. Int J Sel Assess 9(1–2):152–194

    Article  Google Scholar 

  • Howard MC (2017) A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Comput Hum Behav 70:317–327

    Article  MathSciNet  Google Scholar 

  • Howard M (2019) Virtual reality interventions for personal development: A meta-analysis of hardware and software. Hum Comput Interact 34(3):205–239

    Article  Google Scholar 

  • Howard MC, Gutworth MB (2020) A meta-analysis of virtual reality training programs for social skill development. Comput Educ 144:103707

    Article  Google Scholar 

  • Howard M, Marshall C (2019) Virtual reality training in organizations. In: Landers R (ed) The Cambridge handbook of technology and employee behavior. Cambridge University Press, Cambridge

    Google Scholar 

  • Howarth PA, Costello PJ (1997) The occurrence of virtual simulation sickness symptoms when an HMD was used as a personal viewing system. Displays 18(2):107–116

    Article  Google Scholar 

  • Hu S, Grant WF, Stern RM, Koch KL (1991) Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum. Aviat Space Environ Med 62(4):308–314

    Google Scholar 

  • Ip HH, Wong SW, Chan DF, Byrne J, Li C, Yuan VS, Lau KS, Wong JY (2018) Enhance emotional and social adaptation skills for children with autism spectrum disorder: a virtual reality enabled approach. Comput Educ 117:1–15

    Article  Google Scholar 

  • Jacobs M, van der Zwaan K, Hart E, Groeneveld G, Roos R (2019) Comparable rates of simulator sickness in Huntington’s disease and healthy individuals. Transport Res F Traffic Psychol Behav 60:499–504

    Article  Google Scholar 

  • Johnson D (2007) Simulator sickness during emergency procedures training in a helicopter simulator: age, flight experience, and amount learned. Army Research Institute for the Behavioral and Social Sciences, Fort Rucker

    Google Scholar 

  • Jung JY, Cho KS, Choi J, Choi J (2017) Causes of cyber sickness of VR contents: an experimental study on the viewpoint and movement. J Korea Contents Assoc 17(4):200–208

    Google Scholar 

  • Kepes S, McDaniel MA, Brannick MT, Banks GC (2013) Meta-analytic reviews in the organizational sciences: two meta-analytic schools on the way to MARS (the Meta-Analytic Reporting Standards). J Bus Psychol 28(2):123–143

    Article  Google Scholar 

  • Karita K, Nakao M, Nishikitani M, Iwata T, Murata K, Yano E (2006) Effect of overtime work and insufficient sleep on postural sway in information-technology workers. J Occup Health 48(1):65–68

    Article  Google Scholar 

  • Kemeny A, George P, Mérienne F, Colombet F (2017) New vr navigation techniques to reduce cybersickness. Electron Imaging 2017(3):48–53

    Article  Google Scholar 

  • Kennedy RS, Fowlkes JE, Berbaum KS, Lilienthal MG (1992a) Use of a motion sickness history questionnaire for prediction of simulator sickness. Aviat Space Environ Med 63(7):588–593

    Google Scholar 

  • Kennedy R, Lane N, Lilienthal M, Berbaum K, Hettinger L (1992b) Profile analysis of simulator sickness symptoms: application to virtual environment systems. Presence Teleoper Virtual Environ 1(3):295–301

    Article  Google Scholar 

  • Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3(3):203–220

    Article  Google Scholar 

  • Kennedy RS, Drexler J, Kennedy RC (2010) Research in visually induced motion sickness. Appl Ergon 41(4):494–503

    Article  Google Scholar 

  • Kim H, Park J, Choi Y, Choe M (2018) Virtual reality sickness questionnaire (VRSQ): motion sickness measurement index in a virtual reality environment. Appl Ergon 69:66–73

    Article  Google Scholar 

  • Knight MM, Arns LL (2006) The relationship among age and other factors on incidence of cybersickness in immersive environment users. In: ACM Siggraph 2006 Research Posters. ACM, p 196

  • Kolasinski EM, Gilson RD (1998) Simulator sickness and related findings in a virtual environment. In: Proceedings of the human factors and ergonomics society annual meeting, vol 42, no 21. SAGE Publications, Los Angeles, pp 1511–1515

  • Koslucher F, Haaland E, Stoffregen TA (2016) Sex differences in visual performance and postural sway precede sex differences in visually induced motion sickness. Exp Brain Res 234(1):313–322

    Article  Google Scholar 

  • Krieger LH (2004) The intuitive psychologist behind the bench: models of gender bias in social psychology and employment discrimination law. J Soc Issues 60(4):835–848

    Article  MathSciNet  Google Scholar 

  • LaViola JJ Jr (2000) A discussion of cybersickness in virtual environments. ACM Sigchi Bulletin 32(1):47–56

    Article  Google Scholar 

  • Landau J (1995) The relationship of race and gender to managers’ ratings of promotion potential. J Organ Behav 16(4):391–400

    Article  Google Scholar 

  • Levitt HM, Bamberg M, Creswell JW, Frost DM, Josselson R, Suárez-Orozco C (2018) Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA Publications and Communications Board task force report. Am Psychol 73(1):26

    Article  Google Scholar 

  • Li R, Peterson N, Walter HJ, Rath R, Curry C, Stoffregen TA (2018) Real-time visual feedback about postural activity increases postural instability and visually induced motion sickness. Gait Posture 65:251–255

    Article  Google Scholar 

  • Lim YH, Kim JS, Lee HW, Kim SH (2018) Postural instability induced by visual motion stimuli in patients with vestibular migraine. Front Neurol 9:433

    Article  Google Scholar 

  • Lorenzo G, Lledó A, Pomares J, Roig R (2016) Design and application of an immersive virtual reality system to enhance emotional skills for children with autism spectrum disorders. Comput Educ 98:192–205

    Article  Google Scholar 

  • Lutz OHM, Burmeister C, dos Santos LF, Morkisch N, Dohle C, Krüger J (2017) Application of head-mounted devices with eye-tracking in virtual reality therapy. Curr Dir Biomed Eng 3(1):53–56

    Article  Google Scholar 

  • Manning GW, Stewart WG (1949) Effect of body position on incidence of motion sickness. J Appl Physiol 1(9):619–628

    Article  Google Scholar 

  • Masui T, Hasegawa Y, Matsuyama Y, Sakano S, Kawasaki M, Suzuki S (2005) Gender differences in platform measures of balance in rural community-dwelling elders. Arch Gerontol Geriatr 41(2):201–209

    Article  Google Scholar 

  • Mavrikios D, Karabatsou V, Fragos D, Chryssolouris G (2006) A prototype virtual reality demonstrator for immersive and interactive simulation of welding processes. Int J Comput Integr Manuf 19(03):294–300

    Article  Google Scholar 

  • McMahan RP, Bowman DA, Zielinski DJ, Brady RB (2012) Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Trans Visual Comput Graph 18(4):626–633

    Article  Google Scholar 

  • Merchant Z, Goetz ET, Cifuentes L, Keeney-Kennicutt W, Davis TJ (2014) Effectiveness of virtual reality-based instruction on students’ learning outcomes in K-12 and higher education: a meta-analysis. Comput Educ 70:29–40

    Article  Google Scholar 

  • Merhi O, Faugloire E, Flanagan M, Stoffregen TA (2007) Motion sickness, console video games, and head-mounted displays. Hum Factors 49(5):920–934

    Article  Google Scholar 

  • Messinger PR, Stroulia E, Lyons K (2008) A typology of virtual worlds: historical overview and future directions. J For Virtual Worlds Res 1(1):1–18

    Google Scholar 

  • Mittelstaedt J, Wacker J, Stelling D (2018) Effects of display type and motion control on cybersickness in a virtual bike simulator. Displays 51:43–50

    Article  Google Scholar 

  • Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269

    Article  Google Scholar 

  • Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Control Found Appl 4(1):1

    Google Scholar 

  • Mon-Williams M, Warm JP, Rushton S (1993) Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display. Ophthalmic Physiol Opt 13(4):387–391

    Article  Google Scholar 

  • Morina N, Ijntema H, Meyerbröker K, Emmelkamp P (2015) Can virtual reality exposure therapy gains be generalized to real-life? A meta-analysis of studies applying behavioral assessments. Behav Res Ther 74:18–24

    Article  Google Scholar 

  • Moscoso S (2000) Selection interview: A review of validity evidence, adverse impact and applicant reactions. Int J Sel Assess 8(4):237–247

    Article  Google Scholar 

  • Moss JD, Muth ER (2011) Characteristics of head-mounted displays and their effects on simulator sickness. Hum Factors 53(3):308–319

    Article  Google Scholar 

  • Muhanna MA (2015) Virtual reality and the CAVE: taxonomy, interaction challenges and research directions. J King Saud Univ Comput Inf Sci 27(3):344–361

    Google Scholar 

  • Munafo J, Diedrick M, Stoffregen T (2017) The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Exp Brain Res 235(3):889–901

    Article  Google Scholar 

  • Mussel P, Spengler M (2015) Investigating intellect from a trait activation perspective: identification of situational moderators for the correlation with work-related criteria. J Res Pers 55:51–60

    Article  Google Scholar 

  • Nacke LE, Deterding CS (2017) The maturing of gamification research. Comput Hum Behav 71:450–454

    Article  Google Scholar 

  • Nakano T, Araki K, Michimori A, Inbe H, Hagiwara H, Koyama E (2001) Nineteen-hour variation of postural sway, alertness and rectal temperature during sleep deprivation. Psychiatry Clin Neurosci 55(3):277–278

    Article  Google Scholar 

  • Nichols S, Patel H (2002) Health and safety implications of virtual reality: a review of empirical evidence. Appl Ergon 33(3):251–271

    Article  Google Scholar 

  • Ohno H, Wada M, Saitoh J, Sunaga N, Nagai M (2004) The effect of anxiety on postural control in humans depends on visual information processing. Neurosci Lett 364(1):37–39

    Article  Google Scholar 

  • Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness hearing in classical musicians. Acta Otolaryngol 94:4–44

    Article  Google Scholar 

  • Oman CM (1990) Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can J Physiol Pharmacol 68(2):294–303

    Article  Google Scholar 

  • Oman CM (2012) Are evolutionary hypotheses for motion sickness" just-so" stories? J Vestib Res 22(2, 3):117–127

    Article  Google Scholar 

  • Owen N, Leadbetter AG, Yardley L (1998) Relationship between postural control and motion sickness in healthy subjects. Brain Res Bull 47(5):471–474

    Article  Google Scholar 

  • Palmisano S, Arcioni B, Stapley PJ (2018) Predicting vection and visually induced motion sickness based on spontaneous postural activity. Exp Brain Res 236(1):315–329

    Article  Google Scholar 

  • Paterson TA, Harms PD, Steel P, Credé M (2016) An assessment of the magnitude of effect sizes: evidence from 30 years of meta-analysis in management. J Leadersh Organ Stud 23(1):66–81

    Article  Google Scholar 

  • Petri K, Feuerstein K, Folster S, Bariszlovich F, Witte K (2020) Effects of age, gender, familiarity with the content, and exposure time on cybersickness in immersive head-mounted display based virtual reality. Am J Biomed Sci 12(2):107–121

    Article  Google Scholar 

  • Place I, Englert Y (2003) A prospective longitudinal study of the physical, psychomotor, and intellectual development of singleton children up to 5 years who were conceived by intracytoplasmic sperm injection compared with children conceived spontaneously and by in vitro fertilization. Fertil Steril 80(6):1388–1397

    Article  Google Scholar 

  • Pletzer JL, Bentvelzen M, Oostrom JK, de Vries RE (2019) A meta-analysis of the relations between personality and workplace deviance: Big Five versus HEXACO. J Vocat Behav 112:369–383

    Article  Google Scholar 

  • Rauch SA, Koola C, Post L, Yasinski C, Norrholm SD, Black K, Rothbaum BO (2018) In session extinction and outcome in Virtual Reality Exposure Therapy for PTSD. Behav Res Ther 109:1–9

    Article  Google Scholar 

  • Ravi D, Kumar N, Singhi P (2017) Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy 103(3):245–258

    Article  Google Scholar 

  • Reason JT, Brand JJ (1975) Motion sickness. Academic Press

    Google Scholar 

  • Rebenitsch L, Owen C (2014) Individual variation in susceptibility to cybersickness. In: Proceedings of the 27th annual ACM symposium on user interface software and technology. ACM, pp 309–317

  • Reger GM, Smolenski D, Edwards-Stewart A, Skopp NA, Rizzo AS, Norr A (2018) Does virtual reality increase simulator sickness during exposure therapy for post-traumatic stress disorder? Telemed e-Health 25(9):859–861

    Article  Google Scholar 

  • Reis L, Duarte E, Rebelo F (2016) 18 older workers and virtual environments. Ergonomics in design: methods and techniques, p 281

  • Riccio GE, Stoffregen TA (1991) An ecological theory of motion sickness and postural instability. Ecol Psychol 3(3):195–240

    Article  Google Scholar 

  • Riecke BE, Schulte-Pelkum J, Caniard F, Bulthoff HH (2005) Towards lean and elegant self-motion simulation in virtual reality. In: IEEE proceedings. VR 2005. Virtual Reality. IEEE, pp 131–138

  • Ritchie JM, Robinson G, Day PN, Dewar RG, Sung RC, Simmons JE (2007) Cable harness design, assembly and installation planning using immersive virtual reality. Virtual Real 11(4):261–273

    Article  Google Scholar 

  • Riva G, Baños RM, Botella C, Mantovani F, Gaggioli A (2016) Transforming experience: the potential of augmented reality and virtual reality for enhancing personal and clinical change. Front Psychiatry 7:164

    Article  Google Scholar 

  • Rose T, Nam CS, Chen KB (2018) Immersion of virtual reality for rehabilitation-review. Appl Ergon 69:153–161

    Article  Google Scholar 

  • Rothstein HR, Bushman BJ (2015) Methodological and reporting errors in meta-analytic reviews make other meta-analysts angry: a commentary on Ferguson (2015). Perspect Psychol Sci 10(5):677–679

    Article  Google Scholar 

  • Sacks R, Perlman A, Barak R (2013) Construction safety training using immersive virtual reality. Constr Manag Econ 31(9):1005–1017

    Article  Google Scholar 

  • Saredakis D, Szpak A, Birckhead B, Keage HA, Rizzo A, Loetscher T (2020) Factors associated with virtual reality sickness in head-mounted displays: a systematic review and meta-analysis. Front Hum Neurosci 14:96

    Article  Google Scholar 

  • Shafer DM, Carbonara CP, Korpi MF (2017) Modern virtual reality technology: cybersickness, sense of presence, and gender. Media. Psychol Rev 11(2):1–13

    Google Scholar 

  • Sharpe D (1997) Of apples and oranges, file drawers and garbage: why validity issues in meta-analysis will not go away. Clin Psychol Rev 17(8):881–901

    Article  Google Scholar 

  • Sharples S, Cobb S, Moody A, Wilson JR (2008) Virtual reality induced symptoms and effects (VRISE): comparison of head mounted display (HMD), desktop and projection display systems. Displays 29(2):58–69

    Article  Google Scholar 

  • Sherman W, Craig A (2018) Understanding virtual reality: interface, application, and design. Morgan Kaufmann, Cambridge

    Google Scholar 

  • Slater M (2018) Immersion and the illusion of presence in virtual reality. Br J Psychol 109(3):431–433

    Article  Google Scholar 

  • Smart LJ Jr, Stoffregen TA, Bardy BG (2002) Visually induced motion sickness predicted by postural instability. Hum Factors 44(3):451–465

    Article  Google Scholar 

  • Soutter, A. R. B., Bates, T. C., & Mõttus, R. (2020). Big Five and HEXACO personality traits, proenvironmental attitudes, and behaviors: a meta-analysis. Perspect Psychol Sci 1745691620903019

  • Sparto PJ, Whitney SL, Hodges LF, Furman JM, Redfern MS (2004) Simulator sickness when performing gaze shifts within a wide field of view optic flow environment: preliminary evidence for using virtual reality in vestibular rehabilitation. J Neuroeng Rehabil 1(1):14

    Article  Google Scholar 

  • Squelch AP (2001) Virtual reality for mine safety training in South Africa. J South Afr Inst Min Metall 101(4):209–216

    Google Scholar 

  • Stein M, Robinski M (2012) Simulator sickness in flight simulators of the German armed forces. Aviat Psychol Appl Hum Factors 2(1):11–19

    Article  Google Scholar 

  • Steuer J (1992) Defining virtual reality: dimensions determining telepresence. J Commun 42(4):73–93

    Article  Google Scholar 

  • Stoffregen TA, Smart LJ Jr (1998) Postural instability precedes motion sickness. Brain Res Bull 47(5):437–448

    Article  Google Scholar 

  • Stoffregen T, Hettinger L, Haas M, Roe M, Smart L (2000) Postural instability and motion sickness in a fixed-base flight simulator. Hum Factors 42(3):458–469

    Article  Google Scholar 

  • Stoffregen TA, Yoshida K, Villard S, Scibora L, Bardy BG (2010) Stance width influences postural stability and motion sickness. Ecol Psychol 22(3):169–191

    Article  Google Scholar 

  • Stoffregen T, Chang C, Chen F, Zeng W (2017) Effects of decades of physical driving on body movement and motion sickness during virtual driving. PLoS ONE 12(11):e0187120

    Article  Google Scholar 

  • Stone RT, Watts KP, Zhong P (2011) Virtual reality integrated welder training. Weld J 90(7):136s

    Google Scholar 

  • Sugiura A, Tanaka K, Ohta K, Kitamura K, Morisaki S, Takada H (2018). Effect of controlled consciousness on sense of presence and visually induced motion sickness while viewing stereoscopic movies. In: International conference on universal access in human-computer interaction. Springer, Cham, pp 122–131

  • Sutton AJ, Song F, Gilbody SM, Abrams KR (2000) Modelling publication bias in meta-analysis: a review. Stat Methods Med Res 9(5):421–445

    Article  MATH  Google Scholar 

  • Suzuki JI, Komatsuzaki A (1962) Clinical application of optokinetic nystagmus: optokinetic pattern test. Acta Otolaryngol 54(1–6):49–55

    Article  Google Scholar 

  • Takeuchi N, Mori T, Suzukamo Y, Izumi SI (2018) Modulation of excitability in the temporoparietal junction relieves virtual reality sickness. Cyberpsychol Behav Soc Netw 21(6):381–387

    Article  Google Scholar 

  • Tamim RM, Bernard RM, Borokhovski E, Abrami PC, Schmid RF (2011) What forty years of research says about the impact of technology on learning: a second-order meta-analysis and validation study. Rev Educ Res 81(1):4–28

    Article  Google Scholar 

  • Tett RP, Burnett DD (2003) A personality trait-based interactionist model of job performance. J Appl Psychol 88(3):500

    Article  Google Scholar 

  • Tett RP, Simonet DV, Walser B, Brown C (2013) Trait activation theory. Handbook of personality at work, pp 71–100

  • Tieri G, Morone G, Paolucci S, Iosa M (2018) Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Rev Med Devices 15(2):107–117

    Article  Google Scholar 

  • Treleaven J, Battershill J, Cole D, Fadelli C, Freestone S, Lang K, Sarig-Bahat H (2015) Simulator sickness incidence and susceptibility during neck motion-controlled virtual reality tasks. Virtual Real 19(3–4):267–275

    Article  Google Scholar 

  • Tyrrell R, Sarig-Bahat H, Williams K, Williams G, Treleaven J (2018) Simulator sickness in patients with neck pain and vestibular pathology during virtual reality tasks. Virtual Real 22(3):211–219

    Article  Google Scholar 

  • Valmaggia LR, Latif L, Kempton MJ, Rus-Calafell M (2016) Virtual reality in the psychological treatment for mental health problems: a systematic review of recent evidence. Psychiatry Res 236:189–195

    Article  Google Scholar 

  • Van Wyk E, De Villiers R (2009) Virtual reality training applications for the mining industry. In: Proceedings of the 6th international conference on computer graphics, virtual reality, visualisation and interaction in Africa. ACM, pp 53–63

  • Villard SJ, Flanagan MB, Albanese GM, Stoffregen TA (2008) Postural instability and motion sickness in a virtual moving room. Hum Factors 50(2):332–345

    Article  Google Scholar 

  • Wada M, Sunaga N, Nagai M (2001) Anxiety affects the postural sway of the antero-posterior axis in college students. Neurosci Lett 302(2–3):157–159

    Article  Google Scholar 

  • Warwick-Evans L, Symons N, Fitch T, Burrows L (1998) Evaluating sensory conflict and postural instability. Theories of motion sickness. Brain Res Bull 47(5):465–469

    Article  Google Scholar 

  • Weech S, Moon J, Troje NF (2018) Influence of bone-conducted vibration on simulator sickness in virtual reality. PLoS ONE 13(3):e0194137

    Article  Google Scholar 

  • Zagenczyk TJ, Smallfield J, Scott KL, Galloway B, Purvis RL (2017) The moderating effect of psychological contract violation on the relationship between narcissism and outcomes: an application of trait activation theory. Front Psychol 8:1113

    Article  Google Scholar 

  • Zettler I, Thielmann I, Hilbig BE, Moshagen M (2020) The nomological net of the HEXACO model of personality: a large-scale meta-analytic investigation. Perspect Psychol Sci 15(3):723–760

    Article  Google Scholar 

  • Zhang MW, Ho R (2017) Smartphone applications for immersive virtual reality therapy for internet addiction and internet gaming disorder. Technol Health Care 25(2):367–372

    Article  Google Scholar 

  • Zhang L, Wang J, Qi R, Pan L, Li M, Cai Y (2016) Motion sickness: current knowledge and recent advance. CNS Neurosci Ther 22(1):15–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt C. Howard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howard, M.C., Van Zandt, E.C. A meta-analysis of the virtual reality problem: Unequal effects of virtual reality sickness across individual differences. Virtual Reality 25, 1221–1246 (2021). https://doi.org/10.1007/s10055-021-00524-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-021-00524-3

Keywords

Navigation